
ON THE USE OF THE BINARY MULTIPLYING CHANNEL IN 

A PRIVATE COMMUNICATION SYSTEM 

8. J.M. Srnects 
Depar tment  o f  Computer Engineer ing  

U n i v e r s i t y  o f  Lund 
P.O. Box 7 2 5 ,  S - 2 2 0  0 7  LundISWDEN 

A b s t r a c t .  A n o v e l  c r y p t o s y s t e m  i s  p r e s e n t e d  i n  which t h e  
p r o t e c t i o n  o f  t h e  messages  i s  based  on t h e  s p e c i a l  p r o p e r t i e s  
o f  t h e  b i n a r y  m u l t i p l y i n g  c h a n n e l .  I n  t h e  system t h e  receiver  
i s  m a i n l y  r e s p o n s i b l e  f o r  t h e  p r o t e c t i o n  o f  t h e  messages 
and n o t  t h e  t r a n s m i t t e r .  I n  t h e  paper  a smal l  a r e a  network 
r e a l i z a t i o n  w i t h  a b i n a r y  m u l t i p l y i n g  channel  i s  d i s c u s s e d .  

The research w a s  supported in part  hy the National Swedish Board f o r  
Technical Development under grants 81-3323 and 833364 a t  the University 
of Lund. 

T. Beth, N. Cot, and I. Ingemarsson (Eds.): Advances in Cryptology - EUROCRYPT '84, LNCS 209, pp. 339-348, 1985. 
0 Springer-Verlag Berlin Heidelberg 1985 



340 

1. Intmduction. 

In this paper a novel cryptosystem w i l l  be discussed that is based on a special two-way 

communication channel, i.e. the binary multiplying channel (BMC). New in this system is 

that the task o f  protecting the messages is mainly one for the receiver. This in contrast 

wi th  the classic cryptosystems where the transmitter has this task. The receiver in a 

classic cryptosystem must know the key used by the transmitter in order t o  be able t o  

invert the encryption mapping. The f a c t  that keys must be shared causes great pract ica l  

problems since pract ica l  classic cryptosystems require large keys [11[3L[4]. One o f  the 

reasons for using large keys is the f a c t  that the encrypted message is publicly known 1111 

When a BMC is used in a communication system it w i l l  be possible to  real ize the 

protection o f  the messages in a simpler way. I n  Section 2 the problem o f  the construction 

of communication strategies for the BMC wi l l  be discussed without considering the security 

aspects. Though recently there has been much progress in  solving this problem [7&[8$ the 

actual construction of communication strategies for the BMC requires some ad-hoc 

solutions. I n  Section 3 the special aspects of security are discussed when the BMC is used 

in a communication network. Furthermore a communication strategy is presented that 

provides a good protection o f  the messages sent via a network. In the last section an 

application o f  the new system is discussed. 

2. Coding strategies for the BMC. 

Consider the communication situation given in Fig. la. Two messages ml and m2 are t o  

be transmitted over the binary mult iplying channel. The BMC is a deterministic two-way 

channel w i th  two binary inputs xl and x2 and a binary output y=xlx2E{0,11, xi€{O,l}, i=1,2. 

A simple realization o f  the BMC is given i n  Fig. Ib. 

Y 

Fig. 1 The 6 M C  in a two user communication network and 

a wired-and realization of the BMC. 

To meet our later requirements and i n  order t o  keep the codes quite simple we assume 

that 

a) the messages mi, i=1,2 are taken f rom a f ini te set 
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of messages M={0,1, ..., m-11, and that 

th’e encoders and decoders are pairwise identical. b) 

Furthermore we assume that  

c) the messages ml and m2 are uniform and independently distributed. 

Consider the situation where each terminal has chosen a message; say terminal  1 has 

chosen ml and terminal  2 has chosen m2. The terminals start t o  communicate via the BMC 

in order to  determine the messages chosen by their opponents. For that purpose they both 

use a set o f  rules. All these rules together make the encoder and the decoder. In the 

sequel the encoding rules w i l l  be called a coding strategy. I f  the reconstructed message 

m.=m. for a l l  sended messages mi, then one calls the coding strategy complete. A complete 

coding strategy satisfying a) and b) is refered to  as a symmetric discrete complete coding 

strategy; a SDC-strategy for  short. I f  a coding strategy also optimizes the average 

transmission rates R12 and R then the coding strategy is called optimal as well. Here is 

RIZ:=n I(M1;Y IM2) and R2,:=n I(M2;Y I MI), i.e. the normalized average mutual information 

between m1 and y when m2 is known and the normalized average mutual information 

between m2 and y when ml is known, respectively; n is the average number of 

transmissions. The general problem of determining the region of rate pairs (R12,R21) where 

reliable communication is possible, i.e. the capacity region, C(BMC), of the BMC has been 

studied fo r  more then two decades [2]. Recently it has been shown by Schalkwijk E6l that  

the achievable ra te  region as discussed in [7] is indeed C(BMC). His coding scheme i s  

however not constructive and therefore some coding strategies w i l l  be discussed in this 

section. Note that in the case o f  a SDC-strategy one has R 

I 1  

-1 21-1 

1 2=R21 - 
Based upon ideas given in [5] there exists a convenient method for representing the 

coding strategies. L e t  (ml,m2)E MxM, the Cartesian product of the message sets, and l e t  US 

further associate a unit-square w i t h  each message pair (m m ). Then one can imagine 

regions, clusters o f  unit-squares, in a mxm square of possible message pairs in which the 

actual message pair has to  lie. The coding strategy is used in successive transmissions t o  

part i t ion these regions into smaller sub-regions unti l  at both sides of the channel the 

position of the message pair in the m x m  square is unambiguously known. 

1’ 2 

For  example, consider the case M= {0,1,2,3 1 .  The channel input x. for  the f i r s t  

transmission i s  taken 1 if mi=O,l or 2 and 0 i f  m.=3, i=1,2, see Fig. 2a. The result of the 

f i rs t  transmission w i l l  be y -1 if x1=x2=1 and y -0 otherwise, Fig. 2b. Note tha t  one has 

obtained two regions. One characterized by yl=l and one characterized by yl=O. Suppose 

that yl=l has been received. The fact  that both terminals know that yl=l is used in the 

second transmission. The channel inputs for  the second transmission are taken 1 if mi=O,l 

and 0 if mi=2. I f  y2=0 is received then one knows that (m,,m2)E~(2,0),(2,1),(2,2),(1,2),(0,2) 1- 
Since the correct message pair cannot be determined at  this stage of the transmission 

session one eontinues by sending a 1 if mi=1,2 and 0 i f  m -0. Suppose one has received 

y3=0, then one has (m,,m2)EC(2,0),(0,2)}. Now it is possible for the terminals t o  remove the 
remaining ambiguity by taking the i r  own messages into account. Hence the transmission 

I‘ 

1- 1- 

i- 



342 

session is finished. Fig. 2c gives a complete coding strategy for the 4x4 square. 

011 010 .001  000 
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Y - 0  Y - 1  Y - 1  Y - 1  

Y=O Y - 1  Y - 1  Y - 1  

- 3  

2 

1 

0 

m , 3  2 1 o m , 3  2 1 0 m 1 3  2 1 0 
x , o  1 1 1 

Fig. 2 A coding strategy for the 4x4 square. 

The transmission rates RI2 and R2, are easily calculated by exploiting condition c). I f  

w(m,=i,m,=j) denotes the number o f  transmissions required to  determine the message pair 

(i,j) in the mxm square and W is the average o f  w over a l l  message pairs then 

R1 2=R2, =H(Ml)/w=.593 bi ts  per transmission. Here is H(Ml) the average binary entropy of 

the messages ml. Note that  RI2=Rz1>.5 bits/tr, hence the rate pair (R12,R21) l ies outside 

the time-sharing region !. Larger instances of m have been studied by Post and Ligtenberg 

[El. They looked for methods t o  construct high rate coding strategies. 

Some comments should be made concearning the message pairs and the corresponding 

y-sequence entries in the m x m  square, Fig. 2c. Let  S ( x )  denote the number o f  message 

pairs that have y as the y-sequence entry in  the mxm square. Then the following holds for 
a l l  SDC-strategies. 

Proposition 1 If y is a y-sequence entry corresponding with (rnl,m2), 

then S(y)=l <=> m -m 1- 2' 

From the above follows instantaneously. 

Corollary There are m different message pairs for which S(y)=l. 

The proof is given in the appendix. 

3. The BMC and private mmmcmication. 

I n  this section a communication network is considered that uses a BMC. Recall ing the 

realization in Fig. I b  i t  is clear tha t  the channel outputs y are public in  a communication 

system in which several terminals are connected; see Fig. 3. In such a system 

communication is considered to  take place between two terminals at the same t ime  while 
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I ,  I 
i + l  

the other terminals cannot interrupt. 

I I 
13.2 14-3 

Fig. 3 A communication system with a BMC. 

Like in  other communication systems i s  jamming a severe threat t o  our system. 

However, here we w i l l  only consider a wire tapping attack of an "unfriendly" terminal. 

Therefore we w i l l  look a t  how much information the wire tapper gets by looking a t  the 

channel signals y. The worst t ha t  can happen is that during a message transfer one 

terminal is always a receiver since there is no rea l  difference between the legal receiver 

and the wire-tapper. Assume for  the t ime being that messages are only sent f r o m  one 

terminal to another. Without loss o f  generality we may assume that terminal 1 sends t o  

terminal 2. Communication is to ta l ly  insecure i n  the system. I n  order to  disturbe the 

channel signals terminal  2 starts t o  transmit randomly chosen messages. From Section 2 it 

is clear that the wire tapper knows immediately the correct (message,noise message) pair if 

the noise message was equaI to  the message m, at  terminal 1. Is however the noise 

message m2+ml then .%$>I, where y is the y-sequence produced by (ml,m2). These 

observations are now t o  be analysed under the conditions a) and b) in Section 2. 

Le t  p.. denote the probabil ity t ha t  message j is chosen at terminal i, i=1,2. Assume that  

p..>O for a l l  j=O,l ,  ..., m-I, i=l,2,and le t  m, and m2 be independently chosen f rom the 'I 
message set M. Using proposition 1 of the previous section we obtain the average 

probability of correct interception, P. 

'I 

by the wire tapper: 
tnt' 

m- 1 m- 1 
P in t=  z p r ( y ) =  t p r ( m l = i , m 2 = i ) =  z plipZi. 

S(Y)=I i =O i = O  - 

It can be shown that  

Proposition 2 If the messages are chosen independently from the set M and none Of  the 

messages has probabil ity zero, then the receiver can make the probability o f  interception 

'int - < l / m  for all SDC-strategies for the  BMC, (see appendix). 

A t  this point one could stop and use the coding strategies of the type discussed in 

Section 2. However, note that if S(y)>l then the message pair (m,,m2) is not  unambiguously 

determined by y , hence H(Mily )>O. Therefore coding strategies that obtain higher values 

for S(41) then those o f  the previous type are of interest. In  Fig. 4 such a coding strategy is 

- 
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given for the 4x4 square. The transmission rate of this coding strategy is less (.57 
bitshansm.1 than of the one shown in Fig. 2c. However, the new coding strategy has a 

y-sequence for which S(y)=4. - 

al 
m2x2 
3 0  

2 0  

1 1  

0 1  

b )  
m2 
3 

2 

1 

0 

cl 
0101 0100 0001 

0100 011 oooc 

00010000 i01 FEE 0000 001 I 0 0  

m , 3  2 1 0 m , 3  2 1 0 m , 3  2 1 
x , o  0 1 1 

Fig. 4 An alternative coding strategy for the 4x4 square 

f 1 

0 

0 

For both the coding strategies, Fig. 2c and Fig, 4c, the average conditional entropias 

H(M, I yl, ...,y k) have been calculated. Here denotes yl, ...,yk the f irst k y-signals obtained by 

using a given strategy. In Fig. 5 these calculations are summarized. One sees tha t  the 

coding strategy o f  Fig. 4c is better from a security point o f  view. 

1 2 3 4  
k ( t ransrn) 

r e f .  F i g . 4 ~  r e f .  F i g . 2 ~  
2 - 

Y 
>. 

I 

" 
1 2 3 4  
k (transrn) 

Fig. 5 The average conditional entropies H(M I yl, ...,y k) 

of the coding strategies o f  Fig. 4c and Fig. 2c. 
1 

: y - I  
: v = o  

The coding strategy given here can be regarded as a generalization o f  a code given by 

Hagelbarger [21 From the successive squares shown in Fig. 4 it is not d i f f icu l t  t o  see how 

one should proceed t o  construct structural equivalent coding strategies in cases where 

m=2",n=I ,2,3 ,.... 
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4. &tical consideratims. 

In many practical  si tuations t h e  number of correct intercepted messages will be  too high. 
Especially, this will b e  the  case if t he  source statist ics are such tha t  there  is  a high 
probability of having S(y)=I. In such a case one should try to  obtain a more uniform 

probability distribution of t he  message pairs. If condition c) is satisfied one needs only t o  

take a large value of m t o  lower Pint. If this is not satisfactory one could think of using 

one of the following solutions t o  the problem. First  one could sti l l  use some classic 
cryptosystem to  encrypt  t he  messages. This cryptosystem could be quite rudimentary since 

most of the encrypted messages cannot  be correctly intercepted. For the  same  reason t h e  

use of source encoding would be  a solution too. A different type of solution would be  t h e  

use of a randomly determined permutation. Suppose the two communicating terminals will 

not s t a r t  with communicating their  messages but they will send randomly generated 

messages first. If at a ce r t a in  moment  enough, say N, noise pairs are generated f o r  which 

S(y)>l (or maximal), t hen  these noise pairs determine a permutation of the messages. If t he  

probabilities pr(ml=i,m2=i) are t h e  s a m e  for all values of iEM, i t  will be difficult for a 
wire-tapper to  reconstruct  this permutation. 

- 

Besides the listen-only a t t a c k  and t h e  problem of jamming, there are  some o the r  severe 
attacks on a network such as t h e  one given in Fig. 3. If an at tacker  splits t h e  network 

into two groups he  will be able  t o  monitor all communications between t h e  groups. 
Furthermore if two a t t acke r s  work closely together they can in principle tap t h e  "wire" by 

comparing the t iming of t he  signal pat terns  at different points. Therefore the channel itself 

must be well protected t o  provide security. 

5. Conclusions. 

The binary multiplying channel has interesting properties for use in a private 

communication system. First ,  one can  send with a total  average transmission rate which is 

larger than 1 bit  pe r  channel use. Furthermore, in a communication system t h a t  uses a 
BMC the protection of t he  messages can be realized by the receiver. Therefore the re  is  no 

need to use keys when protecting t h e  messages. However, keys might be used t o  solve the  

problem of determining the authenticity of the user. 
A "wired-and" realisation o f  t h e  BMC gives the opportunity to  construct a small 

communication network t h a t  is well protected against tapping. In general, the  security of a 
communication network t h a t  uses a BMC requires saveguarding of the channel itself against  

attacks. 
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Appendix. 

Consider a SDC-strategy fo r  the coding o f  a mxm square. The condition that  the 

strategy is complete is here reformulated as having H(Mi;ylm.)=O, i,j=I,Z, i+j, for  a l l  

possible y-sequence entries in a completed square. 
I 

k 
Le t  y (m ,m2) denote the y-sequence yl, ...,yk produced by the message pair 

(ml,m2) E M up t o  the k- th  transmission. Furthermore denotes yC(m ,m ) the y-sequence 

obtained by using (rn,,rn2) when the communication i s  completed. L e t  E(ml ,yk(ml,m2)) 

denote the encoding of message ml a f te r  receiving y (m ,m 1. 

1 2  

k 
1 2  

Lemma 1 L e t  m rn rn m E M. Assume that yC(m m )-yC(m m ) and x ~ , ~ ,  ..., x are 

those by using (mj,m4). If 
1’ 2’ 3’ 4 1’ 2 -_ 3’ 4 2,c 

the inputs produced by  encoder 2 using (m ,m ) and T2,1,...,~ 
1 2  2,c 

N C for i=l, ..., c, then yC(m m )- y (m ,m ). 
1 7  4 - 1 2  

1 1 Proof: L e t  (m ,m be the transmitted message. Obviously y (mkl,m4)=y (m,,m,) since the 

f i r s t  input letters depend only on the m‘s. So l e t  y (m ,m )-y (ml,m2) for  a l l  k<N+l<c. 

First observe tha t  the encoder 1 output equals x ~ . ~ + ~  =E(m, ,yN!ml,m4))=E(m, ,yNhl  ,rn2)). 

k 1 4  

1 4 -  

The encoder 2 ,  output can be calculated as x ,N+l=E(m ,y N (m ,m ))-E(m4,Yl,--tY& 
1 4 -  

=E(m4,yN(m3,m4))=Y2,N+l =E(m2,yNhl ,m2)). Thus yN+~ml,mp)=~’’(ml’m2).// 

L e t  (i,j) E M2 and define Regk(i,j):= { (ml,m2) E M  2 k  I y (ml,m2)=yk(i,j) 1 for a l l  k EN for 

which yk(i,j) is defined. Rego(i,j) is equal t o  MxM for a l l  (i,j) E M2. 

Lemma 2 (m,m) E Regc(m,n) w i th  mln is impossible. 

Proof: Le t  (m,m)E Regc(m,n) w i th  m+n. Then yc(m,m) =yc(n,m)=yc(m,n)= 1 . This implies 

however that H(M1 ;l I m2=m)>0 which contradicts with the completeness of  the strategy.// 

Lemma 3 yc(ml,ml~yc(m2,m2) => ml=m2 for al l  m ,m E M. 

Proof: L e t  yc(rnl ,ml)=yc(m2,m2) and le t  also mlSm2. I f  yc(ml,ml)=yc(m2,m2) then the 

inputs are the same a t  both sides o f  the channel. So by Lemma 1 we now have 

yc~ml,m2)=yc~ml,ml~ E Regc(ml ,rnl) which is impossible by Lemma 2.// 

1 2  

Lemma 4 L e t  m,ml,rn2 E M, is (m,m)S(m ,m ) then yC(m ,m )*yc(m,m). 

Proof: l e t  yC(m m >yc(m,m) and (m,m)+(ml,m2). If ml=m2 then by Lemma 3 ml=m2=m. 

So l e t  ml+m2 and because o f  Lemma 2 also m.cm, i=1,2. Obviously we have 

1 2  1 2  

1’ 2 -  

(m, ,m2),(m,,ml),(m,m2),(m2,m) E Reg 0 (m,m). Let  k be an integer and (m,,m2),(m2,ml), 
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k (m,m ) (m ,mEReg (m,m) fo r  a l l  k<N+l<c. If yN+l(m,m)=yN+l(ml,m2)=1 then 

E(m,F(m,m))=l and E(m2,y (m,m,))=l. Thus the ~ ~ + ~ - t h  channel output using (m,m2) is 

yN+l (m,m2)=yN+1 (m2,m)=l. Is Y,,,+~ (m,m)=yN+l (m, ,m2)=0 then E(m,yN(m,m))= 

=E(m,yN(m,m ))=O *: Y,,,+~ (m,m2)'yN+, (m2,m)=0. Therefore we have (ml ,m2),(m2,m, ),(m,m2), 

(m,,m) E ReP+'(m,m). This all ult imately leads to. (ml,m2),(m2,ml),(m,m2),(m2,m) E 
Regc(m,m). In part icular we have (m,m) €Regc(m,m2) which is impossible by lemma 2.// 

N 2 

Proof of proposition 1 

(=>I L e t  y =yC(m ,m ) such that  S(4I)=1. I f m 1 +m2 then via yc(ml,m2)=yc(m2,ml) we have 

(m 1 2  ,m ),(ml,m2) €Reg  (ml,rn2) *: S(y)>l. So ml=m2. 

(<=I Now l e t  ml=m2=m. Suppose S(y)>I. Then by Lemma 3 there exists a message pair 

(k,l)=(m,m), k+l, for which yc(k,l)= y . This however contradicts wi th  Lemma 4.// 

w i t h  ai ER'. 

2c 

-1 -1 Define for n=2,3,4,5 ,.... the functions Fn as Fn(ao ,..., an-l) =ao +...+a n-I 

+n 
Lemma 5 Fn is convex over R . 
Proof: L e t  5 =ao ,..., a and b =bo ,..., b n-I - with ai,bi ER', then for x E(0,I)  one has 

n-l2 1 
xFn(a)+(l -x)Fn(b)-Fn(xz+(l -x)b) - =x(l -x) ti [ai-bi] [aibi(xai+(l -x)b.T L -  > O.// 

Proof o f  proposition 2 

Le t  the receiver b e  terminal 2. Assume that the messages have a distribution such that  

p p .=constant(>O). The channel outputs can be used to  set the p 's such that this is true. 
2j  11 1 -1 z j  

By straightforward calculations we get Pint=m( 1. p .- ) . Now is Pint maximal when 

is minimal. Observe tha t  the la t ter  summation i s  in fact  Fm(pl,O,...,pl,m-l). ' j p l j  
Observe also that  by  Lemma 5 Fm is convex and I: .p .=I. Maximizing -Fm+l E.p ., w i th  1 

a Lagrange mult ipl ier, gives a minimum for Fm at  p =l/m, j=O, ..., m-I. 

Hence min Fm(pl,o ,..., p 1 ,m-I )=m2 .: max Pint=m-l.// 

J 11 

J I J  1 11 

I j  

PI j P I  j 
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