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1. In t roduct ion  

Group-theoretic structures appear to underly all of cryptogra- 

phy and error control. In particular, cryptosystems all appear t o  

employ four groups: a group K of keys; a group A,  called the alpha- 

bet, of symbols; a group P of positions which symbols can occupy; 

and a group A P  of messages, i.e. functions from P to A. Every 

cryptosystem is a pair (c ,d)  of self-maps of K x AP and is thus, 

from a mathematical viewpoint, a pair of very large matrices c and 

d. The coding map c turns an encrypt key k E K and a plaintext 

message m E AP into a decrypt key E K and a cryptext message 

E E A P .  The decoding map d takes the pair (%,m) as inputs and 

recovers ( k ,  m). The keys Ic and are merely inverses of each other 

in the group K .  In a conventional cryptosystem the group K is 

widely known and it is easy to  produce the inverse c of k. Not so 

in a public key cryptosystem. In either type of cryptosystem the 

cryptext message m depends in a complicated way on both k and 

m. 

Interestingly, all cryptosystems appear to be built up on the 

basis of just three primitives: 

(Shannon) confusion, a generalization of cryptographic 

subs tit u t  ion; 

(Shannon) diffusion, a generalization of cryptographic 

transposition; and 
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arithmetic (in the sense of universal algebra operations 

derived from the composition laws associated with the 

groups K ,  A ,  P and A p ) .  One extremely important arith- 

metic operation is replacement, a generalization of the no- 

tion of a cryptographic codebook. 

These notions of confusion, diffusion and arithmetic can now 

be precisely defined, and so the general definition of cryptosystem 

herein is at once less general and more abstract than the one IDI79, 

p. 398; K081, p. 28; DE82, p. 7; BE52, pp. 125-130; ME82, p. 

14-53] which appears in the literature to date. 

The DES exhibits rich structure, and is therefore a good exem- 

plar of this approach to cryptography. The four groups in question 

are as follows. The alphabet group A is the field A = GF(2)  = 2 / 2 2  

with two elements. The group P of positions is the ring P = 2 / 6 4 2  

of integers modulo 64. Hence the group AP of messages is the 6 4  

dimensional vector space AP = (2/22) (2’642) of 64-bit words. The 

key group K is a %-dimensional vector subspace of AP. When DES 

is expressed in these terms it becomes clear that it uses no confusion 

at all, merely diffusion and arithmetic. However, part of the arith- 

metic is a unary operation based on the S-boxes. Unary operations, 

replacements in our terminology, are reminiscent of confusions and 

are often mistaken for them. 
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2. Messages, codes, cryptosystems, confusion, diffusion, 

arithmetic 

This paper continues and refines the approach begun in [BL83; 

BL85bI. The idea is to  reformulate information-theoretic objects 

such as codes (both error-control codes and cryptographic codes) 

ciphers, cryptosystems, and ramp schemes [BL85a] in terms of group 

theory. By this means we hope to  produce many new objects (both 

continuous [BL87] and discrete) of the sorts described above, as well 

as to gain a deeper understanding of the existing ones. 

As far as cryptography goes, the idea is to define a message as 

a map m : P -+ A from a group P of symbol positions to a group 

A of alphabetic characters (i.e. symbols). A map between groups 

might be expected to be a group homomorphism. If the groups 

are topological groups it might be expected to be continuous. But 

cryptosystem designers often try to avoid "nicei7 algebraic, analytic 

or probabilistic structure. Even if messages (i.e. members of A') 

have significant algebraic, analytic or probabilistic structure, cryp- 

tosystems are often built so as to  have as little such structure as 

possible. The set A' is a group in a natural manner induced by 

the group structure on A.  Composition of maps is indicated by the 

o operation symbol everywhere below. Thus d o  c is the map d fol- 

lowing the map c,  and d * c is the product of d and c if a natural 

product operation * exists. 
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Definition 2.1: Let K ,  A and P be groups. Wecall A the alphabet. 

We call P the group of symbol positions. We call AP the group of 

messages. We call K the group of keys. A cryptosystem on AP 

with keyspace K is a pair of maps 

c :  K x 

d :  K x 

-+ K X A ~  

+ K x 

for all ( k , r n )  E K x A P .  

If we write 

c ( ( k , m ) >  = ( k m )  

it seems usually to  be true that does not depend on m, but is 

merely the inverse of k in whatever arithmetic is natural on A'. In 

DES we have 
- 
k = - k = k  

in a vector space K over GF(2) ,  whence -k = k. In RSA we have 

[BL85b, p. 3321 
- 

k E k - l  mod X(p * q )  

in a ring Z/X(p  * q)Z in which k is invertible. In a simple substi- 

tution cipher the decode key c is the permutation inverse k-l of 

the encode key k E SYM(A). Here, as in [K081, p. 651, we use 

the notation SYM(A) for the symmetric group on the set A,  i.e. 
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the group of all permutations of A.  In a transposition cipher we 

similarly have % = Ic-l E SYM(P) . The cryptext message m, on 

the other hand, seems always to  depend on both k and m. In fact 

cryptosystem designers often have to force some mutual compati- 

bility on the group structures of AP and K in order to  make this 

dependence easy to  calculate. 

Definition 2.1 can certainly be generalized. We have assumed 

that the set AP of plaintext messages is the same as the set of 

cryptext messages. This’is often true, but doesn’t have to be. 

In short, a cryptosystem is a pair of matrices whose entries are 

chosen from the set of their (common) indices. This matrix struc- 

ture does not necessarily make a cryptosystem easy t o  reconstruct 

or cryptanalyze. DES, for example, can be viewed as a 256 by 264 

matrix with entries chosen from GF(2)56 x GF(2)64. Sometimes 

it is preferable to  regard DES as a 264 by 264 matrix with entries 

chosen from GF(Z)64 x GF(Z)64, as we shall see in Section 3 below. 

An RSA is typically a $(X(p * q ) )  by p *  q matrix with entries chosen 

from 

where the primes p and q exceed 2250.  

Our thesis is that  all known cryptosystems are built using only 

three notions: confusion, diffusion, and arithmetic. Confusion (a 
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generalization of substitution) is a selfmap 

of A or even merely a binary relation s on A. In other words a 

confusion acting on a message m : P -+ A is a member s of the 

power [HA60, p. 1001 set 2 A x A .  But often a confusion is a member 

s of AA.  There is a well known canonical injection 

So the s E AA definition is just a (most commonly encountered) case 

of the s E 2AXA definition. Actually we are sometimes driven even 

further than this ( e .g .  when we have to describe [BL85b, pp. 322- 

3261 polyalphabetic substitutions [DE82, pp. 73-87] and one-time 

pads [DE82, pp. 86-87]). So our final definition of confusion is a 

family s of members of A A ,  or even of members of 2 A x A .  In ultimate 

generality, then, we have 

Definition 2.2: Let A and P be groups. We call A' the group of 

messages. A confusion on AP is a family 

of binary relations on A. In particular, a family 
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of self-maps of A is a confusion on AP. Here, I is any index set. If 

I is a singleton and 

s : I --f SYM(A) 

then s is a monalphabetic substitution on A'. 

Here, as above, SYM(A) is the group of permutations of A .  

Clear 1 y 

SYM(A) E AA 2 2 A x A .  

Similarly 

SYM(P) C P p  2 p x p .  

Thus, by analogy with the definition of confusion, we have 

Definition 2.3: Let A and P be groups. We call AP the group of 

messages. A diffusion on AP is a family 

P x  P t : J t 2  

of binary relations on P. In particular, a family 

t : J - + P P  

of self maps of P is a diffusion on P.  Here J is any index set. If J 

is a singleton and 

t : J -+ SYM(P)  

then t is a transposition on A P  (or, at worst, an anagram on A p ) .  



290 

This time the idea is that  a diffusion acting on AP is a selfmap 

t : P + P  

of P or, at worst, a family of binary relations on P.  As before, we 

allow the possibility of an entire family of self-maps of P ,  or even 

of an entire family of binary relations on P. Even such an object is 

called a diffusion. 

The word arithmetic is taken in the sense of universal algebra 

[GR68]. Nullary, unary, binary, ternary, . . ., qary, . . . operations 

on the alphabet A (i.e. the set of “symbols” used) are arithmetic. 

So are such operations on the group P of symbol positions, on the 

group K of keys, on the group AP of messages, or on the group 

K x A P .  A particularly important type of arithmetic is a unary 

operation on A P ,  i.e. a map 

r : AP + A P .  

Definition 2.4: Let A and P be groups. We call AP the group of 

messages. A replacement on A P  is a unary operation on AP,  i.e. a 

map 

r : A P  -+ AP. 

Definition 2.5: Let G be a group. The following objects are arith- 
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metic on G: 

nullary operations 

unary operations 

binary operations 

ternary operations 

qary operations 

5 : {+} -+ G 

i i : G - G  

L G X G + G  

i j : G x G x G + G  

@ : G x  G x . . .  x G - t G  

In this way we have defined arithmetic on the following struc- 

tures related to a cryptosystem: 

the group P of symbol positions; 

the group A of symbols (the alphabet); 

the  group K of keys; 

the group AP of messages; 

the group K x AP. 

Usually arithmetic on AP is induced by arithmetic on A, or 

arithmetic on P ,  or both. For example, if b ,  c E AP then we have 

b :P - - t , 4  

c : P + A .  

Let V : A x A + A be a binary operation on A. Then V induces 

a natural binary operation (which, by the usual abuse of notation, 
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we will also call 0)  on A P .  We define V : AP x AP -+ AP by 

subjecting 

b V c  : P -+ A 

to the requirement that  

for every p E P. If A is a field then AP is a vector space over A. 

Its dimensionality is the cardinality of P. 

Since a replacement is a unary operation on A‘, it follows tha t  

the notion of replacement is logically superfluous, being a special 

case of arithmetic on AP.  But we will nevertheless use the “re- 

placement” terminology because this particular special case arises 

so often, and corresponds to  the classical cryptographic notion of 

codebook. 

There are a lot of groups K ,  A ,  P.  So there are a lot of matrices 

c : K x AP -+ K x AP 

The thesis this paper presents is t o  the effect that people who build 

cryptosystems always gravitate toward those matrices c which arise 

simply and naturally out of just confusion on A P ,  diffusion on A P ,  

and arithmetic on A,  on P ,  and on A‘. This often means they 

must forcibly relate K to A,  or even t o  A and P in some, not 

always natural, manner. 
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An analogy t o  the thesis we present might be Cayley’s theo- 

rem: If you want t o  understand groups, it suffices t o  understand 

permutations. There is probably no “Cayley theorem” to the effect 

that, if you want to  understand cryptosystems, it suffices to  look 

at confusion/diffusion/arithmetic cryptosystems. But our “Cay- 

ley thesis” (to the effect that  people have never departed from the 

confusion/diffusion/arithmetic methodology so far in building cryp- 

tosystems) can have uses. If it is false, what is a historical coun- 

terexample? If it is true, why do people tend to do this? Either 

way, it is now possible to  produce numerous useful cryptosystems 

using the confusion/diffusion/arithmetic methodology. It should be 

possible to exploit it to  produce a taxonomy of cryptosystems. Will 

such a taxonomy be useful t o  cryptanalysts? To cryptosystem de- 

signers? Can we produce novel useful cryptosystems which are not 

confusion/diffusion/arithmetic cryptosystems? 

3. An overview of DES as a confusion/diffusion/arithmetic 

crypt osys  t em 

The highly structured DES is a good example of how the con- 

fusion/ diffusion/ arithmetic approach to cryptosystem structure 

works. Recall that  arithmetic includes replacement (a unary opera- 

tion on the message group A p ) .  It also includes constants (nullary 

operations) and binary operations on the collection K of keys, on 

the domain P of the collection of messages, on the codomain ,4 of 
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the collection of messages, on the collection A' of messages itself 

(though this last is usually induced by a related operation on the 

codomain A ) ,  and on the Cartesian product K x AP of the key 

collection with the message collection. 

The standard descriptions [BE82, pp. 267-285; DE82, pp. 91- 

97; K081, pp. 240-249; ME82, pp. 141-1651 of DES describe its 

underlying structure in a hybrid terminology which mixes math- 

ematical, mechanical and electrical metaphors. Moreover, though 

the descriptions in [BE82; DE82; K081; ME821 are logically equiv- 

alent, they are not the same in detail. In particular it is common- 

place to index rows and columns of S-boxes by the set Z/16Z = 

(0, 1 , 2 ,  . . . , 14, 15). But Konheim goes on to use 0 as the index of 

the first element of every set he encounters, whereas Denning often 

uses 1 as the index of the first member of a set. We invariably follow 

Konheim's [KO811 usage herein. 

Our description will be written in a topdown fashion. This 

section will give a brief unmotivated overview of how to describe 

DES in confusion/diffusion/arithmetic terms. Sections 4-9 will then 

go into the details. Our indebtedness to [DA84] should become 

obvious. We start by defining the notion of toroidal matrix. A 

matrix over a ring R is, of course, a function 

whose domain is a Cartesian product, B x C and whose codomain is 
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the ring R. If both B and C are cyclic groups one thinks intuitively 

geometrically of the matrix M as an array of numbers written on 

a bagel, rather than as a bunch of numbers written in a rectangle. 

This attitude is very natural and helpful in follo.tiiing our description 

of DES below. Consequently we will often use the phrase “toroidal 

matrix” to  direct the reader’s attention t o  the fact that the Cartesian 

factors B and C of the index set B x C of M are both cyclic groups 

whose cyclic structure is explicitly or implicitly used in constructing 

or manipulating M .  

We will adopt the abbreviation 

for the vector space of all 96 by 2 toroidal matrices with entries 

belonging to  the field 2 / 2 2 ,  as well as the abbreviation 

D = (2/962)  x (2/22) 

for the index set of these matrices. Thus we have 

D 
A = (2/22) . 

The description of DES starts with a plaintext message block 

Vi : 2 / 6 4 2  + 2 / 2 2  

i.e. a 64-bit word, and a key 

- 
k : 2/642 + 2/22 
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i.e. another 64bit word. 

manner [DE82, p. 961 that  the values of % on the set 

This latter word is formed in such a 

x = (2/642) n (7 + 8 2 )  = {7,15,23,31,39,47,55,63} 

are determined by its values on the rest of 2 / 6 4 2 .  

Use the initial permutation [DE82, pp. 91-97; K081, pp. 240- 

249; ME82, p. 155-1601 IP and the bit-selection table [DE82, pp. 

92-94; K081, pp. 241-242; ME82, pp. 156-1601 E to form a modified 

message 

m : Z/96Z x 2/22 -+ 2/22 

i.e. a member of the set A of toroidaI96 by 2 matrices of zeros and 

ones. 

The modified message m (which we will call a DES internal 

message) is formed from Z by means of a pure difhsion operation 

7r : D + 2/642, 

followed by multiplication by a constant matrix w E A, so that  

m = w a ( m o 7 r )  

The transition from m to  m by means of the initial message diffusion 

T and the constant matrix w is key-independent and has no secrecy 

aspect. In other words m may bc secret but does not depend on c. 
But 7r is neither secret nor dependent on m or z. The surjection 7r is 
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naturally associated with a certain 64 dimensional vector subspace 

II of the 192 dimensional vector space A.  

The map T is a surjection but not an injection. Therefore 

[MA67, p. 91 it has no left inverse function but has many right 

inverse functions. Using the IP- l  map [DE82, p. 921 we can easily 

fix upon a distinguished member of this set of right invcrses, call it 

T-', which faithfully represents the map IP- l ,  and which correctly 

reformats messages after the sixteen round operation of DES. 

Independently of all this initial reformatting of the plaintext 

message m so as t o  produce rn, use the permuted choices (or so- 

called key permutations) [DE82, pp. 96-97; K081, pp. 245-247; 

ME82, pp. 153-1601 PC-1 and PC-2 in conjunction with the key 

schedule of left shifts [DE82, pp. 96-97; K081, pp. 245-247; ME82, 

pp. 153-1601 to  turn the key into a modified key 

k : Z/16Z --+ A 

i.e. a list (k[O], k [ l ] :  . . . , k[15]) of sixteen 96 by 2 toroidal matri- 

ces This modified key k (which we will call a DES internal key) is 

formed from (the external key) c by means of sixteen pure diffusion 

operations 

$[i] : 2/962 x 2/22 --+ 2 /642,  

i E 2/16Z, and a constant matrix II E A so that 
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We thus write k as a 

k = (k[OI, k[lI 

ist 

. . . , k[15]) 

= (v * (TEo 4 [ 0 ] ) ,  v * ( K O  +[l]), . . . , u * (TI0 $[15])) 

of sixteen members of A.  The sixteen functions $ [ O ] ,  +[1], . . . , 4[15] 

are all naturally associated with a certain 48 dimensional vector 

subspace @ of A. 

The transition from % to  k by means of the initial key diffusion 

4[i] and the constant matrix w has no secrecy aspect. In other 

words % may be secret: but does not depend on m. Moreover none 

of u, 4[0], +[l], - . . , $[15] are either secret or dependent on m or 

k. 
- 

Z/  162 At this point we have m E A and k E A . With these 

seventeen 96 by 2 toroidal matrices of zeros and ones at  our disposal 

we can describe the 16-round internal structure of DES very simply. 

Note that everything done so far is possible without performing any 

rounds of the DES. It depends only on the message block m and 

the key x. 
The round [DE82, pp. 92-96; K081, pp. 240-248; ME82, pp. 

141-142, 156-1601 in DES is a map 

with the property that  the restriction pl of p to {f} x II is (well, 

amounts to, in the obvious fashion) a permutation of II for every 
f 
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matrix f E G. We can say, if we choose, that the round p of DES is 

a family 

P = { P I f :  f E @> 

of replacements of II- 
The round p can be further analyzed. In fact, 

p(., y) = u * (y 0 a )  + (o(z + 2, * Y)) 0 0 

for every 2, y E A.  Here the plus sign + denotes the natural vector 

space addition on the  vector space A.  Just add entrywise modulo 

2. The times sign * denotes entrywise multiplication (not matrix 

multiplication) of 96 by 2 toroidal matrices. The map 

a : A - + A  

is a replacement corresponding to the action of the S-boxes [DE82, 

pp. 92-96; K081, pp. 243-2441. The range C of n is a 64 dimensional 

vector subspace of the 192 dimensional vector space A .  The map 

is a diffusions, i.e. is a self-map of the 192-element set D of ordered 

pairs which constitutes the domain of a modified message m E A .  

The matrix u E A is a constant. 

Note, at  this point, that  this description of DES does not speak 

of 16 rounds. There is just the round p .  The round p is done sixteen 
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times in succession with (presumably) different input pairs. But it 

is just one map, not a list of 16 maps. It has no secrecy aspect. It 

does not depend on Wi or z. The action of DES in the key-setting 

Ic on the message m is thus 
- 

where 71 E A is a constant and 

Let us make this more explicit. 

toroidal matrices 

Start with three fixed 96 by 2 

u : D -+ 2 / 2 2  

w : D -+ 2/22 

w : D + 2/22 

These three fixed members of A can be viewed as nullary operations 

on A. There is one fixed replacement 

It can be viewed as  a unary operation on A. There are two fixed 

binary operations on A, namely 

t : A x A - + A  

* : A x A - + A  
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rhere are seventeen fixed initial diffusions 

T : D -+ 2/642  

4[0] : D -+ 2/642 

4[1] : D + 2 / 6 4 2  

q5[15] : D ---f 2 / 6 4 2  

There is one fixed terminal diffusion 

Note that the injection 7r-l is one of the many right inverses of the 

surjection T .  There are no left inverses of 7r. There is an internal 

diffusion 

a : D - + D  

which takes place internal to  the round. There are no confusions, 

i.e. no selfmaps of the alphabet 2 / 2 2  which are composed on the 

left of any symbols such as I c ,  %, m, m, u, v ,  w or a. We shall see, 

later that the diffusion a makes use of selfmaps of 2 / 2 2 .  However 

the 2/22 this self-map acts on is not the alphabet, but rather the 

second Cartesian factor in the Cartesian product 

Z/96Z x 2 / 2 2  = D. 

which constitutes the domain, not the codomain of a message. 

Hence these latter selfmaps are diffusions, not confusions. 
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To employ the c key-setting of DES on the plaintext message m, 
one proceeds as follows to  build a list of 17 members of A, followed 

by one member of 2 / 2 2  
Z/64Z 

401 = w * (mo 7 r ) ;  

411 = u * (401 0 a )  + (a(lc0 $[O] + * 4 [ 0 ] ) )  0 a; 

4[2]  = u * (411 0 a )  + (O(Z 0 4[1] + v * 4 [ 1 ] ) )  0 a ;  

q[16] = u * (q[15] o a )  + (o (E  o 4[15] + II * q[15])) 0 

- 
y = q[16] o .IT-' . 

4. The initial permutation I P  and its inverse 

Permutations will be written as products of disjoint cycles. For 

example 

is the function ,B such that: p(1) = 5; p ( 2 )  = 3; p(3) = 1; p(4) = 6; 

p(5) = 2; p(6) = 4; p(7) = 7; 

The initial permutation I P  [DE82, p. 921 can be factored 

1901 into disjoint cycles of lengths 1,2,3 and 6 in the [DA84, p. 

following fashion. 

I P  = n WI 7 
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where the product is over j E (0, 1 , 2 , 3 , 4 , 5 :  6 , 8 ,  10,11,13,18,21,42},  

and 

U[O] = (0 ,57 ,54 ,12 ,27 ,39)  

V[l]  (1 ,49 ,52 ,28 ,31 ,7)  

U [ 2 ]  = (2 ,41 ,50 ,44 ,26 ,47)  

U[3] = (3 ,33 ,48 ,60 ,30 ,15)  

V[4] = (4 ,25,55)  

U [ 5 ]  = (5 ,17,53,20,29,23)  

U[6] = (6 ,9 ,51 ,36 ,24 ,63)  

U[8] = (8 ,59,38)  

U[10] = (10,43,34,40,58,46)  

U[l1] = (11,35,32,56,62,14)  

1/”13] = (13,19,37,16,61,22)  

U[18] = (18,45) 

U[21] = (21) 

U[42] = ( 4 2 ) .  

[DA84, pp. 189-1911 contains a very complete discussion of I P  from 

a variety of viewpoints and we will not consider it further, other 

than t o  note tha t  (4),  (5) and (7) in [DA84! p. 1901 all express 

I P  and IP-’ in various ways in terms of 2 / 2 2  arithmetic, the 

group SYhf (Z/62)  of symmetries of a 6-member set, and GF(64) 
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arithmetic. 

5. The initial diffusions which turn a 64bit plaintext mes- 

sage block m into a DES internal message m. 

Let 

A = [2/96Z] ri [(1+ 3 2 )  U (0 + 122)  U (11 + l2Z)]  

= (0, 1,4,7,10,11,12,13,16,19,22,23,24,25,28, .  . . , 
67,70,71,72,73,76,79,82,83,84,85,88,91,94,95} 

D = 2 / 9 6 2  x 2 / 2 2  

Q = A x 2 / 2 2  

G = A x ( 0 )  

F = A x (1) 

L = [(2/962) n (I + 3 2 ) ]  x {I} 

X = ( 2 / 6 4 2 )  n (1 + 3 2 ) ]  x (1). 

Then: clearly, 

cardinality (.4) = 32 + 8 + 8 = 48 

cardinality (D) = 96 * 2 = 192 

cardinality (Q) = 48 * 2 = 96 

cardinality (G) = 48 * 1 = 48 

cardinality ( F )  = 48 * 1 = 48 

cardinality (15) = 32 * 1 = 32 .  
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We define Y : F -+ L by setting 

v(f)= f if ~ E F  

Y( (12t, 1)) = (12t - 2 , l )  

Y ( (  12t - 1 , l ) )  = (12t + 1,l) 

if t E 2/82. See Table 5.1 below. 

It is evident that  Y is a 3 to  2 surjection. We define several 

vector spaces over the field G F ( 2 )  = 2/22. Let 

D 
A = (Z /2Z)  

ll = { d  E A : d ( i , j )  = 0 if i @ A )  

r = iq  E 1~ q ( i , j )  = o if j # 01 
@ = { q  E IT : q ( i , j )  = O if j # 1) 

Thus 17 is the vector subspace of A consisting of all 96 by 2 toroidal 

matrices whose support is Q. Similarly is the vector subspace of 

IT consisting of matrices supported on A x (01, and SP consists of 

a11 matrices supported on A x (1) .  Also we need 

l? = { q  E I1 : q(12t - 2 , j )  = q ( 1 2 t , j )  and 

q ( I Z t  - I, j )  = q(  12t + 1, j )  for every t E 2, every j E Z> 

f ; = f I n r  
& = f i n @ .  

C,learly we have It = I? 8 @ and fir = f' @ 6. Table 5.2 below 

describes dimensionalities and subspace relationships among these 

7 vector spaces. 



306 

We also need the masks w,  u and which turn members of 4 

into members of II, r and Q respectively. The vector w E TI has as 

many entries equal t o  1 as a member of IT can have, i.e. 

w(zly) = 1 if ( z , j )  E A x 2/22 

= 0 otherwise 

Similarly u E I?, 

~ ( i , j )  = 1 if (i,j) E A x (0) 

= 0 otherwise 

and TJ E iD1 
u ( i , j )  = 1 if ( i , j )  E A x (1) 

= 0 otherwise 

Evidently 
u * v = o  

u * w = u  

u + v = w  

Also, for any d E A we have 

u * d = d + u ~ r  

We will set up a bijection between fI and the space of all 6Pbi t  

plaintext DES words. Then we will proceed in the spirit of [DA84] 
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and do all further DES operations in ll. The larger vector space 

A arises naturally from an attempt to  make the data expansion 

effected by the bit selection [DE82, p. 931 table E and the workings 

of the DES round more simple. 

The initial [K081, pp. 240-2421 permutation If' and the bit- 

selection [DE82, pp. 93-94] table E are two of the diffusions used to  

reformat a 64bi t  plaintext message block for internal use by DES. 

In the treatment below it will be part ofthe conversion of a plaintext 

message block 
2 / 6 4 2  m E ( 2 7 2 2 )  

into an internal DES message m E A. Tables 5.3 and 5.4 below give 

the values of 7 ,  F,  7 i ;  o T = o I P  o 5, 20 and m = zu * (FL o T). 

All of them are displayed as 96 by 2 toroidal matrices. 

The diffusion 

- / : D - D  

is the identity permutation of D ,  represented as a matrix. It is 

shown to give the reader a clear picture of where the (j,;)th entry 

of each of the matrices shown is located. The diffusion 

is a 3-to-1 surjection, represented as a matriu The map 
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is a member of A, and is represented as a matrix. The nullary 

operation (i.e. constant, or mask) w E A is represented as a matrix. 

The entrywise product 

p = w * (mo 7r) = w * (mo I P  or) 

is represented a s  a matrix. An entry of this matrix w * (m 0 T) 

must be zero if the  corresponding entry of w is zero. Other entries 

of w * (m o T )  can also be zero (for example the (0,O)th entry of 

w * (m o T) is zero if ~ ( 7 )  = 0). Its left column consists of the 

entries indexed by indices of the form ( 0 , j )  E D ,  and amounts to  a 

48-bit left-half word. Its right column consists of the entries indexed 

by pairs of the form (1,j) E D ,  and amounts to a 48-bit right half 

word. There are relationships among its rows. Thus 

row 0 = row 94 

row 12 = row 10 

row 24 = row 22 

row 72 = row 70 

row 84 = row 82 

also 

row 11 = row 13 

row 23 = row 25 
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row 35 = row 37 

row 83 = row 85 

row 95 = row 1 

Hence 32 of the rows of w * (=or)  determine all its rows. See [Dh84, 

pp. 191-1921 for an arithmetical description of the bit selection table 

E. Our approach is similar but we spread the bits of the initial 6 4  

bit message more uniformly through a larger array. 

We note that  ri- and T = I P  3 T are single matrices. But the 

collection 

{u; * (m 0 7;) : m E (z/2z)z’64z} 

is a 64 dimensional subspace of A .  
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v(0 , l )  = (94,l) 

v(1, l )  = ( 1 3 1 )  

v (4 , l )  = (491) 

4 7 , 1 >  = (791) 

v(10, l )  = (10,l) 

v ( l1 , l )  = (13,l) 

v(12,l) = (10,l) 

v(13,l) = (13,l) 

v(16,l) = (16,l) 

v(19,l)  = (19,l) 

v(22,l)  = ( 2 2 , l )  

v(23,l) = (25,l)  

v(24,l) = ( 2 2 , l )  

v(25,l) = (25,l) 

v(28,l) = (28,l) 

v(83,l) = (85,l) 

v(84,l) = (82,l) 

v(85,l) = (85,l) 

v(88,l)  = (88,l) 

v(91,l) = (91,l) 

v(94,l) = (94,l) 

v(95,l) = (1,l) 

Table 5.1. The 3 to 2 surjection v : F -+ L 
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space 

A 

rI 
fl 
r 
P 

6 
a) 

dimension 

of space 

at left space below? 

192 Yes 

Is the space at left a subspsce of the 

96 yes yes 

64 yes yes yes 

48 yes yes yes 

32 yes yes yes yes yes 

48 yes yes yes 

32 yes yes yes yes yes 

~ ~ ~ f i r f i a G  

Table 5.2 
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- - 
31 63 
0 32 
31 63 
0 32 
1 33 
2 34 
1 33 
2 34 
1 33 
2 34 
3 35 
4 36 
3 35 
4 36 
3 35 
4 36 
5 37 

26 58 
27 59 
28 60 
27 61 
28 60 
27 61 
28 60 
29 61 
30 62 
29 63 
30 62 
29 63 
30 62 
31 63 
0 32 

7: the  identity on D 

Table 5.3 

- 
7 6  
57 56 
7 6  
57 56 
49 48 
41 40 
49 48 
41 40 
49 48 
41 40 
33 32 
25 24 
33 32 
2.5 24 
33 32 
25 24 
17 16 

45 44 
39 38 
31 30 
39 38 
31 30 
39 38 
31 30 
23 22 
15 14  
23 22 
15 14 
23 22 
15 14  
7 6  

57 56 

; r = r ~ o . i r  



- 
E(7) E ( 6 )  
iE(57) M(56) 
E(7) E ( 6 )  
E(57) $56) 
E(49)  Z ( 4 8 )  
sFi(41) E ( 4 0 )  
E(49)  E ( 4 8 )  
E(41)  E ( 4 0 )  
E(49)  Z(48)  
%(41) E ( 4 0 )  
W(33) Ti(32) 
E ( 2 5 )  m(24) 
E(33)  E ( 3 2 )  
$25)  E ( 2 4 )  
Fi(33) E(32)  
Z(25)  K(24)  
E(17)  E ( 1 6 )  

$45) m(44) 
Z(39) E ( 3 8 )  
E ( 3 1 )  E(30)  
Z(39) m(38) 
Ti(31) E ( 3 0 )  
E(39) E(38)  
E ( 3 1 )  5130)  
m(23) m ( 2 2 )  
E ( 1 5 )  E ( 1 4 )  
E ( 2 3 )  m(22) 
m(15) m(14: 
E ( 2 3 )  E ( 2 2 :  
E ( 1 5 )  Ei(14: 
Ei(7) E ( 6 )  
K ( 5 7 )  E ( 5 6 :  - 
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1 1  
1 1  
0 0  
0 0  
1 1  
0 0  
0 0  
1 1  
0 0  
0 0  
1 1  
1 1  
1 1  
1 1  
0 0  
0 0  
1 1  
f .  . .  . .  
0 0  
1 1  
1 1  
1 1  
1 1  
0 0  
0 0  
1 1  
0 0  
0 0  
1 1  
0 0  
0 0  
1 1  
1 1  

- 

E ( 7 )  m(6) 
E(57) E ( 5 6 )  

0 0 
0 0 

E(49) .5(48)  
0 0 
0 0 

E(41) E ( 4 0 )  
0 0 
0 0 

E(33) E ( 3 2 )  
E ( 2 5 )  E(24)  
E(33) E ( 3 2 )  
E(25)  $24) 

0 0 
0 0 

E(17) E(16) 

0 0 
E ( 3 4 )  E ( 3 8 )  
E(31)  E ( 3 0 )  
Z(39)  E(38)  
Z(31)  $30) 

0 0 
0 0 

0 0 
0 0 

TE(l5) E(14)  
0 0 
0 0 

m(7) $6) 
m(57) E ( 5 6 )  

m(23) m(22) 

- 

w * ( ( m o I P o T )  

Table 5.4  
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6. The initial diffusions which turn a 64bit external key 

block into a DES list of k sixteen internal keys. 

The permuted [K081, pp. 245-2471 choices PC - 1 and PC - 2 

are initial diffusions which will be used in this paper to  help t u r n  a 

56 bit external DES key block 

into a list 

k = (k[O] ,  k [ l ] ,  . . . , k[15]) 

of sixteen internal DES keys belonging t o  the 48 dimensional vector 

subspace of t h e  192 dimensional vector space A. We will follow 

[DE82, p. 961 in regarding PC - 1 as an injection of the 56 member 

set 2 /642\X into a 64 member set 2/642 rather than as a per- 

mutation of the  56-member set 2 /642  \ X .  As always, however, we 

will follow [KO811 in starting our indexing with 0, rather than with 

1. The table of DES key schedule shifts also plays a part in the 

process of converting a conventional DES key into a list of internal 

keys. I t  is necessary t o  perform several successive diffusions on  a 

64-bit DES key c followed by an (entrywise) matrix multiplication, 

so as to produce an  “internal key”, i.e. a list 

of sixteen 96 by 2 toroidal matrices which will serve as key material 

in the internal format of the round structure of DES. For each i E 
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Z/16Z the internal ith key entry k[ i ]  will be a member of the 48 

dimensional vector subspace @ of the 192 dimensional vector space 

A of all 96 by 2 toroidal matrices over G F ( 2 )  = 2 / 2 2 .  

We start, therefore, with the DES internal key 

- - 
k = (x(O),z(l), . . . lc(63)) 

and recall that it belongs to a 56 dimensional vector subspace of the 

64 dimensional space of lists of 64 bits. This is because, as noted 

in Section 3, the bits k(7),k(15), . . . , k ( 6 3 )  are parity bits, whose 

values are determined by the other 56 bits of k, the bits indexed by 

members of 2 /642  \ X .  

- 

The index set: 2 / 2 8 2  x 2 / 2 2 ,  of the set of 28 by 2 toroidal 

matrices is important enough to have its own name. So we define 

J = 2 / 2 8 2  x 2 / 2 2  

And we recall, from Section 3, 

D = 2/96Z x 2/22?. 

The first diffusion applied to  x is 

y : J --+ 2 1 6 4 2 .  

The diffusion $ embodies the information contained in the permuted 

[DE82, p. 961 choice PC - 1. Once again [D484, pp. 195-1961 
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describes PC - 1 in arithmetic terms and points out its simple 

structure, which a reader can easily discover in $. The diffusion $J 

turns into a 28 by 2 toroidal matrix o 1c, over 2 / 2 2 .  

Then we have a list 

X = (X[O], A l l ] ,  . . . , X[15]) 

of diffusions 

A[;] : J --+ J 

each of which replaces this 28 by 2 toroidal matrix c o $ by a “left- 

shifted” version of itself (a phrase more faithful t o  the matrix pic- 

ture would be “Ferris-wheeled”) induced by the key schedule [DE82, 

p.961 of left shifts LS. The index set for the list X is, of course, 

Z/16Z. 

Once the 16 member list 

- (x 0 $ 0 x[O],x o 7L o X [ l ] ,  . . . , k o y o X[15]) 

of 28 by 2 toroidal matrices over 2 / 2 2  has been constructed it is 

necessary to use a last key diffusion 

to produce a list 

- 
( c o  y3 0 Xi01 0 s , x o  $J o X [ l ]  o s,. . . , k o  w o X[15] o c )  
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of sixteen 96 by 2 toroidal matrices over 2 / 2 2 .  This diffusion 5 

embodies all the information contained in the key [DE82, p. 971 

permutation PC - 2. Finally we must multiply (entrywise) each 

of these matrices by a “mask” matrix w which is zero in 144 of its 

entries, and has the value one only in those 48 entries corresponding 

to the 48 inputs t o  the S-boxes [DE82, pp. 92-97]. The matrix w 

is the nullary operation (mask) defined in Section 5 .  At this point 

we give the explicit characterizations of +, X and s. The toroidal 

matrices $ E (2/642)’ and s E J D  are shown in Figure 6.1. We 

have deliberately left three fourths of the entries of unevaluated 

(denoted by the sharp symbol #). Any one of them can have any 

value in J the reader desires (such flexibilitv may lead to some 

simplification). This is because a mask w will be multiplied by the 

matrix we are building and will leave only zeros in these places in 

anyway. 

For each i E Z/lBZ the diffusion 

is defined by setting 

A [ i ] ( a ,  b )  = ( a  + q i > ,  b )  > 
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where the 16-entry list t! of positive integers is given by 

These successive positive integers are just the successive partial 

sums of the numbers of left shift positions in [DE82, p. 961. Note 

that after 16 rounds the 28 by 2 toroidal matrix k o + has been 

rolled all the way around to  its original position, so that no reset is 

needed before encrypting the next DES message E in the same key 

Ic. Note the sum, a + .t(i), above. To show that it would be wrong 

to  use the difference, a - l( i>, we will work out Example 6.1 below. 

Sow it merely remains to  multiply by the mask v E @ so as to  zero 

out the whole left column (the entries with second index 0) as well 

as half of the right column of 

- 

o + o X [ i ]  o s. We thus have 

k [ i ]  = v * ( I c  o $ o A[;] o S )  

= II * ( ko  4[2]). 

Example 6.1: To verify that these diffusions actually faithfully 

represent the key schedule of DES let us follow kg ,  k44 and k29 

in Konheirn's [K081, p. 2471 notation. Because we have kept the 

parity bits in positions 7 modulo 8 we have the  correspondence 
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We verify that 

and that 

and that 

Hence 

and 
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= k29 

And this, of course, is what can be found in [K081, p. 247; as the 

beginning of the key used in the first round of DES. 
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- 5 6  6 2  
48 54 
40 46 
32 38 
24 30 
16 22 
8 14 
0 6  

57 61 
49 53 
41 45 
33 37 
25 29 
17 21  
9 13 
1 5  

58 60 
50 52 
42 44 
34 36 
26 28 
18 20 
10 12 
2 4  

59 27 
51 19 
43 11 
35 3 

4 

Figure 6.1 



Figure 6.2 

The top,middle, and bottom thirds 

of the 96 by 2 toroidal matrix g 



323 

7. The DES round p ,  in which an internal key k interacts 

with an internal message m. 

The DES wire-crossing [DE82, p. 93; K081, p. 2451 P and the 

selection [DE82, p. 941 functions, i.e. 5'-boxes [K081, p. 2443 are 

used in each of the sixteen actions of the DES round. We now see 

that an internal message m and an entry k [ i ]  of an internal key list 

k are members of A. In fact 

r n E f i C n S ~  

k [ i ]  E ch TI A .  

The round p of DES proceeds as follows. The mask v is such that 

Hence 

v * m + k [ i ]  E a .  

This vector TJ * m + k [ i ]  is input to the replacement 0 corresponding 

to the S-boxes [K091! p. 2441 and, after wire crossing [K081, p- 

245) and masking, comes out as a member S of p. Meanwhile u * rn 
(a member of f') is diffused by a column interchange to produce a 

member 8 of 6.  The matrix 

is the result of the round p. 
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We now carry out this process in detail. 

In detail the  process is as follows. Before the first action of the 

round p there is an initial internal message rn E TI. Clearly, then 

the (entrywise) product satisfies 

Also there is an entry k[O] of the internal key k .  It satisfies 

k[O] E a .  

Consequently their (entrywise) sum also belongs to  the 48 dimen- 

sional vector space a, i.e. 

We have a choice as t o  how we view the action of the S-boxes in the 

context of A. We can regard this action as a replacement of A (i.e. 

as a function with domain and codomain both equal to  A) which is 

independent of 144 of the 192 entries of a matrix 

w * rn + k[O] = y E A .  

We can also regard it as a function from @ to Q ,  to  be followed by 

a diffusion corresponding t o  wire crossing and interchange of right 

half and left half words. This latter approach seems more in keeping 

with the standard descriptions of DES and we will adopt it. 
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So we will start by writing 

@ = @[0] 8 @[1] @ . . . 6 @ [ 7 ]  

& = 4[0] 8 &[1] @ * . .  @ &[7] 

where each @[;I is 6 dimensional, each &[i] is a 4 dimensional sub- 

space of @";] and, in fact 

Q[O] = { t  E A : t ( i , j )  = 0 unless j = 1 

and i E (0, 1,4,7,10, ll}} 

&[O]  = { t  E @[O] : t ( 0 ,  1) = t ( l 1 , l )  = O} 

@[I] = {t E A : t ( i , j )  = 0 unless j = 1 

and i E {12,13,16,19,22,23}} 

&[1] = {t E @[l] : t (12 , l )  = t ( 2 3 , l )  = 0 }  

@[7] = { t  E A : t ( i 7 j )  = 0 unless j = 1 

and i E {84,85,88,91,94,95}} 

= { t  E A : t (84 , l )  = t (95, l )  = 0} . 6[7] 
The first (i.e. zeroth) S-box determines a map 

a[o] : @[0] + d[O] 

and similarly 
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for 0 5 z 5 7. We will not describe these individual S-box maps 

any further. The nonlinear heart of DES is thus based on the map 

Evidently the unary operation E is a replacement of a. Its working 

1s 

In other words each S-box works separately on its 6-bit input to 

produce its 4-bit output. 

The support of f E A is the 48 member set F ,  whereas the 

support of 5(f) E A is the 32 member subset L of F .  To turn the 

wire crossing [DE82, p. 93; K081, p. 2451 P to a diffusion which 

permutes L we introduce the permutation 

of 21322  where 

It is easy to see [DE82, p. 93; K081, p. 2451 that /-I embodies 

the post S-box wire crossing P and that we use it to produce the 

diffusion 

p : D + D  
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such that 

p(1 + 3 4  I) = (1 + 3p( i ) ,  1) 

if (j, k )  $2 L. After this we need the standard diffusion which splits 

L so as to cover F ,  i.e. the map 

defined in Section 5 above. 

We also need the "column interchange': (i.e. interchange of left 

and right half-words) diffusion 

since D = 2/96Z x 2 / 2 2  the addition takes place in 2 / 2 2  and 

amounts to the permutation (0,l) of the set (0:  l}. 

The round of DES thus takes m E A, and splits it into u*m E r 
and * m E @ in the sense that 
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u * m + u * m = (u + u) * m = m E A .  

Then k [ i ]  is added to u * m to yield 

k[ i ]  + li * m E CP . 

The replacement 5 : CP -+ @ is then applied to  yield 

F ( W  * m + k [ i ] )  E 

a ( k [ i ]  + 21 * m) E 

Then the two diffusions 

p : D + D  

v : f + L  

are applied to 2i(k[ i ]  + v * m) to yield 

a ( k [ i ]  + li * m) = (a(k[i] + u c m)) o p o v E I' 

and Q! is applied to m and to  a ( k [ i ]  + 21 * m) to yield 

m o a f A  

4q i ]+  21 t m) cr: E r 
Then rn o Q! is masked by u E to  yield 

u * ( m  0 a)  
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Finally, an addition produces 

u * ( m  0 a )  + (a(k[i] + 21 * m ) )  0 p 0 Y 0 a 

= u * (rn o a )  + a(k[i]  + u * m) 0 Q 

= P("1,4 * 

8. The terminal diffusion 7r-I which produces a cryptext 

message in 64-bit block form. 

The final [DE82, p. 921 permutation IP-' is one of the diffu- 

sions used to reformat an internal DES message after the sixteenth 

operation of the round so its to  produce a correctly formatted 64bi t  

cryptext message block. Consider the injection 

defined by setting 

- 
7r = ( I P ( 3 t  + 1) ,0)  

if 0 5 t 5 31, and 

7i-l = (IP-l(32 + 3t f l)? 1) 

if 32 5 t I 63. 

function on 2 /642 .  

It is easy to  verify that 7i o T-' is the identity 
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9. Recap of DES from the confusion/diffusion/arithmetic 

viewpoint. 

It is clear from the foregoing that DES used only diffusion and 

replacement, no confusion. We thus seem, on a superficial reading, 

to be a t  odds with [DA84, p. 1871 when those authors speak of “a 

representation of the DES as a cascade of substitutions and per- 

mutations.” But this surface appearance of conflict is only because 

they are using intuitively plausible terminology, whereas we have set 

confusion (hence substitution) in a rigorous context which banishes 

replacement (hence the action of the S-boxes) to the realm of arith- 

metic. This is, in turn, true because we have explicitly defined the 

alphabet of symbols which DES uses, namely the 2-letter alphabet 

( 0 ,  l} = GF(2)  = 2/22, 

and have, consequently been forced to choose 

as the set of letter positions in a 64bi t  “message”. The reader 

can object that  the alphabet could be taken as the set of all A = 

(Z/2Z)(Z’F4Z) 64bi t  words. But at that level DES would merely 

be a simple substitution cipher, and no deeper analysis would be 

callcd for. What about regarding DES words as lists of sixteen 
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4b i t  words, i.e. choosing 

P = Z/16Z 
2 / 4  Z 

A = (2/22) ? 

Neither we nor [DX84] have devoted any space to  explicit consid- 

eration of such a formulation of the DES, though it might prove 

interesting. 

Why didn’t its designers put any confusion into DES? For one 

thing, the alphabet A used by DES is the field 

A = GF(2)  = 2 / 2 2  

Since A has only 2 members, we see that SYM(A) has only 2 mem- 

bers, AA has only 4 members, and even 2 A X A  has only 16 members. 

A cryptosystem designer with only 16 confusion maps at his disposal 

doesn’t have much running room and might be inclined to  abandon 

the confusion approach for tha t  reason. He could, however, fall back 

on a large family (i-e. a family determined by a large index set I) 

A X A  f : I - + 2  

of binary relations on A = 2 / 2 2 .  One attractive possibility is 

a polyalphabetic substitution cipher in the sense made precise in 

[BL85, pp. 322-3261. 

Another reason for shunning confusion in DES could be tha t  

diffusion is cryptographically stronger, in a sense, on messages be- 

longing to  (2/22) , where G is a group of reasonably large order. 
G 
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Consider a known plaintext attack on a 16-alphabetic substitution 

cipher acting on 16 bit messages 

If the cryptext version of 

rn = ( 1,1,1,1,1,1) 1 ) 1,0,0,0,0)  0, 0 , 0 7 0) 

is m itself then all 16 alphabets have been recovered and the crypt- 

analyst has completely broken the cipher (i.e. has narrowed the orig- 

inal 216 possible polyalphabetic cipher keys down t o  1). But if she is 

dealing with a transposition cipher and finds that the above message 

m is encrypted as itself under the cipher, she has merely narrowed 

an original 16! possible cipher keys down to (8!)2 = 16!/12,870 

possible keys. So she has both a smaller reduction factor (12,870 

vs. 65,536) and a larger remaining collection of possible keys. 

The expansion of perspective in this paper from lists of 64 bits 

to members of the vector space A of 96 by 2 toroidal matrices over 

2 / 2 2  = GF(2)  simplified the description of the operation of the bit 

selection table E [DE82, p. 93; K081, p. 2423. Further expansion 

of the size of the vector space beyond 192 dimensions can be used 

to simplify the description of key diffusions and, perhaps, S-boxes. 

The question is where the optimum stopping place lies. This would 

be a vector space within which most operations are very simple, but 

yet a space not too large to  admit of manipulation by a cryptanalyst. 
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There are precedents for such an expansion of viewpoint in the 

success of tensor product methods in algebra and geometry. One ex- 

ample would be the use of multilinear maps on R" x R" x . . . x R" 

to define polynomial maps on R". It remains to be seen to  what 

extent a comparable approach will benefit cryptosystem design or 

cryptanalysis. 

By this time the general features of the confusion/diffusion 

arithmetic approach to  cryptography begun in (BL85b] are fairly 

clear. In DES we see quite a lot of simple arithmetic of binary 

operations (e.g., group addition modulo 2 or modulo 28, monoid 

multiplication modulo 2) and of nullary operations (such as the 

constant matrices u , u  and w belonging t o  the vector space A) as 

well as a little fancy (and expensive) arithmetic of unary operations 

(the map 0 corresponding to the S-boxes, some expansions and wire 

crossing) and a lot of diffusion. Most of our diffusions were, in fact, 

functions. Indeed most were either injections or surjections. 

We hope at this point, t o  have clarified for the reader all the 

wire crossings, tables, boxes, (so called) substitutions which are re- 

ally replacements, permutations which aren't really permutations, 

left shifts, schedules; half words (which are merely columns of ma- 

trices), blocks. 

Employment of the methodology of this paper makes it pos- 

sible to exorcise lugs, pins, rotors, shift registers, grilles, squares: 
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wheels, . . . from other well-known cryptosystems. Not that these 

notions have served ill up t o  now - after all, many of them have 

been, or even still are, physically present and functioning in our 

crypto boxes, or grilles, or spools, or . . . . It's just that they are 

too many, too baroque, too far from the silicon medium and too 

unlike the mathematical notions which both builders and breakers 

employ in their work on cryptosystems. Also, of course, they have 

an unnecessarily finitist influence on our ways of speaking (hence 

thinking) about cryptography. 

NSA Grant MCS 90483-H-0002 supported this research. 
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