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Many recently proposed cryptosystems are based on the assumption
that factoring large composite integers is computationally difficult.
In this paper we examine this assumption when the cryptanalyst has
"side information" available.

Let N be the product of two large primes P and Q , where N
is n bits in length, and P , P are each n/2 bits in length.
Given N , it is possible to compute P and Q in time approximately

L(N) = exp(sgrt(in(N)Iniln(N))) [1]
using, for example, the recent algorithm of Lenstra.

In cryptographic applications, however, the cryptanalyst may have
available additional "side information™ above and beyond the number N
itself. 1In practice, one of the parties typically knows P and Q
already, and uses these factors explicitly during his cryptographic
computations. The results of these computations may become known to
the cryptanalyst, who thereby may find himself at an advantage compared
to a pure factoring situation.

For example, the cryptanalyst might become privy to:

(1) the procedure that generated P and Q (but not the random
inputs to that procedure).

(2} the lengths of P and Q.

(3) a square root of 2, modulo N.

(4) the RSA signature of a message M using modulus N corres-
ponding to a public RSA exponent of 3.

(5) the least-significant n/4 bits of P.
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The point to be understood is that in practice additional side infor-
mation may become available to the cryptanalyst, for one of the follow-
ing reasons:
- loss of the equipment that generated P and Q.
- explicit release of partial side information as part of a proto-
col (e.g., "exchange of secrets" [B183]).
- routine usage of P , ¢ to decrypt mail, sign messages, etc.
- poor physical or electrical security by crypto equipment that
uses and guards P and Q.
We formalize this notion, in a worst-case manner, as follows.
Suppose that the cryptanalyst is allowed to ask a certain number k
of arbitrary "Yes/No" questions at the beginning. He is given the
answers to these gquestions before he attempts to factor N. (We do not
care about the difficulty of answering these questions -- the answers
are supplied free of charge to the cryptanalyst.) To be precise, we
assume he is given the answer to question 1 before he poses question
i+ 1.
As we increase k , the cryptanalyst's task becomes easier and
easier. For example, with k = n/2 his task is trivial: he asks for
the binary representation of P. We ask our fundamental question:v

for what values of k (as a function of N) can the cryptanalyst fac-

tor N in polynomial time? Our main result is the following:

Theorem. The cryptanalyst can factor N = P+Q (where P and {Q are
n/2-bit numbers, and N is an n-bit number in time poly-
nomial in n , if he is first given the answers to n/3 + 0(1)
"Yes/No" questions about N for free.

This is not a dramatic improvement over the obvious n/2 result men-

tioned above. However, the proof is not trivial, and we do not know

how to improve on this result. We conjecture that 0(n®) questions

suffice, for some ¢ < 1.

Proof (sketch): Suppose the cryptanalyst asks for the top k = n/3
bits of the factor P . He can then represent P in the form

P =p-2" + P f21
where m = (n/2) - k = n/6,

0 <Py < 2k [3]

0 < Py < 2™ (4]
Pl is known, and Po is unknown. The factor Q can be represented
similarly:

Q= Q1-2M + g4 [s5]
where

0 <0 < 2%, ana [6]

0 <o < 2™ [7]

o
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Since N and P; are known, Q; can be easily computed. (We know
N and P to at least k bits of precision, so we know their quotient

to k bits of precision.) The unknowns to be solved for are PO and

Q-
Compute
_ - 2m
X =N-=-P;Q,27, (8]
A =P;-2M,  and [o]
B = Ql-2m . [10]
Then we have the equation
X = A«P_ + B-Q_ + P Q. [11]
to solve for PO and Q0 . When k is large, m 1is small, and the

product POQo {(of length 2m) is also small. We can thus attempt to
solve [11] by trying to find a linear combination of A and B that
closely approximates X. (We treat the term PoQo as similar to the

"approximation error".) We set this up as a two-dimensional integer

programming problem:

Minimize: Z =X - AP - BQ [12]

Subject to: 0 <P < 2m [13]
0 <o, < 2" [14]

We note that X is approximately n - k bits in length. We use a
heuristic argument here that for each degree of freedom (bit) we can

set in Py, or Qg  , we can reduce the length of Z by one bit. Since

we have
IPol + 10g] = 2m [15]
we expect that Z will be |X| - 2m = n - 2k = n/3 bits in length;

our "approximation error" is about n/3 bits in length. We note that
POQO also has length 2m = n/3 , so that the "modelling error" we in-
troduced by moving from the nonlinear equation [11] to the linear ap-
proximation [12] will also be about n/3 bits in length. We can

thus expect the solution to [12]-[14] to be a solution for [11] as
well. We note that [12]-[14] can be solved in polynomial time using
Lenstra's algorithm for integer programming in a fixed number of dimen-
sions. [Lesgl]

The preceding proof sketch is not a rigorous argument, but can be
made so (although the number of gquestions may need to be increased by
0(1l) to handle some details about the precision).

A similar argument can be made to show that the cryptanalyst can
factor N wusing the low-order k bits of N rather than the high-
order k bits. .



Open Problems

Prove or disprove that Q(n) gquestions are necessary in the theo-
rem, if the cryptanalyst may only ask for bits in the binary represent-
ation of P.

Prove or disprove that Q(n) questions are necessary in general.
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