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ABSTRACT

Complexity Theories have recently been proposed as a basis for evaluation of crypto
machine performance. They are compared to Shannon's medel. They shed a new highlight

on randomness notion. But it is stressed that the statistical point of view remains
the more secure.
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CRYPTOLOGY AND COMPLEXITY THEORIES

Complexity theories have recently been proposed as a basis for evaluation of the
cryptographic system performance. We will present in this short survey, the differ-
ent approaches used to connect these two notions.

The complexity theories are rather new and their motivation is the analysis of al-
gorithm efficiency. Their main characteristic is that they are very general theories
that deal with very general algorithms; their most concrete result give some inform-—
ation about asymptotical behaviour of algorithms.

The central problem of cryptology is the evaluation of security of secrecy system,
that is to say how a system is immune against a cryptanalysis. When this cryptanaly-
sis is possible such an evaluation must measure how much time and informations are
required to get the solution.

1. The model of Shannon

The first mathematical treatment of this problem was achieved by Shannon! in the for-

ties. His theory allowed to formalize the problem properly. As a consequence he could
give some guidelines for designing secrecy systems.

The Shannon approach is based on a probabilistic model, the core of the theory is the
evaluation of the probabilities of clear-texts. There are two mein parameters :

- the a priori probability of clear-texts: P(m)

- the conditicnal probability P(m/c) of the clear-text m when the cryptogram c is in-
tercepted. ’

The main concept defined by Shannon is the "perfect secret": a crypto system is a per-
fect secret when P(m)= P(m/c), ¥m,c. So the knowledge of a cryptogram gives no inform-
ation about the clear-text: cryptanalysis of such system is impossible.

But perfect secrecy has limitations: it requires a number of keys as least as great as
the number of clear messages. This means that the keys must be as long as the messages.
So, it is obvious that these systems are impracticable except in particular situations
because keys must be exchanged over a secure channel.

In practice, most systems have finite keys. How to characterize the security of these
systems ? Shannon showed that for these systems, there exists a minimum length of the
messages, called "unicity distance", for which the cryptanalysis has a unique solution.
This distance exists because of the redundancy of the language which the clear texts
belong to.

In that case the solution can be found by trying all the different keys: the key which
gives s likelihood clear-text is the good one. If the number of trials is too large,
this exhaustive search must be considered as impossible: cryptanalyst is hoped not to
have enough time to find the solution.

But how to be sure that all these trials are necessary? The complexity theory of al-
gorithms is an attempt to answer this question.

2. The complexity of algorithms

2
This theory tries to give a measure of the difficulty to solve a problem -Generally,
an algorithm which solves a problem defines a computation which reguires two types
of ressources: time (cr number of stens »f computation) and space {or memory to sto-



re informations used by the computation). These define complexity measures. The com-
plexity is a function of the length of inputs of the computation.

Let us recall the main results of complexity theories. In a universal computational
model (for example the Turing machines), a hierarchy of functions is defined, accord-
ing to the time complexity, that is to say, the number f(n) of computation steps.
Complexity classes are defined in accordance with the increasing rate of n, the in-
put length.

For example we have the following classes

]

. linear : fin) 0(n)
. polynomial : f{n) = O(na)

02™)

. exponential : fi{n)
. etc ...
The notation 0(0) means that the asymptotical value is proportional to a.

It is generally considered that a problem the complexity of which is at least expo-
mential is intractable, in the sense that there is no practical algorithm to solve it.
On the other hand polynomial time complexity is often identified with practical com-
putability. (There is no clear cut off for the degree of golynomial time bounds). So
it is important to distinguish polynomial time algorithms from exponential ones.

A new notion is needed: polynomial time reducibility. A problem A is polynomial time
reducible to B if there is a total computable function f, computed in time bounded
by a pelynomial in length of input x, such that :

A(x) =B (f(x))., ¥x.
A has been polynomially reduced to B. Another notion is the relative completeness:
let B a problem in a collection C of problems. If every A in £ is polynomially re-

ducible to B, B is said (-hard, and if B belongs to I, it is said (’-complete. So,
in a sense, C-complete problems are the hardest or the most difficult in .

3. The NP-completeness

To search intermediate classes between the polynomial and exponential ones, non-
deterministic algorithms have been considered. In these algorithms several instruc-
tions may be applicable at any point in the computation. Anyone of these instructions
may be chosen.

So non-deterministic algorithms define as much computations as possible choices, and
at least, one of them leads to the solution. So if the machine "guesses" the solution
it chooses the good computation, if the machine cannot guess the solution, it has to
try all the possible computations which, generally, are in exponential number.

The class of algorithms solvable by a polynomial time algorithm is called P; the
class NP consists of the problems solvable by a non-deterministic algorithm in po-
lynomial time (the machine is supposed to guess the solution).

It is very important to know the relationship between P and NP. This problem is one
of the most important in the theory of computation.

To day, the situstion is not very clear. It is generally agreed rhat P is properly
contained in NP. If it is so, NP should be a good intermediate between P and



difficult problems. An other class is very interesting: CO-NP. It consists of problems
whose complementary problems are in NP (it is supposed that these problems are of type
"yes-no” and complementary problems are "no-yes". it is not known if NP = CO-NP. Under
the hypothesis CO~NP # NP, the NP-complete problems are not in the intersection of NP
and CO-NP. So they are more difficult that those in NP 1 CO-NP. For example, the com-
posite numbers problem belongs to NP 1 CO-NP. But if any NP-complete problem is in the
intersection of NP and CO-NP, then NP = CO-NP.

G. Brassard’ showed that if some one-way function f exists, then P is properly
contained in the intersection of N and NP, and if £~' is NP-harc, thcen NP = CO-NP
A function is one-way if it is easy to compute (f ¢ P) and £-! is difficult (£t ¢ ?).

Now it is obvicus that encryption and decryption operations are in P, since they
generally are in linear time ".But the decipherment is a non-deterministical cryp-
tanalysis since the good kev is gquessed.

Now we arrive at the main question: Is the cryptanalytic problem NP-complete ? If it
is so, there would be evidence that it is intractable.

From a very general point of view the cryptanalytic problem amounts to solve a boo-
lean equation, whose the unknown are the bits of the key. This problem is NP-comple-
te.

Surely, the cryptanalysis of a specific cryptomachine is not NP-complete, because it
is a particular boolean equation. But there is no reason to find a specific algorithm
for this machine. This would mean that the cryptomachine would have some particulari-
ties usable by a specific algorithm. So the first guideline for designing a crypto-
system is the absence of any logical particularity.

However it must be stressed that complexity theory must be applied to cryptanalysis
very cautiously:

- the computational theory deals with worst cases and a highly complex . function may
be easy to compute almost always.

- in cryptography an exact sclution is not needed, and some NP-complete problems are
known to have good approximate solution to compute.

- the crytanalysis may have enough auxiliary information so that he is able to solve
the problem even if it is NP—completeS.

4. The complexity of sequences

Let us examine another point of view. Instead of analyzing the machine itself, what
can be said about the output sequence produced by the machine ?

The lack of any logical particularity of the machine must find expression in the
structure of the output which must lock like a random sequence.

According to Kolmogorov® and Chaitin’ the complexity I of a sequence S is the

length of the shortest program P such tnat a computer C which accepts P as input,
produces S as output. It can be shown that this complexity is independant of C.

This complexity measure has some important properties :

- the complexity of a sequence 5 is at most of the length of S, because it is always
passible to describe S by exhibiting it; such a program is of the length of S.

- the complexity of most of the sequences ot length k is about k. For example for n
large enough, 99,8% of all sequences of length n, have a greater complexity than n-10.

Now we can define an algorithmically random sequence. It will be noted: A - random .



Roughly a sequence is A - random if its complexity is of about its length. More
precisely, a sequence S of length n is t-A-random if its complexity is greater than
n-t.

But there is no algorithm to decide if a sequence is A-random. However when n is
large enough the probability that a sequence of length n is A-random is close to
one. So if a sequence is defined by tossing a coin, the probability that it is
A-random is close to one. i

The main interest of this theory is to establish connexions between complexity and
rapdomness. As a consequence, it justifies that if the output of a crypto-machine

is A-random, then the machine has not logical particularity and the cryptanalysis is
probably hard.

By chance, A-randomness is consistent with probabilistic definition: if a sequence
is A-randem then, it is statistically random. But the converse is not true: some
sequences that are statiscally random are not A-random® .This means that statistical
tests, although they cannot decide if a sequence is A--andom, are a good approxima-
te algorithm to decide randomness: if a sequence is not statistically random, then
it is not A~random.

5. The apparent complexity

But in fact, the sequence S produced by a cryptomachine is known to have low com-
plexity, of the order of the length of the key K: for each clear-text m, we have
the equation :

As it is enough to consider clear-text m of length of unicity distance the complexi-
ty of § is the one of K. But for every m, fm'1 must be difficult (every f is one-
way) so that it is infeasible to solve in K this equation. To find K is equivalent
to find a program which genrates S. This leads to a new notion: the apparent comple-
xity I,, which aims at measuring_the d}ffiulty to complete fm“l. Different measures
of Ip have already been proposed * and are deduced from the structure of the
sequence itself. We can now define apparent-randomness: a sequence is spparent ran-

domn if its apparent complexity is maximum (generally of the order of its lenqth).
Let u. observe that generally if S is A-random, it is apparent-random. Let us suppose
that I5(S) is defined by the shortest program Pg such that on the computer C, the
output of Pg is K :

C (PS) = K <=> S = £ (K)

If S is not apparent-random, the length Q(PS) of Pg must be very short compared to
the one of S.

LS I SO )
The computer C can compute S from a program for f; and K
S =C (£, K).

Let. X(S) the complexity of S.
Then X($) = R(f) + 2(K) = 2(K) for K is large enough. So: ¢(K) = Z(S). But

R

s =C(f, , C(Pg)); so: X(5) 4(pg) << R(5) that is impossible if § is A-random.

So the complexity notion can be approximate by algorithm, statistics, and apparent
complexity. The corresponding notions of randomneSs are related in the following



way :

1: Apparent-random sequences

1 2: Statistical random sequences

3: A~random seguences.

The only effective algorithm is the statistical tests, and the problem is to define
adequate statistical tests for randomness; and this question is far from being clear
to day.

6. Conclusion

To conclude the application of complexity theories to evaluation of crypto machines
leave much to be desired. Every theory has its pitfalls and shertcomings. Much
remains to be done to achieve this goal.

However every theory provides complementary point of view on the subject. But to day,
none of them gives any useful tools to evaluate the security of crypto machines, and
tell now, statistical tests remain the most trustful evaluation.
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