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The ideas of completeness and the avalanche effect were first introduced
by Kam and Davida [1] and Feistel [2], respectively. !f a cryptographic trans-
formation is complete, then each ciphertext bit must depend on all of the plaintext
bits. Thus, if it were possible to find the simplest Boolean expression for each
ciphertext bit in terms of the plaintext bits, each of those expressions would have
to contain all of the plaintext bits if the function was complete. Alternatively, if
there is at least one pair of n-bit plaintext vectors X and Xi that differ only in

bit i, and f(X) and f(X.I) differ at least in bit j for all
{G.))y | 1 <1i,j<n}

then the function f must be complete.

For a given transformation to exhibit the avalanche effect, an average
of one half of the output bits should change whenever a single input bit is
complemented. In order to determine whether a given m x n (m input bits and
n output bits) function f satisfies this requirement, the 2M plaintext vectors must
be divided into 2m-1 pairs, X and Xi’ such that X and Xi differ only in bit i.

Then the 2m—1 exclusive-or sums

v, = f(X) @f(xi)
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must be calculated. These exclusive-or sums will be referred to as avalanche

vectors, each of which contains n bits, or avalanche variables.

|f this procedure is repeated for all i such that 1 £ i € m, and one half
of the avalanche variables are equal to 1 for each i, then the function f has a
good avalanche effect. Of course this method can be pursued only if m is fairly
small; otherwise, the number of plaintext vectors becomes toa large. If that is
the case then the best that can be done is to take a random sample of plaintext
vectors X, and for each value of i calculate all the avalanche vectors Vi. If
approximately one half the resulting avalanche variables are equal to 1 for all

values of i, then we can conclude that the function has a good avalanche effect.

THE STRICT AVALANCHE CRITERION AND THE INDEPENDENCE OF
AVALANCHE VARIABLES

The concepts of completeness and the avalanche effect can be combined
to define a new property which we shall call the strict avalanche criterion. If a
cryptographic function is to satisfy the strict avalanche criterion, then each
output bit should change with a probability of one half whenever a single input
bit is complemented. A more precise definition of the criterion is as follows.
Consider X and Xi, two n-bit, binary plaintext vectors, such that X and Xi differ

only in biti, 1 i < n. Let
Vv, = Y®Yi

where Y = f(X), Yi = f(X.l) and f is the cryptographic transformation under
consideration. If f is to meet the strict avalanche criterion, the probability that
each bit in Vi is equal tc 1 should be one half over the set of all possible plaintext
vectors X and Xi' This should be true for all values of i. Again, unless n is smalli
it would be an immense task to follow this procedure for all possible vector pairs

X and Xi'
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An alternate method which could be used to ascertain whether a given
cryptographic transformation, f, satisfies the strict avalanche criterion would be
to construct a dependence matrix. First an n-bit, random plaintext vector X is
generated and its corresponding m-bit ciphertext, Y = f(X), is obtained (n and
m will be equal if f is an invertible transformation and there is no data expansion).

Then the set of n vectors

(X3, X500 - o Xn)

is formed such that X and Xj differ only in bit j. The ciphertext vectors
(Y1, Y2, C e, Yn)

are then found where Yj o f(Xj), and they are used to obtain the set of m-bit

binary avalanche vectors

(V1, Voo o v Vn)

such that Vj = Y@Yj. This procedure is illustrated in Figure 1.

The value of bit i in Vj (either a 1 or a 0) is added to element ai,j in
the m x n dependence matrix A. This procedure is repeated for a large number,
r, of randomly generated plaintext vectors X, and each element in A is divided
by r. Then each ai,j gives the strength of the relationship between plaintext bit
j and ciphertext bit i. A value of 1 indicates that whenever bit j is complemented
in the plaintext then the ciphertext bit i will also change its value, while a value
of 0 indicates that the ciphertext bit is completely independent of the plaintext
bit. If all elements in the matrix have a nonzero value then the cryptographic
transformation is complete, and if it is to satisfy the strict avalanche criterion,

every element must have a value close to one half. Therefore, completeness is a

necessary condition if the strict avalanche criterion is to be met.
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Figure 1. Part of the method for testing to see if a transformation satisfies
the strict avalanche criterion: Input bit | is complemented giving

Vj. Each biti, 1 i € m, in Vj is added to element CH j in the

’

dependence matrix.

A second property which would seem desirable for any cryptographic
transformation is that, for a given set of avalanche vectors generated by the
complementing of a single plaintext bit, all the avalanche variables should be
pairwise independent. In order to measure the degree of independence between
a pair of avalanche variables, we can calculate their correlation coefficient. For
two variables A and B

cov{A, B}

e{A, B} = i (3, p.378]
s{A} o{B}
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where
p{A, B} B correlation coefficient of A and B

cov{A, B} B covariance of A and B

E{AB} - E{A} x E{B}
o*{A}

E{A%} - (E{A})?

For the case of binary variables, it can be shown that a correlation coefficient
of 0 means that the variables are independent. In addition, the variables will al-
ways be identical if the correlation coefficient equals 1, and a value of -1 means

that they will always be complements of one another [4].

If either the strict avalanche criterion or the avalanche variable in-
dependence requirement is not satisfied, then a cryptanalyst can gain some
information about the statistical properties of the function, which he could

conceivably use to his advantage i an attack on the system.
PERFECT S-BOXES

Now that these two new criteria have been presented, it would seem
desirable to discover how to produce cryptographic transformations which satisfy
both conditions. One additional condition that will be imposed on such transf-
ormations is that they be invertible. This means that there must be a one-to-one

correspondence between plaintext and ciphertext vectors.

If there are n input/output bits for a given function, there are (Zn)!
possible invertible transformations. This means that there will be approximately
2 x 1013 such functions for a four-bit system. Therefore, the search will be limited

to 4 x 4 (four input/four output bit) substitution boxes (S-boxes).
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The initial step is to find all the potentially invertible 4 x 1 functions that
satisfy the strict avalanche criterion, which will be combined four at a time to
produce 4 x 4 substitution boxes. A potentially invertible function returns a value
of 1 for one half of the possible input vectors and a value of O for the other half.
It is a necessary, but not sufficient, condition if the S-boxes formed from the
single output bit functions are to be invertible. The 12,870 potentially invertiSIe,
4 x 1 functions were tested, and it was found that while 12,618 of them were

complete, only 1368 satisfied the strict avalanche criterion [4].

These 1368 functions can be divided into 9 equivalence classes or "fam-
ilies". Each family is closed under the following operations:
1. Complementing one or more of the input bits
2. Permuting the input bits
3. Complementing the output bit
Potential invertibility and adherence to the strict avalanche criterion are pre-

served over these operations.

The simplest procedure to follow in constructing the substitution boxes
would be to randomly select potentially invertible, single cutput bit functions from
the list of those that satisfy the strict avalanche criterion. First, these substi-
tution boxes are tested to see if they are invertible. If they satisfy that
requirement, they are then examined to see if, when each input bit is comple-
mented, the resulting avalanche variables are pairwise independent. An S-box that
displays both of these properties will be referred to as a "perfect” substitution

box.

When the method of random selection of single output bit functions was
followed, the probability of the resulting 4 x 4 S-boxes being invertible was only

1.2 = 10<3, and only one S-box in 7.1 x 10° was perfect [4]. During this search,

b o - ko A O
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the families of single output bit functions which formed perfect S-boxes were
noted. In an attempt to reduce the amount of effort required to produce perfect
S-boxes, the families from which the 4 x 1 functions were selected were fixed so
that only combinations which had produced perfect S-boxes in the initial search
were used. This increased the frequency of occurence of perfect S-boxes by about
a factor of one thousand. Several other approaches were tried which involved
relaxing one or both of the strict avalanche criterion and the avalanche variable
independence requirement, but none proved to be as good as choosing the single

output bit functions from fixed family combinations.

In the process of building these S-boxes, it was discovered that if an
S-box is complete, or even perfect, its inverse function may not be complete.
This could become important if these inverse functions are used in the decryption
process, for it would be desirable for any changes in the ciphertext to affect all
bits in the plaintext in a random fashion, especially if there is not much redun-
dancy in the original plaintext. Complete cryptographic transformations with in-
verses which are complete are described as being two-way complete, and if the

inverse is not complete the transformation is said to be only one-way complete.

A COMPLETE S-P NETWORK

Kam and Davida [1] presented a method whereby an entire S-P network
could be guaranteed to be complete if all the substitution boxes used in the
procedure were complete. This entailed using specially designed bit permutations

between the substitution layers. The networks can be of any size as long as
n= k9

where

n = the number of input/output bits for the entire network
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=
H

the number of input/output bits for each S-box

(e}
t

= the number of substitution-permutation stages

Since completeness is a prerequisite if the strict avalanche criterion is
to be met, we thought that perhaps by using perfect S-boxes in the system we
could come up with a "perfect” system. A complete S-P network with n = 64, k
= 4 and g B 3 was implemented. Unfortunately, it turned out that each output
bit changed with a probability of aonly one eighth when a single input bit was
complemented. In fact, it can be shown that the probability of an output bit
changing will always be 279, This was termed avalanche damping. The same test
was run with complete S-boxes of the type that Kam and Davida suggested in their
paper instead of perfect S-boxes. The mean value of elements in the dependence
matrix was slightly higher at 0.19, but their variance was over one hundred times
greater than that calculated when the perfect S-boxes were used [4]. In fact,
some elements had values as low as 0.01, which represents a significant short-

coming in the system.

This test was repeated for S-P networks with perfect S-boxes and random
bit permutations. A plot of the mean and variance of the elements in the
dependence matrix is shown in Figure 2. After three rounds, the performance
is poorer than that for the complete S-P network, but after about 12 rounds the
strict avalanche criterion is satisfied. This result suggests that with the addition
of several S-P stages with complete or perfect S-boxes and random bit permu-
tations, a complete S-P network could still be guaranteed to be complete and would

probably satisfy the strict avalanche criterion.
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Figure 2. Mean and variance of elements in the dependence matrix for an
S-P network vs. number of substitution-permutation stages: All
the substitution boxes in this network were perfect, and the bit
permutations were generated randomly. It is evident that the strict
avalanche criterion is satisfied after approximately 12 $-P stages.

DES

The Data Encryption Standard (DES) has been a federal standard in the
United States since 1977. DES employs substitutions and permutations, but the

algorithm is much more complex than the one for the complete S-P network [3].

It can be shown that the DES algorithm is invertible [3, p.240]. Since
the dependence matrix could, in theory, be different for every key, we cannot

state that DES is always a "perfect” system. However, the results shown in Figure
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3 for the key (FF . . . FF) indicate that in that case the strict avalanche criterion
is satisfied. In addition, in a sample of 30 correlation coefficients picked at
random, the highest absolute value found was 4.88 «x 10-2. This suggests that
there is very little correlation between avalanche variables. Similar results were
obtained using several other key values. Thus, we .can conclude that DES is a

"perfect” encryption algorithm, at least for the key values that were tested.

Since the S-boxes are the only nonlinear portion of the DES algorithm,
their characteristics have a significant effect on the strength of the entire system.
The S-boxes are not invertible, but due to the way in which they are employed
in the algorithm, this does not pose a problem for decryption. Nor do they satisfy
the strict avalanche criterion. For the entire sat of 8 S-boxes, the probability
that a particular output bit will change when a single input bit is complemented

ranges from 0.43 to 0.93.

The correlation coefficients between pairs of avalanche variables for the
DES S-boxes were also calculated. While most of them had absolute values of less
than 0.5, it was found that when input bit 1 (the least significant bit in the input)
was complemented, the correlation coefficients between bits 1 and 2 and between
bits 3 and 4 in the output of 54 were equal to -1. This is equivalent to the dis-
covery made by Hellman et al. [6] that the exclusive-or sums of the output bits,
y1 © y2 and y3 @ y4, of 84 are complemented whenever input bit x1 changes its
value. It can also be shown that both of these results can be derived from another

one of their findings
$,(X ®000001) = (2,1)(3,4) $,(X) ® (x1, X1, x1, x1)

where (2,1)(3,4) means that the first and second bits as well as the third and

fourth bits of the following vector are interchanged.




Figure 3.

533

- 100

1074 Variance

1
)

Variance

Mean and variance of DES dependence matrix vs. number of en-
cryption rounds: These values of mean and variance are only for
elements in one quarter of the dependence matrix, but Meyer [7]
shows that these results will propagate through the rest of the
matrix within two rounds. The strict avalanche criterion is satis-
fied after four rounds for this portion of the matrix; therefore,

it will take six rounds before the full system will meet the
requirement,
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