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1. Introduction

Various methoda are being applied to design cryptographic systems.
There is, however, a cryptosystem class which can be defined by means
of peculiar algebraical structures. They are injected in a vector space
which is spanned over idempotent elementa of an algebraical ring.

The purpose of the work is presentation of mathematical tools which
may be adapted to project a wide class of cryptosystems. Let Zy be a
ring with addition and multiplication modulo N where K=pyeeep, and p;
is prime for i=1,...,n. Now, let us take into account an integer x€ 2y
Then, we can determine the sequence of integers in the form

(XI""’xn)’ : m
while x.=x (med p;) for i=1,...,n and pi;fpj for i#j. On the other hand,
we define the integer

ICM (X, »«,X, )=LCM (x, (O Py} yeee,x (mod p)) = [xy5 oee x5 (2)
where ICM stande for the least common multiple. The vector [[x1 ;...;xn]]
belongs to the ring ;._31 Zp. in which addition and maltiplication are
given ag follows: *

[xy500e5%,] + U_‘y1 ;...;yn]] =[If_'x‘+5,'1 (mod py)jeeeixy ty, (mod pn)]]

H:xl §oee ;xn:[] [y1 jeos ;yn] =[I:x1y1 (mr?d D) seeeixpy, (@mod pn):ﬂ
As is known [2], the rings Zy and 62 Zp_ are isomorphic, so

N n i=1 ¥i

N ie—-a1 ZPi
Example 1:
let us take into account the ring 230 and p1=2, p2=3, p3=5. If x=17,
then

x=[17 (mod 2);17 (mod 3);17(mod 5)] = [1;2;2] € Z35
The original value of x can be calculated according to the following
expresaion:
LM (1,3,5,7,9,11,13,15,17, 000 32,5,8,11,14,17,000 32,7,12,17,00. ) =17
For the elements x=17 and y=22, we can find

x+y = 17+22 = 9 (@od 30)=[1;2;2] + [0;1;2] =[1;0:4]

xy = 17-22 = 14(mod 30)=[1;2;2] [051;2]=[0;2;4]

n
From all elements of the ring @ Zp , we choose
i=1 i

e1=ﬂ__1;0;0; eee 3030]
ez':'[[O;l;O; ee. 30;0] (3)

.
en;[[O;O;O; eos ;0;1]]
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Vectors e; (i=1,...,n) are also called basic idempotent elements. They
have the following properties:
2
PRI. -\Vl_]- ey = e;
1= LI N 2 n
PR2. e1+:..+én = 1 (mod N)
PR3. 4 e.e. = O(mod N)
i, *9
i
PR4. x =H§r1 ;...;xr;ﬂ= i%x e; = :i:f x;e, (mod N)
PRS5. A sum of arbitrarily chosen basic idempotent elements is an
idempotent cne.

Example 2:

There are three basic idempotent elements in the ring 230, namely
e, =[1;0;d)= 15
e, =[0;1;7]= 10

e, =[o;0;1]= 6

2. Algebraical structure of public key cryptosystems

In this point, we present two public key cryptosystems, namely the
Rivest-Shamir-Adleman cryptosystem (RSA system) and the cryptosystem
based on the knapsack problem (llerkle-Hellman cryptosystem). Both
eryptosystems are being designed by means of suitable algebraic rings.

Authors of the RSA system [5] proposed the cryptographic functions
in the form
E (m)= o (mod N) (4)
Dy -(c)= oK (mod N) (5)
where m,c,k,k’ represent a message, a cryptogram, a public key, and a
secret key, respectively, and N=pissep, (pi are different primes for
i=1,...,n) determines the ring in which cryptographic transformations
are being carried out. In order to find the original message at the
receiver’s side, the following congruence must be fulfilled:

c

D, (c)= Dko(Ek(m)) = o= 0¥’ m(moa N) (6)
As a res'ult, we get the congruence in the shape
o 7V = 1 (moa N) 7

Transforming (7), we obtain
‘~1
ﬂ:mi;...;mt;nkk =[t5...51] (8)
Thus, we have the sequence of congruences given by

mikk "1 = 1(moa p;) for i=1,...,n (9)
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As is known (2], the sequence of congruences has a solution when

-VI- (e *=1) | (p; =1) (10)
1= seeyl
So the J!.nteéer (kk*~1) must fulfill the equation

kk’-1 = mu(p,—1,...,pn-1)-7t(m (1

Since, in the RSA system, the integer k is chosen randomly from all the
elements of set Zyr the integer k’ is calculated at the receiver’s side
according to the following congruence

Kk’ = 1(mod A (N)) (2)

Now, let us take into account an unauthorized user (UU) who
observes both a cryptogram and a public key, and additionally knows the
the cryptographic transformations and the value of integer N. When he
wants to obtain the mesasage from the cryptogram, he may employ two
approaches. The firat one relies on the factorization of N into primes
as the UU can find A(N)and finally decipher the cryptogrem, If the UU
additionally knows that n>3, then he may uase the Pollard method C4]) to
carry out the factorization of N. This method requires O(p ) elementary
procesaing operations where p is the smallest among all the primes pj,
i=1,.+.,n. Hence, in the RSA system, one chooses the integer N in the
form N=p, P, where Py and p, ere of the same order aince the Pollard
method turns out to be not efficient for N of the order of a decimal
integer composed of 200 digits. Thus, A (N) may be written as

A(M= 1M (p,-1,p,-1) (13)
At last, let us motice that difficulties in breakmg the cipher for the
RSA system result from the fact that the ring q; Z_ cannot be deter-
mined easily by the UU when he knows only the i=1 A ring Zye

We are now going to describe a cryptographic system that is based
on idempotent elements. This eryptosystem similarly to the Merkle-
Hellman system (1) (MH system) is used to encipher binary messages. Let
us assume that the initial condition of that system has been defined by
the choice of n primes Pyse+++sP, and let N=p,...p . Thus, in the ring

, there exist n basic idempotent elements of the form

e,=|[1;0;...;0] oo en=[0;0;...;1]
Similarly as in the MH system, we convert elements e; according to the
congruence

k; = eaa(mod q) 5 i=t,...,n (14)

where q> 15: e; (g is a prime), integer a is randomly chosen from the
=1

set Zq, end the sequence k= (k‘ sess,k ) represents the public key. At
the transmitter, there is generated a ecryptogram for a message m=



20

(m1 yoes il ). It is generated according to the expression
Zm k. §n: m; k.
=AY a5
where the subset {mi', J=1 ,...,u} is create arbitrarily by the sender.

(15)

At the receiver’s side, the cryptogram is processed as follows:

¢’ =c a”(mod q) (16)

Substituting (15} into (16) , we get

‘nglj l,] §1m e J\ (mod q) an
Since under the sign of absolute value, we may have both the positive
and negative values, we get two integers c” and ¢” obeying the
congruence (17}, where

e” = q - c’ (18)
Using ¢* and ¢*, we find two sequences

c’—r (cl""°’°r‘1) where c{ = ¢”(med py) ; i=1,...,n

c"—’(c{',...,cl;') where ¢ = ¢” (mod pi) 3 i=1,...,n
One of the sequences given ahove is the message we are looking for. As
it has been proved in (3], one can find such a transformation (14) that
cne of these sequences will alreedy be rejected at the beginning of
deciphering process.

It is noteworthy that the cipher considered is based, similarly to
the MH system, on the knapsack problem. Hence, it has advantages and
drawbacks similar to that system. Nevertheless, compared to the MH
system, the cryptosystem based on idempotent elements has two additional
advantages, namely it:

- decreases the redundancy of cryptograms,

-~ makes the knapsack problem much more difficult to solve.

We should also point to the flexibility of the considered system as it
allows to encipher messages represented not only by binary sequences.

Giving our attention to algebra:.c properties, we may state that
constructions of two rings ZN and eaz are kept secret since their
disclosure may allow to discover the clear message. In order to protect
the rings, we have injected idempotent elements into the field Z_.

Of course, the cryptosystem with idempotent elements can be treated
as modification of the MH cryptosystem. Nevertheless, considering these
cryptogystems, we may notice what influence over quality of a crypto-
system has determination of its algehralc structure. In the MH system,
a vector of integers (di,...,d ) (where Zd <d for j= 2,...,n)
creates the ipitial condition (the vector space) of the cryptosysten.
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But this simple vector space stands in the way of flexible creation of
cryptograms. Situation is quite different when we deal with the crypto-
aystem based on idempotent elements.

3. Algebraic structure of cryptographic transformations which preserve
arithmetic operations

In many situations, processing tasks may be performed using only
two elementary arithmetic operations (eddition and mltiplication).
Also input messages (integers) are required not to be accessible to the
UU while they are being not only transmitted over the channel but
processed in the computer system as well (see Fig.l) . So the crypto-
graphic transformation which preserves the arithmetic operations (also
called cryptomorphism) has to fulfill the following conditions:

i !
Terminal ; Channel X Computer
! :
Messages _| Enciphering - !
| System ] - ]
3 | i .
Key b | Cryptograms t Prog::lscmg
— | Decipbering : !
Final System ! !
Results | l

Fig.!. Application of cryptomorphisms

cl. 4 f@“m® ,k)= f@k) + (@7 ,X)

m°,meEM
c2. f(ma'm® k)= £(m’,k) - £(m™ ,k
m'_\?:"eu( )= £(@’,k) - £(@7 k)
C3. W , M f(am,k)= 4 £(m,k)
de?Z meM

for & fixed key x€X , where M,K and Z' are sets of measseges, keys, and
positive integers, respeetively, and f is a cryptomorphiasm. The
simplest form of such a cryptomorphism takes the shape

¢ = £(m,k)= mk G9)
while me M, kX €X, c€C (C is the set of cryptograma), and M,K,C< Zyg
(1¢=p1...pn ; p; ere primes for i=1,...,n and p;¥p, for i;fj). Moreover,
the key set is exclusively composed of idempotent elements of the ring

2y
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Example 3:
For the ring 212, the set of keys contains three elements, namely K=

{1,4,9}.

A key is an idempotent element of Zy 80 there are two integers No
end N' which fulfill the following congruences:

k = 0(mod N°) (20)

k = 1(mod ) @n
whereas N-NONx. As a result, we have that the cryptographic function
of deciphering system is determined by the formula

m= £ (c,k)= c(mod N') (22)
where meM, ¢<¢C, k€K, and k assigne one and only one value of Iﬁl1
while N is fixed. Furthermore, in order to find the correct message, it
has to fulfill inequality in the form

o<msN -1 (23)

H

Example 4:
Let the ring ZN be determined for N=3.5-7=105 and we assume that the
key k=1 (mod 3);0(mod 5);1(mod 7)] = 85(mod 105). If k=85, then N'=21.
Thus, for m=20, we have the cryptogram c=mk=1700. To obtain the
original message, we apply (22) as follows

m= c(md N)= 1700(mod 21) = 20

After having examined the cryptomorphism in detail, we cbtain their
properties as followa:
Pl1, For fixed ring Z N’ there ia one- to-one mapping between keys
(idempotent elementa) and pairs (N N ) s where N= =NOn'.
P2. The enciphering and deciphering transformations are defined
according to the following formulae:
f(m,k)= mk
£V (c,x)= c(mod N')
P3. For any message méZN, , there are m different cryptograms in
the shape
c=m+ £f(m”,k)
where m“+n”~ =m and m’=0,...,m~!
P4. If an integer m has its inverse o (m,m"ez ,), then
cryptograms of m and o satisfy the following congruence:
£(m,k) £(@”',k)= 1 (moa X')
Taking into account the properties, we can formulate four
restrictions which have to be imposed to ensure a correctness of
computations. Thesge are:
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Rl. All message which are neceasary to execute a program should

satiafy the inequality
0<{m¢N -1 ; mEM (24)

R2. A final result which would be obtained without using a
cryptographic protection also has to fulfill (24).

R3. The execution of & processing task must be possible using only
four basic arithmetic operations and all intermediate results
have to have the form of either integers or fractions.

R4. Cryptograms of a numerator and a denominator should be
determined when both the message and the anticipated final
result are fractions.

Example 5:
4+m

Suppose that the expression a= 5 should be calculated for m=3.
2m° -4
Of course, if we perform the calculations for clear message m=3, we

shall get @=0,5. Let us assume that N=3.5-7 and key k=LCM (1 (mod 3),
1 (mod 5) .O(mod 7)) =91, In order to simplify our computations, instead
of the cryptogram c=mk=273, we accept the cryptogram c=m’+m”‘k =2+91=93
for m +m” =3 a?'% m;)=2. Thus, we have (e’ 1)
+ + (a’,

f(a,k)= —;rl——: l:m,k)-‘; = 4. 2 = = W972 ri f(z”,k)
For cryptogram f(a’,k), we obtain the clear form of the numerator

a’=t"' (97,k)=97 (mod 15)=7
However, for f(a®,k}, we get

a”=£"" (17294,k)=17294 (mod 15)=14
Whence, we have the final result a=0,5. As any fraction can be presented
in different ways, apecial precautions should be undertaken in case of
fraction calculations. In order to illustrate difficulties, we take the
expresaion

£(a0)= {357 = 33w
After having deciphered cryptograms of the numerator and the denominator
we get the wrong final result.

4, Conclusions

Cryptograrhic transformations in public key cryptosystems depend on
determination of suitable algebraic structures. In the RSA system, such
a structure is defined by means of only two basic idempotent elements.
Next, in the cryptosystem with idempotent elements, the algebraic
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structure of a ring is based on many basic idempotent elements. Moreover,
the more idempotent elements are applied the higher quality of the
system (opposite to the RSA system).

Also, we have presented how an algebraic structure can be applied

for construction of cryptomorphisms. Cnly the simpleat case has been
considered and the cryptographic transformation relies on multiplying
a message by a cryptographic key which is an idempotent element. It is
possible to notice that cryptomorphisms can be defined by the aid of
a matrix of idempotent elements.
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