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Various cryptosystems using finite field arithmetic have been introduced recently, 

e.g. cryptosystems based on permutations of finite fields (Lidl and Huller [81, 

NSbauer [12]), cryptosystems of the knapsack type (Chor and Rivest [4], Niederreiter 

[ll]), and cryptosystems based on discrete exponentiation in finite fields (Odlyzko 

[13], Wah and Wang c141). 

stream ciphers (Beker and Piper [l], Beth et al. (21, Lidl and Niederreiter [lo]). 

The security of cryptosystems based on discrete exponentiation has recently been di- 

minished by significant progress on the discrete logarithm problem (Blake et al. 131, 
Coppersmith [5], Coppersmith et al. [6]). In this paper we propose a public-key 

cryptosystem that has a more complex structure than the corresponding discrete-expo- 

nentiation cryptosystem and is therefore potentially harder to break. This crypto- 

system uses feedback shift register (FSR) sequences in finite fields and is thus easy 

to implement. 

Finite fields also play a role in the construction of 

To set up the cryptosystem, let q be a prime power, let F be the finite field 
9 

with q elements, and let 

0 ... - b x - b n-1 - 
bn-lX 1 

g(x) = xn - 

be a publicly known polynomial over F with n 21 and bo f 0. Let (si) be an 

FSR sequence i n  F wich 
4 

q 
s =  i+n bn-lsi-n-l + ... + blsicl + bOsi for i = O , l , . .  . . 

This sequence can be generated by an n-stage FSR and has characteristic polynomial 

g(x). The basic idea of  our cryptosystem is to replace discrete exponentiation by 

the operation of decimation for FSR sequences. By definition, the decimation of 

(si) by the factor k yields the sequence (sik), i.e. we take every kth term of 

(si) starting from so. Let M be the least positive integer such that g(X) di- 

vides xM - 1. If g ( x )  is also the minimal polynomial of (si), then the least 
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period of (si) is equal to M. We refer to [9, Ch. 81 for the lrressary background 

on FSR sequences. 

FSR Public-Key Cryptosystem. Let A and B be two correspondents in a comunica- 

tion system. The private kep of A is a random integer h with L <  h < M and 

gcd(h,M) = 1. Let (si) be the FSR sequence with characteristic polynomial g(x) 

and initial values so = ... = sn-2 = 0 , s  = l ( s o  = 1 if n = 1). Then the public n-1 

'hs2h ' * *  (2n-1 ) h  
3 of A is the string 

Encryption: If B wants to send a message to A that consists of a string 
9' 

of 2n - 1 elements of F 

of n elements of F which are not all 0, then B picks a random aOal - * *  a n- 1 q 
integer k with 1 <  k < M  and gcd(k,M) = 1. From A ' s  public key, B determines 

the minimal polynomial of the decimated sequence ( t . )  = (sib). Thus B can calcu- 

late any u .  = ti,. Now B forms the Hankel matrix 

. . .  

. . .  

. . .  2n-2 

'ks2k . * .  ( 2n-1) k and transmits to A the following two strings as ciphertexts: 

and (aoal ... a )U. 

Decryption: From the ciphertext s s (2n-l)k, A determines the minimal pol)'- 
nomial of the decimated. sequence (v.) = ( 5 .  ). Thus A can calculate any U. = 

= vih and so finds the matrix U. Then A recovers the plaintext a a 

n-1 

k 2k ..' 
ik 

n- 1 'ihk 0 1 . - *  a 
by postmultiplying the ciNertext (aoal ... a )U by U-'. n- 1 

Some comments on this cryptosystem are in order. A task we face several times is 

the calculation of remote terms in an FSR sequence. This task can be solved by very 

efficient algorithms. For instance, a recent algorithm of Fiduccia [ 7 ]  allows the 

calculation of the ith term of an n-stage FSR sequence in F by O(n(1og n)(log i)) 

arithmetic operations in F ; for earlier algorithms s e e  the references in [9, p. 4581. 

We note further that the given initial values of the FSR sequence (si) guarantee that 

g(x) is the minimal polynomial of ( s i ) .  The following general results on FSR se- 

quences are also needed. 

Lemma 1. If the characteristic polynomial g(x) of an arbitrary FSR sequence (si) 

in F has the factorization g(x) = fi (x - Pj) 
then the decimated sequence 

fi (x - p i ) ,  which is again a polynomial over F . 

Lemma 2. If (si) is an arbitrary FSR sequence in F with minimal polynomial g(x), 

if gcd(k,M) = 1 and x 2  does not divide g(x), then (sik) has the minimal poly- 
nomial gk(x). 

P 

9 

9' 
in its splitting field over F 

9 

(sik) has''' the characteristic polynomial g (x) = k 

j=1 9 

q 
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These two lemmas show that all the decimated sequences appearing in our crypto- 

system are again n-stage FSR sequences in F with minimal polynomials of degree n. 

It is known that the minimal polynomial o €  an n-stage FSR sequence can be calculated 

quickly from the first 2n terms of the sequence, e.g. by the Berlekamp-Massey algo- 

rithm (see [ 9 ,  Ch. 81). In our case, the first 2n t'erms of the relevant sequences 

are always available since the first term 

terms are either published or transmitted over the channel. In the deciphering pro- 
cedure we have to make use of the nonsingularity of the matrix U, which follows from 

the fact that the sequence (ui) has a minimal polynomial of degree n and from [9, 

Theorem 8.751. 

q 

so is known anyway and the next 2n - 1 

In the special case n = 1 our cryptosystem reduces to one based on discrete ex- 

ponentiation. The presence of the free parameter n allows for a greater flexibility 

and for a more complex structure as compared to a discrete-exponentiation cryptosystm. 

An additional advantage is the possibility of error-correcting cryptography. This 

means that if the channel B + A  is noisy, then we can add some check symbols to the 

ciphertexts in a natural way t o  reduce the probability of transmission errors. In 

detail, we take the ciphertext v v and add to it a string 

"2nv2n+1 
The receiver A still determines the minimal polynomial of (vi) from the string 

v1v2 . - -  211-1' 
We note also that there is a second version of the FSR public-key cryptosystem in 

which the sequence (si) 

i.e. the sequence which in the notation of Lemma 1 is given by si = z pi 
i = O,l,.. . . In this case the strings of length 2n - 1 can be replaced by strings 

of length n ,  but on the other hand we can only work with fields F of character- 

istic p >  n. 

1 2 - - -  2n-1 
2n+m of subsequent terms of  the FSR sequence (vi) as check symbols. 

and if the check symbols do not fit, he can ask for a retransmission. 

is replaced by the power-sum sequence associated with g(x), 

for 
j=1 

q 

A cryptanalyst can basically pursue two lines of attack against the FSR public- 

key cryptosystem. The first type of attack is directed against the keys h and k. 
This amounts to inferring the value of k from knowledge of the polynomials g(x) 

and gk(x) in Lemma 1. The following three steps are required: 

(i) calculating the roots of g(x) and g,(x); 
(ii) pairing off the roots of g(x) with t h o s e  o €  gk(x) in a correct manner 

(which may require up to n !  trials); 

(iii) solving discrete logarithm problems in various extensions of  F - 
4 

The least favorable case is the one where g(x) is irreducible over F for then 

step (ii) is not needed and the problem of inferring k is equivalent to a discrete 

logarithm problem. The polynomial g(x) should be chosen in such a way that a large 

value of M is obtained and the factorization of g(x) into irreducibles over F 

is fairly complicated. A good choice for g(x) appears to be the following: let q 

be a large prime and let g(x) be a product of many irreducibles over F of small 

degree such that a large value of M is obtained. Alternatively, we could use q = 2 

q' 

9 

q 



38 

and let g(x) be a product of many irreducibles over F2 of moderately large de- 

gree such that a large value of M is obtained. 

The second line of attack is aimed at a direct determination of the matrix U. 
that are This succeeds immediately if there are two message strings 

scalar multiples of 10 ... 0 and 0 ... 0 1 ,  respectively, for then a knowledge of 

the corresponding ciphertexts (aOal ... a )U determines U completely (because 

of the special structure of a Hankel matrix). In general, the system is vulnerable 

to this type of attack if there are several messages of low weight. We can defend 

against this attack by using a different enciphering scheme for low-weight messages, 

such as those in [ 4 ]  and [ll] designed especially for low-weight messages. 

defense is based on first encoding all messages via a linear code C over F of 

length n, dimension d C: n, and large minimum distance (in the sense of algebraic 

coding theory). The resulting system works as follows. The acceptable messages con- 

sist of nonzero strings of d elements of F . Each message is transformed via the 

coding scheme of C into a code word aOal ... a which is then postmultiplied by 

U to get the second ciphertext in the FSR public-key cryptosystem. Decrypeion pro- 

ceeds by determining U as before from the first ciphertext, postmultiplying the 

second ciphertext by U to recover 

coding scheme to recover the original message. 

each string aOal ... a 
weight. In all cases it should be noted that U is determined once we have used n 

linearly independent message strings, and so the value of the key k should be 

changed before that. 

aOal * . -  a n-1 

n- 1 

Another 

4 

9 
n-1’ 

aOal ... a and then applying the inverse -1 
n-1’ 
By using the code C we make sure that 

entering the encryption phase has a relatively large n- 1 

The principle employed in the design of our cryptosystem, namely to replace dis- 

crete exponentiation by the more complex operation of decimation of FSR sequences, 

can be used to construct other cryptosystems. We have obtained in this way new con- 

ventional cryptosystems, key-exchange schemes, and variants of Shamir’s no-key algo- 

rithm. The most intricate of these cryptosystems work with message-dependent FSR se- 

quences. 
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