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1. Introduction 

Various methode a re  being applied t o  deeign cryptographic eyetern. 
There is, however, a crgptoayrrtem claes which can be defined by 
of  peculiar algetrraical  structures.  They are injected i n  a vector epace 
which is epanned over idempotent elements of an algebraical ring. 

The p rpose  of the work is presentation o f  mathematical tools  which 
may be adapted to project  a wide class of cryptoaystems. Let % be a 
ring w i t h  addition and multiplication modulo R where B p ,  .. .pn and pi 
is prime for i=l,...,n. How, l e t  us take into account an integer X E  + 
Then, we can detersline the sequence o f  integers in the form 

\ (1) 
while xi=x (mod pi) for i=l  ,..., n 
we define the in teger  

E Y ( x l , .  . . ,xn)=LCM(xt (mod p t )  .. . J x  U !mod pn)) = Kxl ; . ;.,I (2) 
*ere ICY atamie f o r  the l e a s t  common multiple. The vector Ex, ; .-.;x,J 

belong8 t o  the ring 

given ae fo l lows:  

(XI 9 ,x n; 
and pi#p. for Vj. On the other hand, 

J 

n 
@ Z i n  which addition and mult ipl icat ion a r e  

i = 1  P i  

@l;**.;xn] + ~ Y , i . . * i Y n ]  =pl+Yl(mod P~);*.*ixn+Yn(mod Pn)] 
p,;-..;x,ll p, ;...;Y,-J = p l y l  ( m p  P,) ;...;xJn(mod P n q  

AS is known C23, the rings $ and @ 2 are  isomorphic, 80 
n i = l  P i  

Example 1 :  
Let u8 take i n t o  account the ring ZJ0 and p1=2, p2=3, p3=5. If ~ 1 ' 7 ,  
then 

The original value o f  x can be calculated according t o  the f o l l o w i n g  
expression: 
LCM(l,3,5,7,9,11 p13,15,1'7,.*. ;2,5,8,11,14i17i=** ;2, '7,12,1'7,*** ) =17 
For the elements ~ 1 7  and y=22, we can find 

30 x=[Tl7(mod 2?;17(mod 3);17(mod 5)J  = [1;2;2] E z 

x+y = 17+22 = 9C-d 30)=u;2;2] + (r0;1;24 =@;0;41 
xy = 17-22 = 14(mod 30)=u ;2;24[0;1;2]=[0;2;4lJ 

n 
From a l l  elements o f  the ring 6 Z , we choose 

i = 1  P i  
e l = n ; o ; o ;  ... ;o;o] 
e - lo; i ;o;  ... ;o;ol] 2; (3) 

e '=~o;o;o; ... ;o;i] n 
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Vectors ei (i=l , . . . ,n) are also called baeic idempotent elemente. They 
have the following properties: 

2 -  PRI. ei - 
i=1 ,..., n 

PR2. el+ ...+ en = 1 (mod N) 
"i 

PR5* A sum of arbitrarily chosen basic idempotent elements is an 
idempotent one. 

Example 2: 
There are three basic idempotent elements in the ring Z30, namely 

el =EI;o;oJ= 15 

e3 =Ko;o;1]= 6 
e2 =[TO; l ;q J=  10 

2. Algebraical atructure of public key cryptosyatems 

In this point, we preaent two public key cryptosystema, namely the 
Rivest-Shamir-Adleman cryptosystem (=A eystem) and the cryptosystem 
based on the knapsack problem (Yerkle-Hellman cryptosystem)). Both 
cryptosystema are being designed by means of auitable algebraic rings. 

Authors of the RSA syetcm C53 proposed the cryptographic function6 
in the form 

c = % (m)= mk (mod N )  
m = D,.(C)= ck'(moci N) 

(4) 
( 5 )  

where m,c,k,k' represent a meseage, a cryptogram, a public key, and a 
secret key, respectively, and N=p l...pn (pi are different primes for 
i=l , . . . ,n) 
are being carried out. In order to find the original message at the 
receiver's side, the foll?wing 5ongruence must be fulfilled: 

As a result, we get the congruence in the shape 

determines the ring in which cryptographic transformations 

Dk(c)= Dke(%(ml) = c = me = m(mod N) ( 6 )  

m = 1 (mod N) (7) 
Transfoming ( 7 ) ,  we obtain 

Thus, we have the sequence of congruences given by 
[m, ;. . . ;mJ &'-I = @ ;  ...;In 

kk'-' = 1 (mod pi) for i=l ,..., n mi 
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Aa is known (21, t h e  sequence of congruences has a solution when 

i=l!...,n 
+ (kk'-l) (pi-ll (1 0) 

&'-I = L!X(pl-l ,-..,pn-l)=h(N) 

kk' = 1 (mod 2 (N)) 

So the in teger  ( a ' - 1 )  must f u l f i l l  the equation 

Since, i n  the RSA eystem, the integer  k is chosen randomly from a l l  the 
elements of  s e t  ZN, the in teger  k' is calculated a t  the receiver 's  a ide 
according t o  the  f o l l o w i n g  congruence 

(1 1) 

0 2) 
NOW, l e t  us t e e  i n t o  account an unauthorized user (w) who 

observes both a cryptogram and a public key, and additionally knows the 
the cryptographic transformations and the value o f  integer N. When he 
wants t o  obtain t h e  mesaage from the cryptogram, he merg employ two 
approaches. The first one r e l i e s  on the factor izat ion of N in to  p r b e S  
a s  the W can find A t N I a n d  finally decipher the cryptogram. If the UU 
additionally knows that n 2 3 ,  then he may uae the Pollard method c41 t o  
carry out the f a c t o r i z a t i o n  o f  N. This method requires O(p4) elementam 
processing operations where p is the smallest among a l l  the primes p i t  
i=l,...,n. Hence, in the RSA syatem, one chooses the integer N in the  
form N=p,p2 where pl and p2 a r e  of the same order since the Pol lard 
method turns  out t o  be not e f f i c i e n t  for N of  the order o f  a decimal 
integer composed of 200 d i g i t e ,  Thus, A (N) may be wri t ten as 

A t  laat, l e t  us  n o t i c e  that d i f f i c u l t i e s  i n  breaking the cipher f o r  the 
n 

RSA system r e s u l t  from the  f a c t  tha t  the r ing @ 2 
mined eas i ly  by the UU when he knows only the 

on idempotent elements. This cryptosystem similarly t o  the Merkle- 
Hellman system C13 (1w system) is used t o  encipher binary messages. Let 
us assume that  the i n i t i a l  condition of tha t  system has been defined by 
t h e  choice of  n primes p1 ,..., pn and l e t  N=pl ...pn. Thua, i n  the ring 
&, there e x i s t  n basic idempotent elements o f  the form 

1 

h (N)= LCM (pl -1 , p2-1) (1 3) 

cannot be de ter -  
ring ZNe 

We a r e  now going t o  descr ibe a cryptographic system t h a t  is based 

i = 1  P i  

I 5  

el=E;O; ...; 01 ... en=[o;o; ...; 11 
similarly a s  i n  the  YM system, we convert element8 ei according t o  the 
congruence 

ki = e.a(mod q) ; i = l , .  . . ,n 
A 

where q >  2 ei 

s e t  Z 
the t ransmit ter ,  t h e r e  is generated a cryptogram for a message m= 

(q is a prime), integer a is randomly chosen from the 

repreeents the public key. A t  
i= 1 

and the aequence k=(kl ,. ..,kn) Q' 
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(ml , . . . ,mn). It is generated according t o  the expression 

where the subset  (mi ; j=l,...,u} is create  a r b i t r a r i l y  by the sender. 
J 

A t  the receiver 's  s i d e ,  the cryptogram is processed 

Substi tuting (15) i n t o  (161, we ge t  
c 0  = c a-' (mod ql  

as follows: 
(1 6 )  

Since under the sign o f  absolute value, we may have 
and negative va lues ,  we get t w o  integers  c ' and c * 
congruence ( I " ) ,  where 

c O *  = q - c 0  

Using c and c 0' , we find two sequences 

both the p o s i t i v e  
obeying the 

cO-+  (c,', .,.,cI;) 
c"+ (c,'~ ,... ,c") n 

where c i  = c'(mod pi) ; i = 1 ,  ..., n 
where c< = c "  (mod pi) ; i = 1 ,  ..., n 

One of the sequences given above is the message we a re  looking for. Ae 
it  has been proved in C33, one can f ind such a t r ans fo rmt ion  (14) that 
one of these sequences w i l l  already be rejected a t  the beginning of 
deciphering procese, 

the MH system, on the knapsack prohlem. Hence, it has advantages and 
drawbacks similar t o  t h a t  system. Nevertheleas, compared t o  the YPI 
system, the cryptoaystem based on idempotent elements haa two a d d i t i o n a l  
advantagea, namely it: 

It is noteworthy that the cipher considered is based, s imi l a r ly  t o  

- decreases the redundancy of cryptograms, 
- makes the knapsack problem much more d i f f i c u l t  t o  solve. 

We should el80 point t o  the f l e x i b i l i t y  o f  the considered system a8 it 
allows t o  encipher messages represented not only by binary sequences. 

Giving our a t t e n t i o n  t o  algebraic properties,  we may state that 
constructions of two rings Z aod &Z are  kept secret  s ince their  
disclosure may a l l o w  t o  discover the c l e a r  message. I n  order t o  p ro tec t  
the rings, we have i n j e c t e d  idempotent elements i n to  the f i e l d  Z 

Of course, t h e  cryptosystem with idempotent elemente can be t r e a t e d  
aa modification o f  the MH cryptoaystem. Neverthelese, considering these 
cryptosystem, w e  may no t i ce  what influence over qual i ty  of a crgpto- 
system has dete-tion o f  i ts  algebraic,  structure.  In  the ?dl3 system, 
a vector of i n t e g e r s  (dl , .. . ,dn) (where '2 d .  <a .  for j=2,. .. ,n) 
creates  the i n i t i a l  condi t ion (the vector space) o f  the cryptosyatem. 

i=l P; 

Q. 

i = t  1 J 
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But thie simple vector apace stands in the way of flexible creation of 
cryptogram. Situation ie quite different when we deal with the crgpto- 
system based on idempotent elemente. 

3 .  Algebraic structure of cryptographic transformatione which preseme 
arithmetic operations 

In many situations, proceasing tasks q be performed us- O* 

two elementary arithmetic operationa (addition end multiplication). 
Alao input mesaages (integers) are required not to be accessible to the 
UU while they are being not only t r w t t e d  over the channel but 
processed in the computer eyetem as w e l l  (see Pig.1). So the crypto- 
graphic tran8formation which preserves the arithmetic operationa (ah30 
called cryptomorphiam) ha8 to fulfill the fouowing  conditions : 

C1. % f(m'+m' ,k)= f (m',k) + f [Inm ,k) 

C2. ,+ f (m8m8' ,k)= f(m',k) * f (mc ,k) 
m ,m"'EY 

m ,m"EY 

for a fixed key k € K  , where Y,K and Z' are sets of meeseges, keye, and 
positive integers, reapeetively, and f is a cryptomorphian. The 
sbpleet form of such a cryptomorphiam take8 the shape 

0 91 
while mEY, k E K ,  c E C  (C ia the set of cryptogrsuw), and Y,K,CC% 

(=p1...pn ; pi are pr-e f o r  i=l,...,n and p - ~ p .  f o r  izj). IgoTemer, 
the key set is exclueively compoaed of idempotent element8 of the 

=N 

c = f (m,k)= mk 

1 J  
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&ample 3: 
For the ring Z12, the set of key8 contain8 three elements, namely K= 
{I ,489). 

A key is an idempotent element of ZN so there are two integer8 ff 
1 and N which fulf i l l  the following congruencea: 

k = O(mod No) (20) 
k = 1 (mod IT1) 

m = m-'(c,k)= c t m d  N') 

(21) 

(22) 

whereas N=NoN' As a result, we have that the cryptographic function 
of deciphering system is determined by the formula 

1 where m E Y ,  c GC, k E K, and k asaigna one and only one value of N 
while N is fixed. Furthermore, in order to find the correct meeeage, it 
has to Fulfill inequality in  the form 

0 S m  < N1 -1 123) 

Example 4: 
Let the ring % be determined for N=3.5.7=105 and we assume that the 
key k = u  (mod 3) ;O (mod 5 )  ; 1 (BWI ?)a = 85(mod 105). If k=85, then N1=21 
Thus, for m=20, we have the cryptogram c=mk=1700. To obtain the 
original mesaage, w e  apply (22) as f o l l o r e  

m = c(mod R1)= 1700(mod 21)= 20 

After having examined the cryptomorphiam in detail, we obtain their 

P1, For fixed ring Zg, there is one-to-one mapping between keys 

P2. The enciphering and decipherbg transformation8 are defined 

properties as P o l l a r s  : 

(idempotent elements) and paire (N 0 1  ,N ) , where N=No". 

according to the following formulae: 
f(m,k)= mk 
f-l(c,k)= c(m0d N1) 

N' ' P3. For any mesaage m E 2 there are m different cryptogram in 
the shape 

where m'+m"' =rn and mO=O, .  . . ,m-l 
cryptograms of m and m-' satisfy the following congruence: 

c = m'+ f (m",k)  

P4. If an integer m has its inverse m" (rn,m-'EZ 1), then 
N 

f(m,k) f(m-',k)= 1 (mod N1) 
Taking into account the properties, we c a n  formulate four 

restrictions which have to be imposed to ensure a correctness of 
camputations. These are: 
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R1. All message which are necessary to execute a program should 
satisfy the inequality 

1 

R2. A final reeult which would be obtained without using a 
cryptographic protection also has to fulfill (24). 

R3. The execution of a processing task must be possible using O n l y  

four basic arithmetic operations and all intermediate results 
have to have the form of either integers or fractions. 

R4.  Cryptograms of a numerator and a denominator should be 
determined when both the message and the anticipated final 
result are fractions. 

( 24) O < m < N  -1 ; m E M  

Example 5 :  
Suppose that the expression a= - 4+m 

Of course, if we perform the calculation8 f o r  clear message m=3, We 
shall get a=0,5. Let us assume that N=3.5.7 and key k=LCM (1  (mod 31, 
1 (mod 5) ,O(mod 7)) =91. In order t o  simplify our  computations, instead 
of the cryptogram c=mk=273, we accept the cryptogram c=m'+m*'k =2+91=93 

should be calculated f o r  m=3. 
2m2-4 

- ,- . - I  

2 P(m,k)-4 
For cryptogram f(a',k), we obtain the clear form of the numerator 

However, for f (a ",k), we get 

Whence, we have the final result a=0,5. As any fraction can be presented 
in different ways, special precautions ehould be undertaken in case of 
fraction calculations. In order to illustrate difficulties, we take the 
expression 

After having deciphered cryptograms of the munerator and the denominator 
we get the wrong final result. 

a0=f-'(97,k)=97(mod 15)=7 

a " =f'l (1 7294, k) = I 7294 (mod 1 5) = 1 4 

f ( a , k ) =  9& = ~& 

4. Conclusions 

Cryptographic transformations in public key cryptosystema depend on 
determination of suitable algebraic structures. In the RSA system, such 
8 structure is defined by means of only two basic idempotent elements. 
Next, in the cryptoayatem with idempotent elements, the algebraic 
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st ructure  o f  a ring is based on many basic idempotent elements. Moreover, 
the more idempotent elements a r e  applied the higher qual i ty  o f  the 
system (opposite t o  the  RSA system). 

Also,  we have presented how an algebraic s t ructure  can be appl ied 
for construction of  cryptomorphisms. Only the simpleat case has been 
considered and the cryptographic transformation r e l i e s  on multiplying 
a meeeage by a cryptographic key which is 8.u idempotent element. It is 
poesible t o  no t i ce  that cryptomorphisms c a n  be defined by the a i d  of 
a matrix of idempotent elemente. 
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