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Abstract. A generalization of a classical discrete tomography problem
is considered: Reconstruct binary matrices from their absorbed row and
columns sums, i.e., when some known absorption is supposed. It is math-
ematically interesting when the absorbed projection of a matrix element
is the same as the absorbed projection of the next two consecutive el-
ements together. We show that, in this special case, the non-uniquely
determined matrices contain a certain configuration of 0s and 1s, called
alternatively corner-connected components. Furthermore, such matrices
can be transformed into each other by switchings the 0s and 1s of these
components.

1 Introduction

Consider a ray (such as light or X-ray) transmitting through homogeneous ma-
terial. It is a well-known physical phenomenon that a part of the ray will be
absorbed in the material. Quantitatively, let I0 and I denote the initial and the
detected intensities of the ray. Then

I = I0 · e−µx , (1)

where µ ≥ 0 denotes the absorption coefficient of the material and x is the length
of the path of the ray in the material.

Consider now the 2-dimensional integer lattice Z
2. Let m and n be positive

integers. A discrete rectangle with size m × n is a special discrete set of Z
2

determined as the intersection of m consecutive horizontal lattice lines with n
consecutive vertical lattice lines. If F is a discrete set in Z

2, then there is anm×n
discrete rectangle containing F , it is called containing (discrete) rectangle. (For
the sake of simplicity we take the smallest containing rectangle in the following.)

Let us suppose that the horizontal and vertical projections of F are measured
by detectors placed in the next column to left and in the next row to above,
respectively, of the containing rectangle (see Fig. 1.a).
Then the projections can be computed according to (1). For example, in the
case of the discrete set F given in Fig. 1a, the projections along the horizontal
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Fig. 1. A 2D discrete set F , the corresponding binary matrix A, and the horizon-
tal and vertical projections. (a) A 2D discrete set F (its elements are indicated
by points) and the detectors measuring its horizontal and vertical projections.
(b) The binary matrix A and its row and column sums

lattice lines of the containing rectangle are r1 = e−µ·1+e−µ·3, r2 = e−µ·2+e−µ·3,
and r3 = e−µ·1 + e−µ·4 (from top to down).

Let us use an equivalent representation of the 2D discrete sets and their
horizontal and vertical projections. The containing rectangle including F can be
represented by a binary matrix A = (aij)m×n as follows (see Fig. 1.b): aij = 1
if the lattice point corresponding to (i, j) is an element of F , aij = 0 otherwise.
In order to use the generally accepted notation of numeration systems [5] let us
introduce

β = eµ . (2)

Clearly, β ≥ 1, because µ > 0. Then we can define the absorbed row and column
sums of A, Rβ(A) and Sβ(A), respectively, as

Rβ(A) = (r1, . . . , rm) , where ri =
n∑

j=1

aijβ
−j , i = 1, . . . ,m, (3)

and

Sβ(A) = (s1, . . . , sn) , where sj =
m∑

i=1

aijβ
−i , j = 1, . . . , n. (4)

For example, in the case of matrix A given in Fig. 1.b) Rβ(A) = (β−1 +
β−3, β−2 + β−3, β−1 + β−4) and Sβ(A) = (β−1 + β−3, β−2, β−1 + β−2, β−3).

Then the reconstruction problem of binary matrices with absorption knowing
the projections along horizontal and vertical lines can be posed as
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Reconstruction DA2D(β).
Given: β ≥ 1, m, n, R ∈ N

m, and S ∈ N
n.

Task: Construct a binary matrix A with size m× n such that

Rβ(A) = R and Sβ(A) = S . (5)

We say that a binary matrix A is a solution of the DA2D(β) reconstruction
problem if (5) is satisfied.

If β = 1 then we have the classical reconstruction problem of binary matrices
without absorption (as summaries see e.g. [1,3]). Select, now, a mathematically
interesting case when β = β0 where

β−1
0 = β−2

0 + β−3
0 (6)

giving

β0 =
1 +

√
5

2
. (7)

(The other solution of (6), namely (1 − √
5)/2, is not applicable in this case,

see (2).)
In this paper we discuss the problem of reconstruction of binary matrices

from their row and column sums in the case of absorption corresponding to β0.
Because of the page limit, the proofs of theorems and lemmas are omitted here
(but they are given in [4]).

2 β0-Representation

Consider the absorbed row and column sums of the binary matrix A in the case
of β = β0:

ri =
n∑

j=1

aijβ
−j
0 , i = 1, . . . ,m, and sj =

m∑
i=1

aijβ
−i
0 , j = 1, . . . , n.

(8)

Using the terminology of numeration systems we can say that the finite (bi-
nary) word ai1 · · ·ain is a (finite) representation in base β0 (or a finite β0-
representation) of ri for each i = 1, . . . ,m, and, similarly, a1j · · · amj is a β0-
representation of sj for each j = 1, . . . , n. The equations (8) mean also that
the row and column sums of A are nonnegative real numbers having a finite β0-
representation with n andm binary digits, respectively (including the eventually
ending zeros).
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Let Bk denote the set of nonnegative real numbers having a β0-representation
with k binary digits (k > 1), formally,

Bk =
{ k∑

i=1

aiβ
−i
0 | ai ∈ {0, 1}

}
. (9)

Then

ri ∈ Bn, i = 1, . . . ,m, and sj ∈ Bm, j = 1, . . . , n, (10)

are necessary conditions for the existence of a matrix A with

Rβ0(A) = (r1, . . . , rm) and Sβ0(A) = (s1, . . . , sn) . (11)

2.1 Switching in β0-Representations

The β0-representation is generally non-unique, because there are binary words
with the same length representing the same number. For example, on the base
of (6) it is easy to check the following equality between the 3-digit-length β0-
representations

100 = 011 . (12)

Furthermore, Equality (12) may allow us to generate newer β0-representa-
tions: If in a finite length β0-representation there is one of the sub-words 100
or 011, then it can be replaced by the other one. This transformation of binary
words is called (1D) elementary switching.

It is clear that one or more 1D elementary switchings give(s) new β0-represen-
tation(s) of the same number. As an example, see the 5-digit-length β0-represen-
tations of 1/β0:

10000 = 01100 = 01011 , (13)

where the second β0-representation is created from the first representation by
switching on the first three positions and the third representation is created from
the second one by switching on the last three positions.

As direct consequences of (12), it is easy to see that

10x00 = 01x11
10x0x00 = 01x1x11

10x0x0x00 = 01x1x1x11
. . .

(14)
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where x denotes the positions where both β0-representations have the same
binary digit. (That is, such kind of transformation 1(0x)k00 ↔ 0(1x)k11 (k ≥
0) between the sub-words of the β0-representations can be performed without
changing the represented value and without changing the values in the positions
indicated by x.) The transformations described by (12) and (14) are called (1D)
switchings.

Now, we are going to prove that any finite β0-representation of a number can
be get from its any other β0-representation by switchings.

Lemma 1. Let a1 · · ·ak and b1 · · · bk be different, k-digit-length β0-representa-
tions of the same number. Then b1 · · · bk can be get from a1 · · ·ak by a finite
number of 1D switchings.

Proof. A procedure by which the suitable switchings can be found is described
in [4].

Consequence. If a1 · · · ak and b1 · · · bk are different, k-digit-length β0-representa-
tions of the same number, then there are positions i, i+ 1, i+ 2 (1 ≤ i ≤ k − 2)
such that there is a switching between a1 · · · ak and b1 · · · bk on these positions.

3 2D Switchings

In this section we determine the 2D switchings, i.e., the transformations of binary
matrices by which some of their 0s and 1s can be switched to each other such
that the absorbed row and column sums remain the same.

3.1 Connectedness

Consider the class of m × n (m,n ≥ 3) binary matrices with given row and
column sum vectors in the case of absorption corresponding to β0. Let S(i,j)

(1 < i < m, 1 < j < n) denote the 3× 3 discrete square

S(i,j) = {i− 1, i, i+ 1} × {j − 1, j, j + 1} .

Let Σ be a set of 3 × 3 discrete squares of {1, . . . ,m} × {1, . . . , n} and let
S(i,j), S(i′,j′) ∈ Σ. Two kinds of connectedness will be defined on the set of 3×3
discrete squares: side-connectedness and corner-connectedness. There is side-
connection between S(i,j) and S(i′,j′) if (i′, j′) ∈ {(i−2, j), (i, j−2), (i, j+2), (i+
2, j)}. The squares being side-connected to S(i,j) are called the side-neighbors
of S(i,j). As an illustration see Fig. 2.a. The squares S(i,j) and S(i′,j′) are corner-
connected if (i′, j′) ∈ {(i− 2, j− 2), (i− 2, j+2), (i+2, j− 2), (i+2, j+2)}. The
squares being corner-connected to S(i,j) are called the corner-neighbors of S(i,j)

(see Fig. 2.b).
There is a side-chain between S(i,j) and S(i′,j′) in Σ if a sequence of elements

of Σ can be selected such that the first element is S(i,j) and the last element
is S(i′,j′) and any two consecutive elements of the sequence are side-connected.
(A sequence consisting of only one square is a side-chain by definition.)
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(i,j)

b)

(i,j)

Fig. 2. The discrete square S(i,j) and a) its side-neighbors and b) its corner-
neighbors

The set Σ is side-connected if there is a side-chain in Σ between its any
two different elements (see Fig. 3.a). A side-connected set Σ is strongly side-
connected if whenever S(i,j), S(i′,j′) ∈ Σ and S(i,j) ∩ S(i′,j′) = ∅ then they are
side-connected or they have a common side-connected neighbor (see Fig. 3.b). A
maximal strongly side-connected subset of Σ is called a strongly side-connected
component of Σ.

(i,j)

a) b)

(i’,j’)

S

S

Fig. 3. Side-connected sets of discrete squares. The set a) is not strongly side
connected because S(i,j) ∩ S(i′,j′) = ∅ but they are not side-connected and they
have no common side-neighbor. b) A strongly side-connected set

Let σ be a set of strongly side-connected components Σ(1), . . . , Σ(k) (k ≥ 1).
Let Σ(l), Σ(l′) ∈ σ (1 ≤ l, l′ ≤ k). Σ(l) and Σ(l′) are corner-connected if whenever
S ∈ Σ(l) and S′ ∈ Σ(l′) have a common position then S and S′ are corner-
connected squares. (Since Σ(l) and Σ(l′) are maximal, S and S′ cannot be side-
connected squares.) There is a corner-chain between Σ(l) and Σ(l′) in σ if a
sequence of elements of σ can be selected such that the first element is Σ(l)

and the last element is Σ(l′) and any two consecutive elements of the sequence
are corner-connected. (A sequence consisting of only one component is a corner-
chain by definition.) The set σ is corner-connected if there is a corner-chain in
σ between its any two elements (see Fig. 4.a).
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Fig. 4. Two corner-connected sets, both of them have two strongly side-
connected components

3.2 Switching Patterns

In order to identify not necessarily rectangular parts of binary matrices, we
introduce the concept of binary patterns (or shortly, patterns) as binary valued
functions defined on an arbitrary non-empty subset of {1, . . . ,m} × {1, . . . , n}.
(In this terminology binary matrices are binary patterns on discrete rectangles.)

Let P be a binary pattern, its domain will be denoted by dom(P ). The
absorbed row and column sums of P are denoted by Rβ0(P ) and Sβ0(P ), respec-
tively, where the ith component of Rβ0(P ) is∑

(i,j)∈dom(P )

P (i, j) · β−j
0

for 1 ≤ i ≤ m and the jth component of Sβ0(P ) is∑
(i,j)∈dom(P )

P (i, j) · β−i
0

for 1 ≤ j ≤ n.
Let us define the switching pair of P , P ′, as

P ′(i, j) = 1− P (i, j)

on dom(P ). We say that P is a switching pattern if

Rβ0(P ) = Rβ0(P
′) and Sβ0(P ) = Sβ0(P

′) ,

and P and P ′ are a switching pair. That is, the patterns of a switching pair can
be get from each other by switching their 0s and 1s and still they have the same
absorbed row and column sums.
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Consider the following binary patterns:

E
(0)
(i,j) =

0 1 1
1 0 0
1 0 0

and E
(1)
(i,j) =

1 0 0
0 1 1
0 1 1

,

both of them are defined on the discrete square S(i,j). It is easy to check thatE
(0)
(i,j)

and E
(1)
(i,j) are a switching pair. They play an important role in the generation of

switching patterns, E(0)
(i,j) and E

(1)
(i,j) are called the 0-type and 1-type elementary

(2D) switching pattern, respectively.

3.3 Composition of Patterns

The composition of two patterns P and P ′ is the function

P ∗ P ′ : dom(P)� dom(P′) −→ {0, 1}
(� denotes the symmetric difference) such that

[P ∗ P ′](i, j) =

{
P (i, j), if(i, j) ∈ dom(P ) \ dom(P ′),
P ′(i, j), if(i, j) ∈ dom(P ′) \ dom(P ) .

(That is, P ∗ P ′ is undefined on dom(P ) ∩ dom(P ′).)
For example,

E
(0)
(i,j) ∗ E(0)

(i+2,j) =

0 1 1
1 0 0
x x x
1 0 0
1 0 0

, (15)

defined on S(i,j)�S(i+2,j) = {i− 1, i, i+2, i+3}× {j− 1, j, j +1}. (Just for the
sake of simple presentation, on the right side of (15) the whole sub-matrix on
the rectangle {i− 1, . . . , i+ 3} × {j − 1, j, j + 1} is indicated and x denotes the
positions in the sub-matrix where the composition is undefined.) Similarly,

E
(0)
(i,j) ∗ E(0)

(i,j+2) =
0 1 x 1 1
1 0 x 0 0
1 0 x 0 0

. (16)

defined on S(i,j)�S(i,j+2) = {i−1, i, i+1}×{j−1, j, j+2, j+3}. It is easy to see
that E(0)

(i,j) ∗ E(0)
(i+2,j) and E

(0)
(i,j) ∗ E(0)

(i,j+2) are switching patterns, their switching
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pairs are E(1)
(i,j) ∗ E(1)

(i+2,j) and E
(1)
(i,j) ∗ E(1)

(i,j+2), respectively, where

E
(1)
(i,j) ∗ E(1)

(i+2,j) =

1 0 0
0 1 1
x x x
0 1 1
0 1 1

and E
(1)
(i,j) ∗ E(1)

(i,j+2) =
1 0 x 0 0
0 1 x 1 1
0 1 x 1 1

. (17)

These examples show how new switching patterns can be created from ele-
mentary switching patterns by composition. Now, we show a general way how
two (not only elementary) switching patterns can be used to generate another
switching pattern.

3.4 Composition of Elementary Switching Patterns

Let E = {E1, . . . , Ek} (k ≥ 1) be a set of elementary switching patterns of the
same type on a strongly side-connected set Σ = {S1, . . . , Sk}. The composition
of E on Σ, denoted by C(E), is defined as follows. If k = 1 then C(E) = E1. If
k > 1 then let us suppose that S1, . . . , Sk are indexed such that for each l(<
k) {S1, . . . , Sl} is a strongly side-connected set and one of its squares is side-
connected with Sl+1. (It is easy to see that such an indexing exists.) Then let

C = C(E) = ((E1 ∗ E2) ∗ · · · ) ∗Ek .

Now, we are going to show that this definition is independent from the indexing
of Σ = {S1, . . . , Sk}. There are four cases depending on how many times the
position (i, j) is in the sets {S1, . . . , Sk}:

(i) If there is exactly one l such that (i, j) ∈ Sl, then

C(i, j) = e
(l)
ij ,

where e(l)
ij denotes the value of El in the position (i, j).

(ii) If there are exactly two different l1 and l2 such that (i, j) ∈ Sl1 and
(i, j) ∈ Sl2 , then C(i, j) is undefined.

(iii) If there are exactly three different l1, l2, and l3 such that (i, j) ∈ Sl1 ∩
Sl2∩Sl3 , then two of the elementary switching patterns (say, El1 and El3)
has the same value in the position (i, j) and the other one (El2) has a
different value here, i.e., e(l1)

ij = e
(l3)
ij = 1− e

(l2)
ij . In this case

C(i, j) = e
(l1)
ij = e

(l3)
ij .

(iv) If there are exactly four different l1, l2, l3, and l4 such that (i, j) ∈ Sl1 ∩
Sl2 ∩ Sl3 ∩ Sl4 , then C(i, j) is undefined.

That is, the value of C(i, j) can be decided simply on the base of the parity
of the number of discrete squares of Σ covering (i, j) (independently from the
indexing of Σ). Accordingly, if E is the set of 2D elementary switching patterns
of the same type on a strongly side-connected set, then we can simply write C(E)
to denote the compositions of the elements of E . As an example, see Fig. 5.
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Fig. 5. The composition of the elementary switching patterns E
(0)
(2,2), E

(0)
(2,4),

E
(0)
(4,4), E

(0)
(4,6), and E

(0)
(6,4) (’x’ denotes ’don‘t care’ position)

Lemma 2. Let E be a set of elementary switching patterns of the same type on
a strongly side-connected set of 3×3 squares. Then C(E) is a switching pattern.
Proof. The proof is given in [4].

Henceforth, the switching patterns constructed from elementary switching
patterns of the same type by composition are called composite switching pat-
terns. We say that the composite switching pattern has 0-type/1-type if it is
the composition of 0-type/1-type elementary switching patterns. For example,
(15)-(17) and Fig. 5 show composite switching patterns of types 0, 0, 1, 1, and 0.

3.5 Composition of Corner-Connected Components

Lemma 3. Let Σ(0) and Σ(1) be corner-connected components. Let C(0) and
C(1) be 0-type and 1-type composite switching patterns on Σ(0) and on Σ(1),
respectively. Then C(0) ∗ C(1) is a switching pattern.

Proof. The proof is given in [4].

Let σ be a corner-connected set of strongly side-connected components Σ(1),
. . . , Σ(k) (k ≥ 1). Let C(1), . . . , C(k) be 0- or 1-type composite switching patterns
on Σ(l), . . . , Σ(k), respectively. Let us suppose also that if Σ(l) and Σ(l′) are
corner-connected then C(l) and C(l′) have different type. In this case we say
that γ = {C(1), . . . , C(k)} is a set of alternatively corner-connected components
on σ.

The composition of γ on σ, denoted by C(γ), is defined as follows. If k = 1
then C(γ) = C(1). If k > 1 then let us suppose that Σ(1), . . . , Σ(k) are indexed
such that for each l (l < k) {Σ(1), . . . , Σ(k)} is a corner-connected set and one
of its elements is corner-connected with Σ(l+1). (It is easy to see that such an
indexing exists.) Then let

C = C(γ) = ((C(1) ∗ C(2) ∗ · · · ) ∗ C(k) .
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It is easy to show that this definition is independent from the indexing of σ,
because dom(C) = ∪lΣ

(l) \ ∪l,l′(Σ(l) ∩ Σ(l‘)) and C(i, j) = C(l)(i, j), where
l ∈ {1, . . . , k} is the only index such that (i, j) ∈ Σ(l). Henceforth, we may simply
write C(γ) to denote the composition of the elements of γ. As an example, see
Fig. 6.

0
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Fig. 6. Composition of two alternatively corner-connected components (the two
components are indicated with thick lines)

Theorem 1. Let γ = {C(1), . . . , C(k)} (k ≥ 1) be a set of alternatively corner-
connected components. Then C(γ) is a switching pattern.
Proof. It follows from Lemma 3 directly. ��
Theorem 2. If a binary matrix has a switching pattern C then there is a finite
number of sets γ1, . . . , γl (l > 1) of alternatively corner-connected components
such that C is the composition of C(γ1), . . . , C(γl).

Proof. The proof is given in [4].

Therefore, on the base of Theorems 1 and 2, it is proven that the 2D switching
patterns are just the patterns created as the composition of alternatively corner-
connected components.

Finally, two consequences are mentioned (c.f. [6]):
(i) A binary matrix is uniquely determined by its absorbed row and column

sums if and only if it has no sub-pattern created by composition from a
set of alternatively corner-connected components.

(ii) If A and B are different binary matrices with the same absorbed row
and column sums then A is transformable into B by a finte number of
switchings of switching patterns created by compositions from sets of
alternatively corner-connected components.
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ments et Applications, Université Paris 7 Denis-Diderot, Paris, France. Special



148 Attila Kuba and Maurice Nivat

thanks to Prof. Gabor T. Herman (Temple University, Philadelphia) and Laurent
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