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The problem of computing logarithms over tinite fields has proved to  be of interest in 

diflerent fields [4] .  Subexponential time algorithms for computing logarithms o m r  the spe- 

cial cases G F ( p ) .  GF(p2) and CF(pm) f0r.a f h e d p  and rn + 1p have been obtained. In this 

paper. we present some results for obtaining a subexponential time algorithms for the 

remaining cases GFbrn) f o r p  - - and fixed m it 1 ,  2. The algorithm depends on mapping 

b e  field GF(pm) into a suitable cyclotomic extension of the integers (or rationals). Once an 

isomorphism between GF(pm) and a subset of the cyclotornic field Q(o,) is obtained, the algo- 

rithms becomes similar to the previous algorithms f o r m  = 1 , 2. 

A rigorous proof for subexponential time is not yet available, but using some heuristic argu- 

ments we can show how it could be proved. If a proof would be obtained, it would use results 

on the distribution of certain classes of integers and results on the distribution of some ideal 

classes in cyclotomic fields. 
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1. INTRODUCTION 

This paper gives some ideas for extending the Merlde - Adlernan algorithm for computing 

discrete logarithms oyer G F k )  [1,7.9] to  higher order fields. Section 2 finds appropriate 

integral domains for extending the algorithm. The reader is refered to [8.11] for discussion 

on number flelds and using integral domains to  extend the algorithm. Section 3 gives some 

ideas regarding the running t h e  of the algorithm. 

2. FINDING THE ISOMORPHISM: 

From the discussion in [a], it  seems natural to use higher number flelds to extend the 

algorithm to higher order flnite flelds. Unfortunately, higher algebraic number flelds do not 

have all the properties of quadratic fields that  were used in proving a subexponential running 

time in [El. For example, the norm function is not as easy to  And. and hence the proofs for 

the fraction of smooth elements a re  more difficult. So the discussion in this paper is res- 

tricted t o  using a certain class of algebraic number 19elds; namely, the cyclotomic Belds. For 

B discussion of the properties of cyclotomic fields. the reader is refered to  [Ill. Cyclotornic 

lields are used because they possess some of the properties of quadratic flelds that were 

needed in developing the algorithm for the case G F ( p 2 ) .  For example, t h e  splitting of primes 

n cyclotomic extensions is easy t o  determine, which is n o t  the case for general flelds. 

For simplicity. only "prime" cyciotomic fields will be used. i.e. the flelds Q(o,) where uq 

s a primitive q t h  root of unity. and g is a prime in Z The qth cyclotomic polynomial has the 

orm 

Qp(D) = Dq-' + D q - ' +  ' '  ' + D + 1. 
Jote that the general cyclotomic polynomial does not necessarily have this nice form. Hence, 

he qth cyclotomic fleld has degree p -1 = v.(q).  Some results on cyclotomic flelds are 

ieeded t o  find the  appropriate cyclotornic fields. The reader is refered t o  [ 1 I] for proofs. 

Recall, from [ll]. the results on the splitting of primes in cyclotomic extensions (known 

LS Kumrner's theorm). For each prime p E Z 
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@,(Dl = fi f q ( D )  mod 
< = I  

The polynomials h ( D )  all have degree 1, where j g  = q - 1, and 

p mod q (or the order of p in the multiplicative group in GF(q). which is usually denoted by 

(Uq)'). Hence the splitting of the ideal (p) in Z(o,) depends on the factorization of t h e p t h  

cyclotomic polynomial mod g which is easy t o  h d  (see [ll]). 

is equal to the order of 

If & = ( p .  h,(uq)). then N ( q )  = p l ,  where N ( R , )  is the norm of the ideal 

The next lemma relates cyclotomic polynomials to the orders of elements in (Z/ q ) * .  

Lemma 1 

Let q be a prime 5 x .  and let a € Z  Then q I S,(n) if and only if the order of a in (U q ) *  

isn. 

Proof 

First, if the order of a mod q is equal to n .  then an - 1 = 0 m o d  g and n is the smallest 

such exponent. Hence. q divides one of the factors of the polynomial D" - 1 evaluated a t  

D = a .  It is known that  Dn - 1 = nGd(fJ) (see [ll]). Hence. p divides +,,{u) since, if it 

divides another factor of a" - 1. then its order is less than n .  Conversely, if g divides @,,(a) 

then nn - 1 = 0 mod q since q divides one of the factors of t h e  polynomial Dn - 1 evaluated 

at D = a ,  and n is the smallest such exponent (otherwise p would divide Ql6(a) f o r  some d < R 

in which case the polynomial D" - 1 has multiple roots which is never the case [ I l l ) .  This 

proves Lemma 1. 

d l n  

This lemma provides an easy check for the order of p mad q .  That is. if the order of 

p m o d  q is equal to  j', then q has to  divide @I (p). 
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Going back to  the isomorphism. a cyclotomic fteld p(o,) is used to generate a %ite Beld 

GF(p"), for p and m known (and m small). A field that is isomorphic t o  CF(pm) needs t o  be 

found from the ring of integers in a cyclotomic fleld similar to the isornorpbisms that were 

found for the cases m = 1 . 2. 

One observation is t h a t  if the  "residue classes" z(up)/& for some prime ideal & of norm 

p" are constructed, then these residue classes form a finite tleld isomorphic to GF(pm). Let 

< = I  

where each k ( D )  is irreducible mod p .  Then &(D) is a candidate for generating GF@*). 

Finding the appropriate Aeld Mu,) 

The discrete logarithm problem is the following; given u, y andp" , And t such that  

ar = y in GF(pm) 
for some given irreducible polynomial K(D) with degree m. First, as noted in [2,3,10]. the  

choice of the irreducible K(D) does not affect the running time of the algorithm since all 

representations of G F ( p m )  a r e  isomorphic and only polynomial time is needed to tlnd the 

corresponding logarithms in one representation if the logarithms a r e  kn~m in another 

representation. 

From the above discussion. a prime ideal R that has norm equal t o p "  needs to be 

obtained. That is equivalent t o  &ding a prime q such that p has order rn mod q . 

Equivalently, to  construct an appropriate field Q(o,). a prime factor q of @,,,(p) should b e  

computed (see Lemma 1). This proves the existence of such q .  which might be quite large 

(for example O ( p )  or higher). In this case t h e  obtained field cacnot be used for our algorithm 

since just representing an integer takes O ( p )  operations. 

Fortunately. asp  grows larger the probability that B , ( p )  has at least one small factor is 

high d the number @,,,(p) is assumed to be random. but for some givenp and m no small divi- 

xor q may exist. The reason is that pm - 1 should be chosen t o  have at least one large prime 
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factor, and hence '#,,,(p) (which is a factor of Pm - 1) is likely to be a prime, or not to have 

m y  large prime factor. 

For the cases where '#,(p) does not have any small factors, GP(p") could be embedded 

in GF(p") for Some s m d  i e 2 log y can be found as ify a n d  a were elements in GF(p'") 

and the results are  transferred back to GFkm) which is isomorphic to the subdeld of order 

pm in GF@-). 

So in this case, a small divisor of *,,,,(p) for some i E Z is needed. That increases the 

chance of &ding an appropriate q ,  since the probabdity that one of the numbers 

* m ( p ) , i = l , z ,  . ' '  , I for 50rne 1 .  bas at  least one small prime factor grows with I .  

Note that  *,b) need not be factored completely because only a small divisor (U(1og p )  

for example) is needed. Even if @(p) is factored completely, the asymptotic running t h e  of 

dgorithrn rill not increase since $,,, (p) = U(JJ*('")) and factoring such a number also takes 

subexponential time in q(m) log p .  

3. THE RUNNING TIME 

This section sketches some ideas about the running time of the algorithm RS desribed 

above. 

A The image of Worn) is z(o,)/A which consists of the eIements 

and the norm of the ideal A is p". 

B. All the elements in X u q ) / A  have n o r m  less than 

M = m2 (p-I)". 

This is a loose bound. since it  is obtained by adding m2 terms. (When computing the 

norm of any element in Z(2,). m' are obtained. each has the value (p - 
imum value of each term, since each n, is less than p .) 

which is the m a -  

c. 'he number of ideals in 2(uq)  wth norm up to  M is linear in M ( = k M )  for some con- 

stant k (see [a]). 
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The number of prime ideals in Z(o,) with norm up to M is therefore equal to 0 

D. The number of principal prime ideals up t o  norm M is equal to the total number of 

prime ideals with norm up to hi"', where h is the class number of Z(o,). because m y  ideal 

A E  Z(w, )  raised to the h t h  power is principal. 

E. The number of smooth principal ideals in Z(CJ,) with norm up to M (smooth is defined 

w i t h  respect to  some value for the maximum norm of srnali prime principal ideals N) can be 

computed in a way similar to  the computation in [6] for the case of GF(p2). 

F. Assume that the smooth elements a r e  uniformly distributed m o n g  the different sub- 

sets of elements with small norm. Then, the ratio of smooth elements in Z ( w , ) /  R is of the 

s a m e  form as for the cases G F k )  and GF(p2). and a subexponential running time could be 

obtained. 
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