GENERALIZED_MULTIPLEXED SEQUENCES

Mu-lan Liu and Zhe-xian Wan
Institute of Systems Science, Academia Sinica
Beijing, 100080 China

1. Introduction

Let $L^{\prime} R_{1}, L S R_{2}, \ldots, L_{k}$ and LSR be $k+1$ linear feedback shift registers with characteristic polynomials $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ and $g(x)$ over \mathbb{F}_{2}
 $\ldots), i=1,2, \ldots, k, \underline{b}=\left(b_{0}, b_{1}, \ldots\right)$. Let $\quad \underset{2}{k}=\left\{\left(c_{1}, c_{2}, \ldots, c_{k}\right) \mid c_{i} \in \mathbf{F}_{2}\right\}_{k}$ be the k-dimensional space over F_{2} and γ be an injective map from F_{2} into the $\operatorname{set}\{0,1,2, \ldots, n-1\}, 2^{k} \leqslant n$, of course. Constructing $k-d i m e n s i o n a l$ vector sequence $A=\left(A_{0}, A_{1}, \ldots\right)$ where $A_{t}=\left(a_{1 t}, a_{2 t}, \ldots, a_{k t}\right), t=0,1,2,3, \ldots$ and applying γ to each term of the sequence A, we get the sequence $\gamma(A)=$ $\left(\gamma\left(A_{0}\right), \gamma\left(A_{1}\right), \ldots\right)$ where $\gamma\left(A_{t}\right) \in\{0,1, \ldots, n-1\}$, for all t. Using $\gamma(A)$ to scramble che output sequence b of LSR, we get the sequence $\underline{u}_{=}\left(u_{0}, u_{1}\right.$, \ldots...) where $u_{t}=b_{t}+\gamma\left(A_{f}\right)$, for all t. we call γ a scrambling function and \underline{u} the Generalized Muttiplexed Sequence (generalizing Jenning's Multiplexed Sequence, see ref.[1]), in brief, GMS. In the present paper, the period, characteristic polynomial, minimum polynomial and translation equivalence properties of the GMS are studied under certain assumptions. Let Ω be the algebraic closure of \mathbb{F}_{2}. Throughout this paper, any algebraic extension of F_{2} are assumed to be contained in Ω. Let $f(x)$ and $g(x)$ be polynomials over \mathbb{F}_{2} without multiple roots. Let $f \%$ be the monic polynomial whose roots are all the distinct elements of the set $S=$ $\{\alpha \cdot \beta \mid \alpha, \beta \in \Omega, f(\alpha)=0, g(\beta)=0\}$. It is well known that $f * g$ is a polynomial over F_{2}. Let $G(f)$ denote the vector space consisting of all output sequences of $L S R$ with characteristic polynomial $E(x)$.

For proof of the following, we list some familiar results.
Lemma 1. 1) Suppose $f(x)=p_{i}(x)^{e_{1}} \ldots p_{m}(x)^{e_{m}}$ is the characteristic polynomial of $L S R$, where $e_{1}, e_{2}, \ldots, e_{m}$ are integers, $p_{1}(x), \ldots, p_{m}(x)$ are irreducible polynomials of degrees $n_{1}, n_{2}, \ldots, n_{m}$ over \mathbb{F}_{2} respectively. For $i=1,2, \ldots, m$, let α_{i} be one of the roots of $p_{i}(x)$. Let $a \in G(f)$, then there exist uniquely determined elements $\xi_{r i} \in F_{2^{n} r}, r=1,2, \ldots, m, i=1$, $2, \ldots, e_{r}$, such that

$$
\begin{equation*}
a_{t}=\sum_{r=1}^{m} \sum_{i=1}^{e}\binom{i+t-1}{i-1} \mathrm{I}_{2} n_{r}\left(\xi_{r i} \alpha_{r}^{t}\right), \quad t=0,1, \ldots \tag{1}
\end{equation*}
$$

where $\operatorname{Tr}_{2} n_{r}$ is the trace function from $\mathbb{F}_{2} n_{r}$ to \mathbb{F}_{2}.
2) $f(x)$ is the minimum polynomial of the sequence $\underset{\sim}{a} i f \xi_{r e r} \neq 0, r=1,2$, ..., m.
3) If there exist elements $\xi_{r i} \in \mathbb{F}_{2}\left[\alpha_{1}, \ldots, \alpha_{m}\right], r=1,2, \ldots, m, i=1,2, \ldots$, e_{r}, such that (1) holds and $a_{t} \in \mathbb{F}_{2}, t=0,1,2, \ldots$ Then $f(x)$ is the characteristic polynomial of the sequence a.
Corollary 1. 1) Under the conditions of Lemma 1 , if $e_{1}=e_{2}=\ldots=e_{m}=1$, i.e. $f(x)=p_{1}(x) p_{2}(x) \ldots p_{m}(x)$, then chere exist uniquely determined elements $\xi_{r}, \quad r=1,2, \ldots, m, s u c h$ that

$$
\begin{equation*}
a_{t}=\sum_{r=1}^{m} \operatorname{Tr}_{2} n_{r}\left(\xi_{r} \alpha_{r}^{t}\right), \quad t=0,1,2, \ldots \tag{2}
\end{equation*}
$$

2) $f(x)$ is the minimum polynomial of a iff $\xi_{r} \neq 0, r=1,2, \ldots, m$.
3) If there exist elements ξ_{r} such that (2) holds and $a_{t} \in \mathbb{F}_{2}, t=0,1$, $2, \ldots$ Then $f(x)$ is a characteristic polynomial of a.

Lemma2. Let m, n be two integers, l be the least common multiple of m and n, i.e. $1=[m, n]$, d be the greatest common divisor of mand n, i.e.
 $F_{2^{n}}$ and $F_{2^{m}}$.
Lemma 3. Let $f(x)$ and $g(x)$ be two irreducible polynomials of degrees m and n respectively and $(m, n)=1$. Then

1) $f * g$ is irreducible.
2) Suppose α is a root of $f(x), \beta$ is a root of $g(x)$. Then for $\lambda \in F_{2} m$, $\mu \in \mathbb{F}_{2^{n}}$, we have

$$
\operatorname{Tr}_{2} m\left(\lambda \cdot \alpha^{t}\right) \operatorname{Tr}_{2} n\left(\mu \cdot \beta^{t}\right)=\operatorname{Tr}_{2} m n\left(\lambda \mu(\alpha \beta)^{t}\right), \quad t=0,1,2, \ldots
$$

Theorem 1. Suppose the characteristic polynomials $p_{1}(x), p_{2}(x), \ldots, p_{k}(x)$ and $g(x)$ of $L S R_{1}, L S R_{2}, \ldots, L S R_{k}$ and $L S R$ are irreducible of degrees m_{1}, m_{2}, \ldots, m_{k} and n respectively where $m_{1}, \ldots m_{k}$ and n are relatively prime
in pairs and greater than 1 . Suppose $\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{k}$ and \underline{b} are output sequences of $L S R_{1}, L S R_{2}, \ldots, L S R_{k}$ and $L S R$ respectively. Then the GMS \underline{U} obtained from ${\underset{-1}{1}} \underline{a}_{2}, \ldots, \underline{a}_{k}, \underline{b}$ and the scrambling function γ has

$$
\begin{aligned}
F(x) & =\prod_{j=0}^{k}\left(p_{i_{1}} * p_{i_{2}} * \ldots * p_{i} * g\right) \\
0 & \leqslant i_{1}<i_{2}<\ldots<i_{j} \leqslant k
\end{aligned}
$$

as its minimum polynomial where $p_{0}(x)=1$ and $1 * g=g$ by convention. Denote the degree of $F(x)$ by N, then

$$
\begin{equation*}
N=n\left(m_{1}+1\right)\left(m_{2}+1\right) \ldots\left(m_{k}+1\right) \tag{4}
\end{equation*}
$$

Proof. For every k-dimensional vector $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{F}_{2}^{k}$, we construct a monomial as follows. If $a_{i}=a_{i_{2}}=\ldots a_{i}=1$, and all other components are 0 , then let \vec{a} correspond to the monomial $p_{a}=a_{i} i_{1} . a_{i}{ }_{2} \ldots a_{i}$. The weight $w(\vec{a})$ of \vec{a} is the number of 1 's among $a_{1}, a_{2}, \ldots, a_{k}$, i.e., $w(\vec{a})=\sum_{i=1}^{k} a_{i}$. We arrange the elements of \vec{F}_{2}^{k} such that \vec{a} proceeds \vec{b} iff $w(\vec{a}) \leqslant w(\vec{b})$ and arrange the corresponding monomials and function values of γ in the same manner. Denote the monomials and function values of γ by $p_{0}, p_{1}, \ldots, p_{2}^{k}-1$ and $p_{0}, p_{1} \cdots p_{2^{k}-1}$ respectively. Then

$$
\begin{aligned}
u_{t}= & \bar{a}_{1 t} \bar{a}_{2 t} \cdots \bar{a}_{k t} b_{t}+p_{0}+a_{1 t} \bar{a}_{2 t} \cdots \bar{a}_{k t}{ }^{b} t+\rho_{1}+ \\
& +\bar{a}_{1 t}{ }^{a} 2 t^{a_{3}} t \cdots \bar{a}_{k t} b_{t+\rho_{2}}+\cdots+a_{1 t^{a}}+\cdots a_{k t} b_{t+\rho_{2^{k}-1}}
\end{aligned}
$$

where $\bar{a}_{i t}=a_{i t}+1, i=1,2, \ldots, k$. Substituting $\bar{a}_{i t}=a_{i t}+1$ into u_{t}, we find that the coefficient of $b_{t}+P_{j}$ in u_{t} is of the form

$$
\sum_{i=j}^{2^{k}-1} c_{j 1} \cdot p_{l}(t)
$$

where $c_{j j}=1$ and $p_{1}(t)=p_{1}\left(a_{1 t}, \ldots, a_{k t}\right)$. Putting $c_{j 1}=0$ if $1<j$, we may write

$$
\begin{align*}
u_{t} & =\sum_{j=0}^{2^{k}-1}\left(\sum_{l=j}^{2^{k}-1} c_{j 1} \cdot p_{l}(t)\right) b_{t+p_{j}}=\sum_{1=0}^{2^{k}-1}\left(\sum_{j=0}^{2^{k}-1} c_{j 1} \cdot b_{t+p_{j}}\right)_{p}(t)= \\
& =\sum_{l=0}^{2^{k}-1} b^{\prime} \tau_{1} t p_{1}(t) \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
b_{\tau_{1} t}^{\prime}=\sum_{j=0}^{2^{k}-1} c_{j 1} \cdot b_{t+p_{j}} \quad, \quad 1=0,1,2, \ldots, 2^{k}-1 \tag{6}
\end{equation*}
$$

Put $b_{i}=\left(b_{i-1}, b_{i}, \ldots, b_{i+c}, \ldots\right), i=1, \ldots, n$ and $b^{\prime} \tau_{1}=\left(b^{\prime} \tau_{1} 0, b^{\prime} \tau_{f}, \quad, \ldots\right.$, $\left.b^{\prime} \tau_{1} t, \ldots\right), 1=0,1,2, \ldots, 2^{k}-1$. Since $g(x)$ is an irreducible polynomial with degree n and $\underline{b} \in G(g), b_{1}, b_{2}, \ldots, b_{n}$ form a basis of $G(g)$, thus $b p_{0}$, $\underline{b} p_{1}, \ldots, \underline{b}_{P^{k}-1}\left(0 \leqslant P_{j} \leqslant n-1\right)$ are linearly independent. From (6), we
have

$$
\left(\underline{b}_{\tau_{0}}^{\prime} \quad, \underline{b}^{\prime} \tau_{1} \quad, \cdots, \underline{b}^{\prime} \tau_{2^{k}-1}\right)=\left(\underline{b}_{p_{1}}, \underline{b}_{p_{1}}, \cdots, \underline{b}_{p_{2}^{k}-1}\right) c
$$

where

$$
\begin{equation*}
c=\left(c_{j 1}\right), c_{j j}=1, c_{j 1}=0, \text { if } I<j \tag{7}
\end{equation*}
$$

therefore $\underline{b}^{\prime} \tau_{0}, \underline{b}^{\prime} \tau_{1}, \ldots, \underline{b}^{\prime} \tau_{2^{x}-1}$ are alsolinearly independent sequences and $g(x)$ is their minimum polynomial. Let β be a root of $g(x)$, from Corollary 1 , for every l there is a uniquely determined non-zero element $\mu_{L} \in \mathbb{F}_{2} n \quad$ such that

$$
b^{\prime} \tau_{1} t=\operatorname{Tr}_{2^{n}}\left(\mu_{1} \beta^{t}\right)
$$

Let α_{i} be a root of $P_{i}(x), i=1,2, \ldots, k$, again from Corollary 1 of Lemma 1 , for every i, there is a uniquely determined non-zero element $\lambda_{i} \in{ }^{\mathrm{F}} 2^{\mathrm{m}}{ }_{i}$ such that

$$
a_{i t}=\operatorname{Tr}_{2} \mathrm{~m}_{i}\left(\lambda_{i} \alpha_{i}^{t}\right), \quad t=0,1,2, \ldots ; i=1,2, \ldots, k
$$

Now we can calculate the general term u_{t} of the GMS \underline{u} by using the above root expressions of the sequences $\underline{b}^{\prime} \tau_{i}$ and ${\underset{i}{i}}^{i}$. We have

$$
u_{t}=\sum_{l=0}^{2^{k}-1} p_{1}(t) b^{\prime}{ }_{\tau_{\ell}} t=\sum_{i=0}^{2^{k}-1} a_{i_{1} t} a_{i_{2} t} \cdots_{i_{S(1)} t} \cdot b^{\prime} \tau_{1} t
$$

where $s(1)=$ degree of p_{1}. Then, By Lemma 3 ,

$$
\begin{aligned}
u_{t} & =\sum_{i=0}^{2^{k}-1} \operatorname{Tr}\left(\lambda_{i_{1}} \cdot \alpha_{i_{i}}^{t}\right) \operatorname{Tr}\left(\lambda_{i_{2}} \cdot \alpha_{i_{2}}^{t}\right) \ldots \operatorname{Tr}\left(\lambda_{i_{s}(1)} \alpha_{i_{s(1)}}^{t}\right) \operatorname{Tr}\left(\mu_{1} \beta^{t}\right) \\
& =\sum_{1=0}^{2^{k}-1} \operatorname{Tr}\left(\lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{s(1)}} \mu_{1}\left(\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{s}(1)} \beta\right)^{t}\right)
\end{aligned}
$$

where $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i}(1) \quad \beta$ is a root of the irreducible polynomial $p_{i_{1}} *$
 1, (3) is the minimum polynomial of $\underline{\text { u }}$. And it follows that the degree of $F(x)$ is (4).

Note that from Thearem 1 , it follows that the minimum polynomial of the GMS \underline{u} is independent from the scrambling function γ and the complexity of GMS is increased considerably.
For characteristic polynomials with multiple roots, we need some results of [2].

Let $a=\left(a_{0}, a_{1}, \ldots\right)$ and $b=\left(b_{0}, b_{1}, \ldots\right)$ be two arbitrary binary sequences, we define the product $\underline{a} \cdot \underline{b}$ of \underline{a} and \underline{b} to be $\underline{a} \cdot \underline{b}=\left(a_{o} b_{0}, a_{1} b_{1}, \ldots\right)$. For two vector spaces $G(f), G(g)$, the product $G(f) . G(g)$ of $G(f)$ and $G(g)$ is defined to be the vector space generated by all products $\underline{a} \cdot \underline{b}$, where $\underline{a} \in$ $G(f)$ and $b \in G(g)$.

Lemma 4. Let

$$
\left.s^{(k)}=\binom{k}{k},\binom{k+1}{k}, \cdots,\binom{k+t}{k}, \cdots\right)
$$

then $s^{(0)}, \ldots, s^{(e-1)}$ form a basis of the vector space $G\left((x+1)^{e}\right)$.
For two arbitrary positive integers e_{1} and e_{2}, write

$$
\begin{aligned}
& e_{1}-1=\sum_{\nu} j_{\nu} 2^{\nu}, \dot{y}_{\nu}=0 \quad \text { or } 1, \\
& e_{2}-1=\sum_{\nu} k_{\nu} 2^{\nu}, k_{\nu}=0 \quad \text { or } 1 .
\end{aligned}
$$

Let λ be the smallest nonnegative integer such that $j_{\nu}+k_{\nu}<2$ for all $\nu \geqslant \lambda$, then Zierler and Mills [2] defined

$$
\mathrm{e}_{1} \vee \mathrm{e}_{2}=2^{\lambda}+\sum_{\nu \geqslant \lambda}\left(j_{\nu}+k_{\nu}\right) 2^{\nu} .
$$

Lemma 5 (Zieler, Mills).

$$
G\left((x+1)^{e} 1\right) \quad G\left((x+1)^{e} 2\right)=G\left((x+1)^{e} 1 v^{v} 2\right) .
$$

We have
Thearem 2: Let the $k+1$ polynomials $p_{1}(x)^{e}{ }_{1}, p_{2}(x)^{e}{ }_{2}, \ldots, p_{k}(x){ }^{e} k$ and $g(x)^{e}$ be characteristic polynomials of $L S R_{1}, \ldots, L S R_{k}$ and $L S R$ respectively, where $p_{1}(x), \ldots, p_{k}(x), g(x)$ are irreducible of degrees $m_{1}, m_{2}, \ldots m_{k}$ and n. Assume $m_{1}, m_{2}, \ldots, m_{k}$ and n are relatively prime in pairs. Let the sequences $\underline{a}_{1}, \ldots, \underline{a}_{k}$ and \underline{b} are output sequences of these $k+1$ linear shift registers respectively. Then the GMS \underline{u} generated by ${\underset{a}{1}}^{1}, \ldots, \underline{a}_{k}$ and \underline{b} has the characteristic polynomial

$$
\begin{aligned}
F(x)= & \prod_{j=0}^{k}\left(p_{i_{1}}^{*} \ldots{ }^{*} p_{i}{ }_{j}^{*} g\right)^{e_{i}} V \ldots V e_{i} V e \\
& 0 \leqslant i_{j}<i_{2}<\ldots<i_{j} \leqslant k
\end{aligned}
$$

Next, let's consider the period of GMS. At first, we have the following two 1 emmas.
Lemma 6. Let $f(x), g(x)$ be two irreducible polynomials over \mathbb{F}_{2} of de-
grees m, n respectively, and $(m, n)=1$. Then

$$
p(f \star g)=p(f) p(g),
$$

where $p(f)$ denotes the period of $f(x)$.
Lemma 7. Suppose that $f(x)$ and $g(x)$ are two polynomialsover F_{2} with $(f, g)=1$. Then $p(f \cdot g)=[p(f), p(g)]$.
From Lemmas 6 and 7 we deduce immediately
Theorem 3. Suppose that $f_{1}(x), \ldots, f_{k}(x)$ and $g(x)$ are irreducible over \mathbb{F}_{2} and the degrees of these polynomials are relatively prime in pairs. Then the period $p(\underline{u})$ is $p\left(E_{1}\right) \ldots p\left(f_{k}\right) p(g)$.
3. The translation equivalence_properties of GMS's

Throughout this section we suppose that $p_{1}(x), \ldots p_{k}(x)$ and $g(x)$ are
irreducible and their degrees $m_{1}, m_{2}, \ldots, m_{k}$ and n are relatively prime in pairs.
Theorem 4. Let ${\underset{a}{i}}$ and $\underline{a}_{i}^{\prime}$ are two non-zero output sequences of LSR_{i} which are translates of each ocher, $i=1,2, \ldots, k$. And let \underline{b} and \underline{b} ' are two output sequences of $L S R$ which are also translates of each other. Then for a given scrambling function γ, the GMS \underline{u} obtained from $\underline{a}, \ldots, \underline{a}_{k}, \underline{b}$ and the GMS \underline{u} ' obtained from $\underline{a}_{1}{ }^{\prime}, \ldots, \underline{a}_{k}{ }^{\prime}, \underline{b}$ are translates of each other. Proof. From the sequences $\underline{a}_{1}, \ldots{ }_{k}$, we get the sequence

$$
\gamma(\mathrm{A})=\left(\gamma\left(\mathrm{A}_{0}\right), \gamma\left(\mathrm{A}_{1}\right), \ldots\right)
$$

where $\gamma\left(A_{t}\right)=\gamma\left(A_{1 t}, a_{2 t}, \ldots, a_{k t}\right)$. The same, we get

$$
\gamma\left(A^{\prime}\right)=\left(\gamma\left(A_{0}\right), \gamma\left(A_{1}{ }^{\prime}\right), \ldots\right),
$$

where $\gamma\left(A_{t}{ }^{\prime}\right)=\gamma\left(a_{1 t}{ }^{\prime}, a_{2 t}{ }^{\prime}, \ldots, a_{k t}{ }^{\prime}\right)$. Then $u_{t}=b_{t+\gamma\left(A_{t}\right)}, u_{t}{ }^{\prime}=b_{t}{ }^{\prime}+\gamma\left(A_{t}{ }^{\prime}\right) \cdot$ Since \underline{a}_{i} and ${\underset{a}{i}}^{\prime}$ are translates of each other, there exists T_{i}, $0 \leqslant \mathcal{T}_{i} \leqslant p\left(\underline{a}_{i}\right)$ such that $a_{i t}{ }^{\prime}=a_{i}\left(t+T_{i}\right), i=1,2, \ldots, k$. Since \underline{b} and \underline{b}^{\prime} are translates of each other, there exists an integer $s, 0 \leqslant s \leqslant p(\underline{b})$, such that $b_{t}{ }^{\prime}=b_{t+s}$. Since $p\left(\underline{a}_{i}\right) / 2^{m_{i}}-1, i=1,2, \ldots, k, p(\underline{b}) / 2^{n}-1$, and $m_{1}, \ldots m_{k}$ and n are relatively prime in pairs, $p\left(\underline{a}_{1}\right), \ldots, p\left(\underline{a}_{k}\right)$ and $p(\underline{b})$ are also relatively prime in pairs. By Chinese Remainder Theorem the following simultaneous congruences

$$
\left\{\begin{array}{cc}
x \equiv \tau_{1} & \left(\bmod p\left(\underline{a}_{1}\right)\right) \\
x \equiv \tau_{2} & \left(\bmod p\left(\underline{a}_{2}\right)\right) \\
\dot{\vdots} & \\
x \equiv \tau_{r} & \left(\bmod p\left(\underline{a}_{k}\right)\right) \\
x \equiv s & (\bmod p(\underline{b}))
\end{array}\right.
$$

have a solution $x \in \mathbb{Z}$ which is unique $\bmod p\left(\underline{a}_{1}\right) \ldots p\left(\underline{a}_{k}\right) p(\underline{b})$. It follows that $u^{\prime}{ }^{\prime}=u t+x$ for all t. This proves that $\underline{\underline{u}}$ and \underline{u}^{\prime} are translates of each other.
Corollary 2. For a given scrambling function γ, if the characteristic polynomials of the $k+1$ linear shift registers LSR ${ }_{1}, \ldots . \operatorname{lSR}_{k}$ and LSR are primitive polynomials whose degrees are relatively prime in pairs then the GMS's obtained from any non-zero initial states are all translates of each other.
Lemma 8. If

$$
\begin{equation*}
\sum_{i=0}^{2^{k}-1} d_{i} p_{i}=0, d_{i} \in F_{2}, \tag{8}
\end{equation*}
$$

then $d_{i}=0$ for all i.
Theorem 5. For different scrambling functions γ and γ ', the GMS's \underline{u} and \underline{u}^{\prime} obtained from the non-zero output sequences $\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{k}$, \underline{b} of the $k+1$ linear shift registers $L S R_{1}, \ldots, L_{k}$, LSR are translates of each other iff there exist two fixed integers M and M such that for all
$\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in F_{2}^{k}$, we have

$$
\gamma^{\prime}\left(a_{1}, a_{2}, \ldots, a_{k}\right)=\gamma\left(a_{1}, a_{2}, \ldots, a_{k}\right)+M \text { or } \gamma\left(a_{1}, a_{2}, \ldots, a_{k}\right)+M,
$$

where $0 \leqslant|M|,\left|M^{\prime}\right| \leqslant n-1$ and $M+M^{\prime} \equiv 0(\bmod p(\underline{b}))$.
Proof. We follow the notation of the proof of Theorem 1. For a given γ, we have (5) and (6).Substituting (6) into (5), we obtain
$u_{t}=\left(b p_{0}+t, b p_{1}+t, \ldots, b p_{2^{k}+t}\right) c\left(p_{0}(t), p_{1}(t), \ldots, p_{2}^{k}-1(t)\right)^{\prime}$
where C is the matrix (7), thus

$$
\underline{u}=\left(b p_{0}, b p_{1}, \cdots, b p_{2}^{k}-1\right) c\left(p_{0}, p_{1}, \ldots, p_{2}^{k}-1\right)
$$

where ' denotes the transpose of a matrix. Similarly, for γ^{\prime}, we have

$$
\underline{u}^{\prime}=\left(\underline{b} p_{0}^{\prime}, \underline{b} p_{1}^{\prime}, \cdots, \underline{b} p_{2^{k}-1}^{\prime}\right) c\left(p_{0}, p_{1}, \ldots, p_{2}^{k-1}\right)^{\prime}
$$

Let

$$
\rho_{j}^{\prime}=\rho_{j}+\delta_{j},-(n-1) \leqslant \delta_{j} \leqslant n-1, j=1,2, \ldots, 2^{k}-1
$$

Denote the left translate operator by L, i.e. $L\left(a_{o}, a_{1}, \ldots\right)=\left(a_{1}, a_{2}, \ldots\right)$, then

$$
\underline{u}^{\prime}=\left(L^{\delta_{0}} \quad \underline{b}_{\rho_{0}}, L^{\delta_{1}} \quad \underline{b} p_{1}, \ldots, L^{\delta_{2}^{k}-1} \underline{b} p_{2^{k}-1}\right) \subset\left(p_{0}, p_{1}, \ldots, p_{2}^{k}-1\right)
$$

The sequences \underline{u} and \underline{u}^{\prime} are translates of each other iff there exists an integer M such that $\underline{u}^{\prime}=L^{M} \underline{u}$, i.e.

By Lemma 8 and C being invertible, (9) holds iff
$\left(L^{\delta_{0}} \underline{b} \rho_{0}, \ldots, L^{\delta_{2^{*}-1}} \underline{b} \rho_{2^{*}-1}\right)=\left(L^{M} \underline{b} \rho_{0}, \ldots, L^{M} \underline{b} p_{2^{k}-1}\right)$
Clearly (i0) holds iff the following simultaneous congruences have a solution M :

$$
M \equiv \delta_{i}(\bmod p(\underline{b})) \quad i=0,1, \ldots, 2^{k}-1
$$

Without loss of generality, suppose that $\delta_{0}, \delta_{1}, \cdots, \delta_{i}$ are non-negative and $\delta_{i+1}, \cdots, \delta_{2} k-1$ are negative, then

$$
\delta_{0}=\delta_{1}=\cdots=\delta_{i}=\delta, \quad \delta_{i+1}=\cdots=\delta_{2}^{k}-1=\delta,
$$

and

$$
\delta \equiv \delta^{\prime}(\bmod p(\underline{b})) .
$$

Taking $M=\delta, M^{\prime}=-\delta^{\prime}$, the proof is complete.
Corollary 2. In Theorem 5, if the characteristic polynomial g(x) of LSR is primitive, then $M=M^{\prime}, 0 \leqslant|M| \leqslant n-1$.

References

[1] S.M.Jennings, Multiplexed Sequences:Some Properties of the Minimum Polynomial. Lecture Notes in Computer Science, No. 149 , Springer-Verlag, 1983, 189-206.
[2] N. Zierler and W. H. Mills, Products of Linear Recurring Sequences. J. of Algebra 27(1973), 147-157.

