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Abstract :  We consider the problem of solving systems of equations P;(z) = 0 
(mod n;) i = 1.. . k where P; me polynomials of degree d and the n, are distinct 
relatively prime numbers and z < minn,. We prove that if k > we can 
recover z in polynomial time provided n, >> 2k. This shows that RSA with low 
exponent is not a good alternative to use as a public key cryptosystem in a large 
network. It also shows that  a protocol by Broder and Dolev [4] is insecure if RSA 
with low exponent is used. 

1. Introduction 

Let us start with some cryptographic motivation. The famous RSA function [8] 
is defined 89 f(z) = zd (mod n). Here n is usually taken of the form n = p q  where 
p and q are two large primes and d is an integer relatively prime to (p - l ) ( q  - 1). 
Using these parametera the function is 1 - 1 when restricted to 1 5 z 5 n, (2, n) = 1. 
Furthermore the function is widely believed to be a trapdoor function i.e. given n 
and d it is easy to  compute f(z) and given f(z) it is also easy to recover z provided 
you have some secret information but otherwise it is infeasible. In this case the 
secret information is the factorization of n. 

The RSA function can be used to  construct a deterministic Public Key C r y p  
tosystem(PKC) in the following way: 

Each user B in a communication network chooeea two large primes p and q and 
multiplies them together and publishes the result nB together with a number de 
which is relatively prime to  (p - l)(q - 1). He keeps the factorization as his private 
secret information. If any user A in the system wants to send a secret message 
rn to another user B she retrievea B's published information computes y mdB 
(mod ne) and sends y t o  B. B now obtains the original message using his secret 
information while somebody else presumably faces an intractable computational 
task. 

However PKC are different and more complex objecta than trapdoor functions. 
For example the use of RSA in a PKC may present obetaclea that did not occur when 
we considered it as a trapdoor function. Several people (at least Blum, Lieberherr 
and Williams) have observed the following attack. h u m e  that 3 is chosen ae the 
exponent and that A wants to  send the same message rn to users U1,Ut and Us. 
She will compute and send y; = m3 (mod n;) i = 1 , 2 , 3 .  But using the fact that 
nl, n2 and n s  are relatively prime a listener who know the values of y1,yZ and y3 
can combine the messages by chinese remaindering to get m3 (mod nlnang) and 
since ms < nlnzn3 he can recover m. In general if the exponent is d the number 
of messages needed is d.  
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A natural question is therefore: Is there a better way to send the same message 
to many people using thia PKC? 

A common heuristic tells us to use a “time stamp”. Instead of sending the 
same message m to everybody one attaches the time and thus sends the encryption 
of 2i*lrn + t where 2Itlm i s  the shifted message and t is the time (which will be 
different for the different receivers). The previous attack fails and we are led to  the 
following computational problem (for d = 3). 

Given (aim + 6;)’ (mod n;) where all the % and b; are known is it possible to  
recover rn in polynomial time? 

We wil1 see in section 3 that the answer is YES if the number of similar messages 
is at  least 7 .  In fact w e  will prove that given a set of equations 

P;(z) z 0 (mod n;) i =  1, ..., k 
where we have k polynomial equations of degree 2 d it is possible to recover 

the solution in time polynomial in both k and logn; if k > d(d  + 1)/2 provided 
n; >> 2 d .  Therefore we conclude that if M A  is to be used as a PKC we should use 
a large exponent or even better use a probabilistic encryption scheme [3],[6] based 
on RSA. By [1],[3] this can be done with as much efficiency as in the deterministic 
case. 

2. The insecurity of a protocol by Broder and Dolev. 

Broder and Dolev proposed a protocol for flipping a coin in a distributed system 
[4]. Some of their emential ingredients were Shamir’s method of sharing a secret 
and the use of a deterministic PKC. They proposed to use the RSA. In 121 it is 
shown that what they really need from the security of the cryptosystem is: 

Given the encryption of a;z + b, with different keys it should be infeasible to 
decide the parity of z with a better probability than flipping a coin. The analysis in 
the next section shows that  given this information we can, not only find the parity 
of z, but the exact value of z if the PKC is RSA with a small exponent. In the case 
of a large exponent the protocol is not known to be insecure but on the other hand 
there is no proof of correctness. A provably secure protocol has been designed by 
Awerbuch e t d .  [ Z ] .  

3. Main Theorem 

Let us start by fixing some notation. Let N = nf=, n; and n = minn;. Now 

Given a set of k equations Cj=ou,,zj  z 0 (mod n;) , i = 
Can we find such a 

we can state the problem formally: 

Problem: 
1, . . .  ,k. Suppme that the system have a solution z < n. 
solution efficiently? 

d 

Before we give the theorem Iet us give the basic ideas. Define u, < N to be 
the Chinese remaindering coefficients i.e. u, E S;, (mod n;) (6;, = 1 if i = j and 
0 otherwise). We can combine the equations to  a single equation using the Chinese 
remainder theorem. 

o ~ p = ~  z j  zfz1 u,a,, G c,=~ d zJc, (mod N )  
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One of the important parts of the entire paper is the following simple lemma. 

Lemma I: If lc,( < (d+T)niz we can find z in time polynomial in d,k and 
log n;. 

Proof: Iflcjl < & then 
d d 

j = O  j = O  

Thus the condition C;=, cjzj e 0 (mod N) implies cy'=, c j z j  = 0. In other 
words z solves the equation over the integers and to prove the lemma we just need 
the fact that we can solve polynomial equations over the integers in polynomial 
time. This follows from [7] but there are more efficient algorithms. 

The condition of lemma 1 is quite unlikely to  be fulfilled when we start with a 
general set of equations. In spite of this lemma 1 will be one of our main tools for 
proving: 
Theorem: Given a set of equations c;=, a;jd = 0 (mod n;), i = 1 ,2 , .  . . , k 
where z < n and gcd((a, j )$ , ,  n;) = 1 for all i. Then it is possible to recover z 
in time polynomial in d ,  k and log n; if 

As before N = nf=, n;, n = min n,, d is the degree of the equations and k is 
the number of equations. 

ProoT: The idea is to use lemma 1. However as we remarked it is quite unlikely that  
it will apply to our equations directly. To get more possibilities we will multiply the 
i-th equation by a constant a, before we combine them using Chinese remaindering. 
If we have chosen the 8; carefully enough the resulting equation will have the desired 
small coefficients. We get 

Let c j  denote the coefficient of zJ in this equation. To apply lemma 1 we want 
I c j / n j  < &. The main tool for achieving this will be the use of lattices. We first 
start by recalling some background from the geometry of numbers. 

3.1 Background from geometry of numbers. 

A lattice L is defined to  be the set of points 

where & are linearly independent vectors in R". The set 6 is called a basis 
for the lattice and n is the dimension. The determinant of a lattice is defined to be 
the absolute value of the determinant of the matrix with rows 6. It is not hard to  
see that the determinant is independent of the choice of basis. The length of the 
shortest nonzero vector in the lattice is denoted by XI. Let us recall the following 
wellknown facts: 
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Theorem: (Minkowski) X1 5 7,, 3 (de t (L ) )*  where 7n is Hermite's constant .  

I I W l  5 24 .  

-y,, is not known explicitly but we have an upper bound 7,, 5 n [5]. 

Theorem: W e  can find a vector a' in polynomial t ime which satisfies 

This is bound you get from the famous algorithm in the paper by Lenstra,Lenstra ' 
and Lovasz [7]. By a result by Schnorr it is possible to replace the constant 2 by 
any number greater than 1 [9] but this is not important to us. Armed with this 
information we return to the original problem. 

3.2 Continuation of Proof. 

Define the following lattice L of dimension k + d + 1 by its base vectors: 

bl = (aloul, ~ ~ 1 1 ~ 1 ~ n 2 ~ 1 2 ~ 1 , ~ ~ ~  ,n aldu1, - m 7 0 1 . .  . ,o) d N 

d N 

- 
' 0 )  

-. 
b2 = (a20u2,na21u2,n2a22~5,...,n a2dU2,0, n?(d--l)>**' 

2 d N 
bk = (akOuk, nakluk, n ak2uk,. . . , n akduk, 0 ~ 0 , .  . . I  

b k + l  = (N,O,O,. . . ,o,o, 0,. . . ,o) 

+ 

- - 
bk+2  = (0, nN, 0 , .  . . ,O,O,O, . . . ,0) 

bk+d+l = (O,O, 0,. . . , nd N, O,O, . . . 0) 
- 
Observe that 

Observe that for 1 5 i 5 k + 1 the i'th coefficient is divisible by n'. We 
multiply the different coefficients by the corresponding powers of n since we want 
/cj/nj < &. The laat k coordinatea are there to make the multipliers 3; small in 
a short vector in the lattice a d  the last d +  1 vectors reflect the fact that we have 
a modular equation. 

The only term in the expansion of the determinant is the diagonal term and 
we get 

J ( d f 1 )  
k 

d f d i l l  
D e t ( L )  = n-Ndfk"(d $. l)-k n n i l  = n T N d i - k ( d  + l)-k 

*=1 

This also shows that  the vectors are independent. Combining the two theorems 
in section 3.1 we know that we can find a vector g in  L that satisfies 

ila'il < ( k + d +  I)iZ*Det(C)h 
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Observe that to get the desired bounds for the c;'s we need 

A simple calculation shows that to  get this we need exactly the bound from the 
theorem to get this. 

TO finish the proof we need to  prove that we get a nontrivial equation. Since 
11gl1 C we know by the expressions for the last k coordinates that Is;] < n;. 

b' is also nonzero. This together with the bound for its length imply that there is 
at least one S; # 0. Look at the equation (mod n;) for the same i .  Using that  
0 # 1s.l < n; and gcd((a,,)$o, n;) = 1 we see that this is a nontrivial equation. 

The proof is complete. 

4. Cryptographic Corollaries 

We get some immediate corollaries of the main theorem 

Corollary 1: Sending linearly related messagee using RSA with low ex- 
ponent €8 hecure .  Sending more than messages enables an adversary to 
recover the messages. 

This follows directly from our main the main theorem wuming that the con- 
stants depending on the dimension is small compared to the moduli. In the same 
spirit we get 

Corollary 2: Sending linearly related messages using the Rabin encryp- 
tion function is insecure. If 4 such rnessage;s are sent it is possible to retrieve 
the message. 

of equality (9 and 3 mesaages respectively) but we omit the details. 

Corollary 3: The protocol by Broder and Dolev ia insecure if RSA with 
low exponent is uaed. 

d d + l  

If one does a bit of extra work it is poaaible to  say something about the cases 

Follows from the analysis in [2] and the main theorem. 
The theorem also proves that we should not encode messages that are small 

known polynomials in some unknown but this seems quite farfetched. 

5. Open questions 

One interesting open questions is whether we can solve the problem with fewer 
equations. It does not seem possible to use this line of attack with substantially 
fewer equation. To see this one might argue as follows: 

The probability that l c j l  < nk-j for j = 1 , .  . . , d for a fixed set of s, is approx- 
imately n-d(d+l)/z and this would indicate that we should have nd(d+l)/f sets of 
equations to  choose between and therefore at least d ( d +  1)/2 equations. 
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There does not seem to be any way to extend the above attack to RSA with 
large exponent. The reason being that the integers involved are too big even to 
write down. There is at i l l  a large amount of atructure preaent and it would be 
interesting to investigate whether this structure could be used. 
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