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Absttact-We introduce a new knapsack type public key cryptosystem. The system is based on 
a novel application of arithmetic in finite fields, following a construction by Bose and Chowla. 
Appropriately choosing t h e  parameters, we can control the density of the resulting knapsack. In 
particular, the  density can be made high enough to  foil "low density" attacks against our system. 
At the  moment, we d o  not know of any zttncks capable of "breaking" this systen h a reasonable 
amount of time. 

1. INTRODUCTION 
In 1976, Diffie and Hellman [7] introduced the idea of public key cryptography, in  which 

two different keys are  used: one for encryption, and one for decryption. Each user keeps his 

decryption key secret, whiie making the encryption key public, so it can be used by  everyone 
wishing to send messages to him. A few months later, the first two implementation of public key 

cryptosystems were discovered: T h e  Merkle-Heilman scheme [13] and the Rivest-Shamir-Adelman 
scheme [17]. Some more PKC have been proposed since that  time. Most of them can be p u t  into 
two categories': 

a. PKC based on hard number-theoretic problems ([17],[16],[8]). 

b. PKC related to  the  knapsack problem ([13],[2]). 

While no efficicnt a t tacks  against number theoretic PKC are known, some knapsack type PKC 
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were shown to be insecure. Most of those systems have a concealed “superincreasing” sequence. 

Shamir made the first successful a t tack on the basic Merkle-Hellman system (see [19]). Following 

his attack, other a t tacks against more complicated systems were proposed. The strongest of 
these seems to be the “low density” at tack of Lagarias and Odlyzko [Ill. The most interesting 

point about this last at tack is t h a t  it does not make any assumption about how the system 
was constructed, and thus might be applicable to any knapsack type cryptosystem (unlike, say, 
Shamir’s attack which relies heavily on t h e  superincreasing underlying sequence). As a result of 

these attacks, knapsack type P K C  which are either based on superincreasing sequences or  have 
very low density seem to be vulnerable. 

In this paper, we propose a new knapsack type PKC which has high density and a completely 
different basis. The underlying construction makes use of a result due to Bose and Chowla [l] 
about unique representation of sums in “dense” finite sequences. To implement this construc- 

tion requires taking discrete logarithms in finite fields, for creating the encryption-decryption 
keys. Once this is done, encryption is very fast (linear time) and decryption is reasonably fast 

(comparable to RSA). Hence creating the  keys is the hard part. While there are no polyno- 
mial time algorithms known for taking discrete logarithms, there are practical algorithms (most 

notably the ones due to Pohlig and Hellman [15] and Coppersmith 151) in some special cases. We 
cau demonstrate the existence of such special cases which would both yield reasonable size keys 

to foil the low density and exhaustive search attacks, and do so in reasonable amount of t ime (a 

few hours on a minicomputer, which is not too bad since keys are created only once per user). 
It should also be noticed t h a t  all known number theoretic PKC are a t  most as hard as factoring 
and hence are all reducible to t h e  problem of taking discrete logarithms in composite moduli 
(see appendix 1). Should this discrete logarithm problem become tractable (thus rendering all 
“number-theoretic” PKC insecure), our system will become easier to create for even larger size 
knapsacks. 

The remainder of this  paper is organized as follows: In section 2 we discuss t h e  knapsack 
problem and its use in cryptosystems. Section 3 describes BoseChowla theorem and i ts  proof. 
In section 4 we give the  details of our new cryptosystem. In section 5 the system performence 

is examined, and section 6 describes the actual parameters for implementing our PKC. Finally, 
some possible attacks against the new system are analyzed in section 7. 

2. KNAPSACK-TYPE CRYPTOSYSTEMS 
The 0 - 1 knapsack problem is the following NP-complete decision problem: Given a set 

0 5 i 5 TZ - 1 } of non-negative integers and a non-negative integer S, is there 
z,a, = 5’ where all 2; are 0 or 1. A different variant of the  problem is 

A = { a ;  

an integer solution to  
1 
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to remove the 0 - 1 restriction on the  z; (but insisting they remain non-negative integers) and 
bounding their total weight Cz; 5 h. 

Knapsack type public-key cryptosystems are based on the intractability of finding a solution to 
S = C z;ai even when a solution is known to exist. In such systems, each user publishes a set 

A of a; and a bound h. A plaintext message consisting of an integer vector A4 = ( q , z ~ , .  . .,%-I) 

with weight 5 h is encrypted by setting 

The knapsack elements a; are chosen in such way that  the equation is easily solved if certain 

secret trapdoor information is known. The  exact nature of this information depends on the  

particular system in question. A general property of knapsack type P K C  is t h a t  encryption is 
easy - all you have to do is to add. 

3. BOSECHOWLA THEOREM 
In 1936, Sidon raised t h e  question of whether there exist "dense" sequences whose h-fold s u m  

are unique. Given n and h, non-negative integers, i d  there a sequence A = ( a i  1 0 5 i 5 
n - 1 } of non-negative integers, such that all sums of ezact ly  h elemenh (repetitions allowed) 

out of A are distinct? It is easy to  construct such sequences if the ai are growing exponentially 

in n: For example, the sequence { 1, h, h2, . . ., h"-' } has the above property (but  does not  work 
even for h + 1 element sums, since h2 + h - 1 = ( h  + 1) - h). But can one construct such sequence 
with the a; growing only polynomially fast in n? Bose and Chowla [l] found a very elegant way 

of constructing such sequences with 1 5 ai 5 nh - 1 (see (9,ch.2] for an overview of t h e  subject). 
Here, we'll present a slightly modified version of Bose-Chowla theorem, which will fit well our 
cryptographic application. 

Boae-Chowls Theorem Let p be a prime, h 2 2 an integer. Then there ezists a sequence 

A = { a ; (  

1. 1 < a ;  5ph-1 
2. If ( z o , ~ ~ , .  . .zP-1) and (yo, y1,. . .y,-1) are two distinct vectors with non-negative integral 

0 5 i 5 p - 1 } of integers such that 

( i = 0 , 1 ,  ..., p - I ) .  

Proof: The construction takes place in GF(p)  and its h-degree extension, GF(ph).  Let t E CF(ph) 
be algebraic of degree h over G F ( p )  ( i.e. the  minimal polynomial in GF(p)[z] having 1 as its 
root is of degree h ). Let g be a multiplicative generator ( primitive element ) of GF@"). Look 
a t  an additive shift by  t of t h e  base field, GF(p) ,  namely a t  the set t + GF(p){  t + i I d = 
0, I , .  . ., p - 1 } c_ GF(ph).  



57 

Let a; = log,(t + i) (i = 0 , l . .  . , p  - 1) the logarithm of t + i to the base g in GF(ph). Then the  

a; are all in the interval [ l , p h  - 11 and they satisfy the distinctness of h-fold sums: For suppose 

there are two vectors 2, with 

p-1 p-1 P- 1 P- 1 

i = O  i = O  
z i  , yi  2 h , and z;a; = y;a; . 

and so 
i = O  i = O  

Since go’ = t + i, we get 

(t + il)”’(t + i2)21,. .(t + il)”’ = (t  + j p ( t  + jp. 1 .(t + j p  , 

where { il, iz, . . ., it} and ( jl, j z ,  . . ., j k  } are two different non-empty sets of elements from 
{ 0, l , ,  . ., p - 1 }, with at most h elements each. Therefore, both sides of the last equation are 

mnnic distinct polynomials of degree 5 h with coefficients in GF(p),  so we car! zubtract them 
and get: 

t is a root of a non-zero polynomial, with coefficients in GF(p),  of degree 5 h - 1. 
This contradicts the fact tha t  t is algebraic of degree k over GF(p).  a 

Remarks: 

1. From the above proof i t  is clear that  1 sums ( I  5 h)  of A are distinct not only over 2, but also 

modulo p h  - 1. 
2. The requirement ‘ p  is a prime” can be replaced by “ p  is a prime power“ with no change in 
the claim or its proof. 

4. THE NEW CRYYPTOSYSTEM 
In this section we describe how the new cryptosystem is created and used. We s ta r t  with 

an informal (and slightly simplified) description. Next, a step-by-step recipe for generating the 
cryptosystem, encrypting messages and decrypting cyphertexts is given. 

The first step is to pick p and k such that CF(ph)  is amenable for discrete logarithm 

computations. We leave p and h as unspecified parameters in this section, and elaborate more on 
their exact choice in section 7 (the approximate magnitudes will be p =s 200, h = 25). Once p and 
h are chosen, we pick t E GF(ph)  of algebraic degree h over the base field, and a primitive element 
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g E GF(ph) (both t and g are picked at random from the many possible candidates). Following 
Bose and Chowla, logarithms (to base g) of the p elements in GF(p) + t are computed. These p 
integers are then scrambled, using a randomly chosen permutation. The scrambled integers are 

published. Together with p and h, they constitute the public. key. 

In order to encrypt a binary message of length p and weight h, a user adds the knapsack 

elements with 1 in the corresponding message location, and sends the sum. Section 6 deals with 
the question of transforming “regular”, unconstrained binary strings to those of the above form. 

When the legitimate receiver gets a sum, he first raises the generator g to it, and expresses 
the result as a degree h polynomial in t over GF(p) .  The h roots of this polynomial are found 

by successive substitutions. Applying the inverse of the original permutation, the indices of the 
plaintext having the bit 1 are recovered. 

a. System Generation 

1. Let p be a prime power, h 5 p an integer such that discrete logarithms in GF(ph) can be 
efficiently computed. 

2. Pick t E GF(ph) - t algebraic of degree h over GF@) at random. This will be done by finding 
f ( t ) ,  a random irreducible monic polynomial of degree h in GF(p)[t], and representing GF(ph) 
arithmetic by GF(p)[t]/  < f(t) > ( where < f(t)  > is the ideal generated by { ( t ) ) .  

3. Pick g E GF(ph),  g a multiplicative generator of GF(ph) at random. 

4. Construction following Bose-Chowla theorem: Compute a; = log,(t+i) for i = 0, 1 , 2 , .  . . , p -1 .  

5. Scramble the u;’s: Let A : {0,1, .  . ., p-1) -+ {0,1,. . ., p-1) be a randomly chosen permutation. 
Set b; = qi). 

6. Add some noise: Pick 0 5 d 5 ph - 2 at random. Set c, = b; + c. 

7. Public key - to be published: C O , C I , .  . .,c,,--l; p ,  h. 

8. Private key - to be kept secret: t ,  g, x ,  d. 

Note: Every user will have the same p and h. The probability of collisions (two users having the 
same keys) is negligible. 

b. Encryption 

To encrypt a binary message M of length p and weight (number of 1’s) ezactly h, add the C;’S 

whose corresponding bit is 1. Send 

E ( M )  = c;, + c;, + . . . + c;, (mod ph - 1). 

c. Decryption 
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0. Let r ( t )  = t" mod f ( t ) ,  a polynomial of degree 5 h-  1 (computed once at system generation). 

1. Given s = E ( M ) ,  compute s' = s - hd (mod p h  - 1). 

2. Compute p ( t )  = g" mod f(t), a polynomial of degree h - 1 i n  the formal variable t. 

3. Add th  - ~ ( t )  t o  p ( t )  to get d(t)  = t" + p ( t )  - r ( t ) ,  a po!ynomial of degree h in GF(p)[t].  

4. We now have 

d( t )  = ( t  $. i l )  ' ( t  f i2). .(t + i h )  

namely d ( t )  factors to linear terms over GF(p). By successive substitutaions, we find the  h roots 

ij's (at most p substitutions needed). Apply x-' to recover the coordinates of the original A4 
having the bit 1. 

5. SYSTEM PERFORMENCE: TIME, SPACE AND INFORMATION RATE 
In this section we analyze three basic parameters of the cryptosystem: The time needed for 

encrypting and decrypting 3 message, the  size of the keys, and the information rate in terms of 
cleartext bits per ciphertext bits. 

Given a binary message length p and weight h, encrypting it amounts to adding h integers 
ci, each smaller than ph .  T h e  run time for decryption is much longer. It is dominated by  t h e  

modular exponentiation: To raise a polynomial g to a power in the range [l, ph - ij takes at most 
2hlogp modular multiplications. T h e  modulus is f(t), a polynomial of degree h, with coefficients 

in GF(p). Using the  naive polynomial multiplication algorithm, 2h2 operations (in GF(p) )'per 
modular multiplication will suffice. So overall, 4h3 log p operations in GF(p) are required. For the  
proposed parameters p M 200, h ss 25 this gives about 500,000 CF(p)  operations, and compares 
favorably with RSA encryption-decryption time. 

The size of the keys, and especially of the public key, is an important factor in the  design of 
any public key system. In such system, a directory containing all public keys should be maintained 
such that  each entry is easily accessible by every user. In our system, the size of the public key 
is that  of p numbers, each in the  range [l,ph - 11. In terms of bits, this is p10g2 p h  = p h l o g 2 p  
bits. For p x 200, h x 25, t h e  key takes less than 40,000 bits. While this number is about  35 
times larger than the currently proposed size for the RSA public key (600 bits for the  modulus 

and 600 for the exponent), i t  is still within practical bounds. 
The information ra te  R of a block code is defined as R = v, where IMI is t h e  size of 

the message space, and N is t h e  number of bits in a ciphertext. Letting M range over all binary 

vectors of length p and weight h, IMI = (K). N = log2 p h ,  so the information rate is 
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For the proposed parameters p = 197, h = 24, R = 0.556 (data expansion 1.798). 

6. PROPOSED PARAMETERS 
As mentioned before, t h e  main obstacle in implementing our cryptosystem is the  computation 

of discrete logarithms in  large finite fields GF(ph).  This computational problem is considered 

quite hard in general. However,the algorithms of Coppersmith [5] and Pohlig and Hellman [15] 
work well in practice for some special cases. Coppersmith algorithm is appropriate for fields 

of small characteristic, and performs best in characteristic 2. Letting p h  = 2", the  run  t ime 

of the algorithm is e . For n 200, implementation of Coppersmith algorithm will 

terminate in a few hours  on a mainframe computer. Pohlig-Hellman algorithm works for any 
characteristic, provided ph - 1 has only small prime factors. It turns out tha t  Pohlig-Hellman 

algorithm is preferable for our specific application, due to two properties: T h t  simplicity of t h e  
algorithm, and the  nice factorization of several numbers p h  - 1 of appropriate magnitude. 

The Pohlig-Hellman algorithm has a T. S (timenspace) complexity proportional to the  largest 
factor of p h  - 1. While in general numbers whose order of magnitude is M 2OOz6 do not  have 
'small' largest factors (the expected size of the largest factor of a number m is about  rn".'), things 
are much better when t h e  number has the form xh - 1, since we can first factor this expression 
as a polynomial in 2, a n d  then factor each term as a number after aubstituting 2 + p. h's with 
"good" factorization are especially effective. For example, 2" - 1 has the factors 2' - 2' f I, 
z4 - x2 + 1, z4 + 1, a n d  other terms of degree not exceeding 2. Substituting p = 197, the largest 
prime factor of 19724 - 1 is 10,316,017 w 10'. The square root of this is 3-103,  so Pohlig-Hellman 
algorithm can easily be  implemented on a minicomputer within a few CPU hours for all t h e  197 
logarithms. 

Other possible values are  (the last two values are from [4]): 
p = 211, h = 24 (largest prime factor of 2 I l z 4  - 1 is 216,330,241 w 2 ~ 1 0 ~ )  

p = 256 = 28, h = 25 (largest prime factor of 2200 - 1 is 3,173,389,601 = 3 . l o 9 ) .  This  * 
candidate has the advantage of using binary arithmetic for decryption calculations. 

p = 243 = 35, h = 24 (largest prime factor of 3120 - 1 is 47,763,361 M 5 * lo'). 

7. POSSIBLE ATTACKS 
In this section we examine some possible attacks on the cryptosystem. We s ta r t  with at tacks 

where par t  of the secret key is known to the cryptanalyst and he is trying to reconstruct t h e  
rest of it. We proceed by considering low density and brute force attacks with no prior secret 
information, where t h e  goal is not to reconstruct the secret key but rather to  decipher a given 
ciphertext. 
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a. Known g and d. 

Let t' = gcoJ then t - t' E GF(p) ,  so the sets { t + ili E C F ( p ) }  and { f t ili E G F ( p ) }  are 

identical. Therefore, by using t', the cryptanalyst can determine T and has all needed information 
for decryption, 

b. Known t and d .  

Pick arbitrary generator g'. Compute a: = log,,(t + i) . As sets, we have 

where equality is modulo p h  - 1 and L, p h  - 1 are relatively prime, L satisfying g = dL. Once L 
is recovered, we are doL2, for then g = bL, and we can reconstruct T and have all the pieces of 
the private key. 

If one of the a: (ab, say) is relatively prime' to  p h  - 1, then L is one of ajab-' (mod p h  - 1);: 
for some 0 5 j 5 p - 1. Otherwise, the cryptanalyst can compute L modulo each of the prime 
power factors of p h  - 1 (which are all small and therefore easy to find, by the choice of p and h), 
and then combine them together using the Chinese remainder theorem. 

c. Known permutation 

Since the knapsack is 
negative) such that  

?F and d (attack due to Andrew Odlyrko). 

dense, there are small integral coefficients z, (some of which may be 

(for details see [14]). Furthermore, the LLL algorithm can find these 2;'s. The last equality 
implies 

?- 1 gL- = 1 

i.e. 
P--l 
D(t+i)=i = 1. 

i = O  

The left hand side of the last equality is a rational function oft, and g (which is still unknown) 
is not a part of it. If ml = Ixztl (m2 = IC $ 1 )  denotes the sum of positive (negative) zi'8, 

and m = max (ml ,  m2), then we get a polynomial equation of degree m- 1 in t, with coefficients 
from CF(p) .  All roots (in GF(ph) ) of this polynomial can be found using a fast probabilistic 
algorithm. t is necessarily one of these roots, so attack (b) can now be used. 

'this means that one of the t r i  i3 itself a multiplicative generator of GF(ph), and will happen with high probability. 
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Remark: If T is not known, this attack does not seem to work since, even though the Zi  can be 
found, they give rise to an  ‘unknown’ polynomial. If ml  + m2 is very small then one can t ry  all 

(m,:m,) possibilities even without knowing ?r. However, with ?I unknown and ml Smz exceeding 
10, this approach becomes infeasible. 

d. Low density attacks 

Brickel [3] and independently Lagarias and Odlyzko [ll] introduced “general purpose” a l p  

rithms which can be expected to recover successfully the added elements of any “low density” 

knapsack system. In this subsection we briefly describe the second method, and examine ita 
success when applied to  our system. 

The density d(A) of a knapsack system A = {ail 0 5 i 5 p - 1 }, is defined to be 

Given a knapsack system A = {a i l  0 5 i 5 p - 1) and a sum instance (ciphertext) S = 
cfIi z;ai, Lagarias and Odlyzko construct a p + 1 dimensional lattice. The lattice construction 
uses the p knapsack elements and the given ciphertext. A certain vector in this. lattice (which 

we call here the special vector) is defined. This vector corresponds to the solution of the given 
ciphertext (yields the coefficients z; in the sum), and the goal of the cryptanalyst is to find it. 
Lagarias and Odlyzko have shown that if d(A) is low, this special vector is the shortest one in 
the lattice. 

Using the last observation, what Lagarias and Odlyzko are trying to do is to find the  shortest 
vactor in the lattice. The tool they use is the basis reduction algorithm of Lenstra, Lenstra and 
Lovasz. While this algorithm usually succeeds if the shortest vector in the lattice is much shorter 
than all other vectors, i t  does not do so well if the shortest vector is relatively close in length to 
other vectors. 

In our specific case, the  knapsack has high density. The length (square of Euclidean norm) 
of the specific vector will not be much shorter than the length of many other vectors (24 VS. 40 

for p = 197, h = 24), and so the LLL algorithm cannot be expected to find it. Experiments, 
done by Andrew Odlyzko, on a smaller knapsack created by us ( p  = 103, h = 12, a system with 
density 1.271,where the calculations imply that all vectors other than the specific one have length 
at least 17, but the LLL algorithm did not find the specific vector even when its length was only 
5), support this claim. So, for Lagarias-Odlyzko attack to  be successful against our system, i t  
must use a better shortest vector algorithm. Currently, the best (exact) shortest vector algorithm 
known is the one of Kanaan (101, and its performance is no better, in our application, than the 
brute force attack sketched in the next subsection. 
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We wish to remark tha t  i t  is possible to make the specific vector which solves a given ciphertext 
longer, by reducing the information rate of the system, without changing its density (details 

are left to the full paper). In this case, no shortest vector algorithm will find this vector. 
However, with the current state of shortest vector algorithm, it looks like such modification to 
the cryptosystem is not required. 

e. Brute force attacks. 

The most efficient method we know of for solving knapsack instances with h out of p items, 
given a specific ciphertext, is the following: There are (I) ways of choosing h out of p elements. 

Take a random subset S containing p/2 elements. The probability that a given sum contains 
exactly h/2 out of these p/2 elements is 

Assuming that this is indeed the case, we generate all h/2 sums of S and of its complement, and 
sort them. The goal is to find a pair of sums from the two lists whose sum matches the desired 
target. This can be achieved by keeping two pointers to the two lists, and marching linearly 
through each (one in increasing order, and the other in decreasing order). If the two lists are 
exhausted but no matching sum was found, then another random S is tried. The run time per 

one choice of S is dominated by sorting all h/2 sums of both S and its complement. This 
require 2 .  ($) In ($) operations. On the average, about fi choices of 5’ have to be made. The 
overall expected running time will thus be 

For p = 197, h = 24 the expected number of operations is 3.466.10’’ > Z5*, so such brute force 
attack is totally impractical’. 

Even though none of these attacks seems to produce a threat to the system security, other 

attacks might be successful. We urge the reader to examine our proposal for as yet undiscovered 
weaknesses. 
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Appendix 1: Discrete logarithms and factorioation. 
We'll show here how the problem of factoring "paired primes" R = p - q ( p ,  q primes) is 

polynomially reducible to that of finding indices in 2,. Let a E 2;. Since aP(") = 1 (mod n), 

we have 
an = an--P(") = aPP(P-lI(q-1) = aP+Q-1 (mod n) . 

The index of aP+P-l to base a is a divisor of p + q -  1, most likely p + q - l  itself. Hence a discrete 
logarithm subroutine will output p + q - 1 when given a" (mod n) as input. Having n = p * p 

and p + q - 1, p and q can easily be determined. 


