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ABSTRACT

The problem of computing logarithms over finite flelds has proved to be of interest in
different flelds {4]. Subexponential time algorithms for computing Iogarithms over the spe-
cial cases GF(p ). GF{p?) and GF(p™) for.a fixed p and m -+ = have been obtained. In this
paper, we present some results for obtaining a subexponential time algorithms for the
remaining cases GF(p™) for p + = and fixed m # 1, 2. The algorithm depends on mapping
the field GF(p™) into a suitable cyclotomic extension of the integers (or rationals). Once an
isomorphism between GF{(p™) and a subset of the cyclotomic field Q(w,) is obtained, the algo-
rithms becomes similar to the previous algorithms form =1, 2.

A rigorous proof for subexponential time is not yet available, but using some heuristic argu-
ments we can show how it could be proved. If a proof would be obtained, it would use results
on the distribution of certain classes of integers and results on the distribution of some ideal

classes in cyclotomic flelds.
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1. INTRODUCTION

This paper gives some ideas for extending the Merkle - Adleman algorithm for computing
discrete logarithms over GF{p) [1.7.9] to higher order fields. Section 2 finds appropriate
integral domains for extending the algorithm. The reader is refered to [8,11] for discussion
on number flelds and using integral domains to extend the algorithm. Section 3 gives some

ideas regarding the running time of the algorithm.

2. FINDING THE ISOMORPHISM:

From the discussion in [B], it seems natural to use higher number flelds to extend the
algorithm to higher order finite fields. Unfortunately, higher algebraic number fields do not
bave all the properties of quadratic fields that were used in proving a subexponential running
time in [B]. For example, the norm function is not as easy to find, and hence the proofs for
the fraction of smooth elements are more difficult. So the discussion in this paper is res-
tricted to using a certain class of algebraic number flelds; namely, the cyclotomic fields. For
a discussion of the properties of cyclotomic fields, the reader is refered to [11]. Cyclotomic
flelds are used because they possess some of the properties of quadratic flelds that were
needed in developing the algorithm for the case GF(p?). For example, the splitting of primes

n cyclotomic extensions is easy to determine, which is not the case for general fields.

For simplicity, only *'prime” cyclotomic flelds will be used, i.e. the fields Q(w, ) where w,
s a primitive gth root of unity, and g is a prime in Z The gth cyclotomic polynomial has the
orm

$,(D)=DT 1+ DITR4 4 D4

Jote that the general cyclotomic polynomial does not necessarily have this nice form. Hence,
he gth cyclotomic fleld has degree g~1 = p(g). Some results on cyclotomic flelds are
1eeded to find the appropriate cyclotomic flelds. The reader is refered to [11] for proofs.

Recall, from [11], the results on the splitting of primes in cyclotomic extensions {known

s Kummer's theorm)}. For each primep € Z
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®)= 11 (. h(wg)),

=1

where

8,(D) = ‘Ifll he(D) mod q.
The polynomials A, (D) all have degree f, where fg = g ~ 1, and f is equal to the order of
p mad g (or the order of p in the multiplicative group in GF(g). which is usually denoted by
(Z/q)°)- Hence the splitting of the ideal (p) in Z{w, )} depends on the factorization of the pth

cyclotomic polynomial mod g which is easy te find (see [11]).
IER = (p. ~(wy)). then ¥(R;) = p/. where N(R;) is the norm of the ideal R,.

The next lemma relates cyclotomic polynomials to the orders of elements in (Z/ g)".

Lemma 1

Let ¢ be a prime < n, and let a€Z Then q | §,(a) if and only if the order of a in {(Z/g)°

Proof

First, if the order of a mod g is equal ton, then a™ - 1 = 0 mod g and n is the smallest
such exponent. Hence, g divides one of the factors of the polynomial D* - 1 evaluated at

D =a. Itis known that O ~ 1 = []$,(0) (see [11]). Hence, g divides ¢,{a} since, if it
din

divides another factor of a™ — 1, then its order is less than n. Conversely, if ¢ divides &, (a)
then @™ =1 =0 mod g since g divides one of the factors of the polynomial D" — 1 evaluated
at D = a, and n is the smallest such exponent {(otherwise g would divide $4(a) for somed < n
in which case the polynomial J® — | has multiple roots which is never the case [11]). This

proves Lemma 1.

This lemma provides an easy check for the order of p mod ¢. That is, if the order of

p mod g is equal to f. then g has to divide $, (p).
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Going back to the isomorphism, a cyciotomie field Q{w,) is used to generate a finite field
GF{(p™), for p and m known (and v small). A field that is isomorphic to GF(p™) needs to be
found from the ring of integers in a cyclotomic field similar to the isomorphisms that were

found for the cases m =1, 2.
One observation is that if the "'residue classes” Z{wg )/ R; for some prime ideal R; of norm
p™ are constructed, then these residue classes form a finite field isomorphic to GF(p™). Let

R = (P- hi(”q)),

and

8(D) = 1T h (D) mod p,

i=1
where each Ay (D) is irreducible mod p. Then A;(D) is a candidate for generating GF(p™).

Finding the appropriate fleld Qo)

The discrete logarithm problem is the following; given a, y and p™ , find z such that
a® =y in GF(p™)
for some given irreducible polynomial K(D) with degree m. First, as noted in [2,3,10], the
choice of the irreducible X{ D) does not affect the running time of the aigorithm since all
representations of GF(p™) are isomorphic and only polynomial time is needed to find the
corresponding logarithms in one representation if the logarithms are known in another

representation.

From the above discussion, a prime ideal R that has norm equal to p™ needs to be

obtained. That is equivaient to finding a prime g such that p has order m mod g .

Eguivalently, to construct an appropriate field Q(w, ), a prime factor g of $,,(p) should be
computed (see Lemma 1). This proves the existence of such g, which might be quite large
{for example O(p) or higher). In this case the obtained field cannot be used for our algorithm
since just representing an integer takes O(p ) operations.

Fortunately, as p grows larger the probability that ¢, {(p) has at least one small factor is
high if the number §,, (p) is assumed to be random, but for some given p and m no small divi-

sor g may exist. The reason is that p™ — 1 should be chosen to have at least one large prime
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factor, and hence ¢, (p) (which is a factor of P™ — 1) is likely to be a prime, or not to have
any large prime factor.

For the cases where &, (p} does not have any small factors, GF{(p™) could be embedded
in GF(p™) for some small i € Z log y¥ can be found as if ¥ and a were elements in GF(p™)
and the results are transferred back to GF{p™) which is isomorphic to the subfield of order
p™ in GF(p™} .

So in this case, a small divisor of §, (p) for some i € Zis needed. That increases the
chance of finding an appropriate ¢, since the probability that one of the numbers
$m(p)i=1.2, - - I for some!, has at least one small prime factor grows with .

Note that $,(p) need not be factored completely because only a small divisor {O{log p)
for example) is needed. Even if ¢(p) is factored completely, the asymptotic running time of
algorithm will not increase since ¢, (p) = 0{p*™)) and factoring such a number also takes

subexpenential time in g(m) log p.

3. THE RUNNING TIME

This section sketches some ideas ebout the running time of the algorithm as desribed

above,

A The image of GF(p™) is Z{w,)/ A, which consists of the elements

m=1 R
2 a; w! , af € Zfor all 5,
j=0

and the norm of the ideal Ais p™.

B. All the elements in Z{wg)/ A have norm less than
M =m?(p-1)".

This is a loose bound, since it is obtained by adding m? terms, (When computing the
norm of any element in Z(w, ), m? are obtained. each has the value (p - 1)™ which is the max-
imum value of each term, since each g, is less thanp.)

C. The number of ideals in Z(w, ) with norm up to # is linear in & ( = kM) for some con-

stant k (see [B]).
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M
ogM|

The number of prime ideals in Z{w,) with norm up to M is therefore equal to 0[1

D. The number of principal prime ideals up to norm ¥ is equal to the total number of
prime ideals with norm up to M!/*, where A is the class number of Z{w, ). because any ideal
A € Z(w,) raised to the hth power is principal.

E. The number of smooth principal ideals in Z{w, ) with norm up to M (smooth is defined
with respect to some value for the maximum norm of small prime principal ideals N} can be
computed in & way similar to the computation in [8] for the case of GF(p?).

F. Assume that the smooth elements are uniformly distributed among the different sub-
sets of elements with small norm. Then, the ratio of smooth elements in Z{w, )/ R is of the
same form as for the cases GF(p) and GF(p?), and a subexponential running time could be

obtained.
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