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ABSTRACT 

Investigating the capabilities of public key and related cryptographic techniques 
has recently become an  important area of cryptographic research. In this paper we 
present some new algorithms and cryptographic protocols (Cryptoprotoeob) which 
enlarge the range of applications of public key systems and enable us to perform 
certain transactions in communication networks. The basic cryptographic tools used 
are Rabin’s Oblivious Transfer Protocol and an algorithm we developed for Number 
Embedding which is provably hard to invert. 

We introduce the protocol Subscription to a f i b l i e  Key, which gives a way to 
transfer keys over insecure communication channels and has useful applications to 
cryptosystems. ‘A 
transfers a secret to B, B can block the message. If B does not block it, there is a 
probability P that  he might get it. (1/2 <P < 1, where we can control the  size 
of P). A does not know if the message wasdlocked (but he can find out later)’. 

We develop the Secret Blocking Rotocol, specified as follows : 

The classic cryptotransaction is the Mental Poker Game. A cryptographically 
secure solution to the Multi Hayer Mental Poker Game is given. The  approach 
used in constructing the solution provides a general methodology of provable and 
modular Protocol Composition. 

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPT0 ’84, LNCS 196, pp. 439-453, 1985. 
0 Spnnger-Verlag Berlin Heidelberg 1985 
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1.  INTRODUCTION 
f i b l i c  Key 

Cryptoeyetems [7] [IS], to provide secure and authenticated communication, and  
Cryptographic Transactions, Cryptotraneactions for short, to enable simulation of 
certain activities i n  communication [4] [6] [l?]. These activities, while easily done 
face to face seem impossible to perform through the use of a communication 
network . 

Complezity-based cryptography has two major areas of application: 

In this paper we present some new Cryptoprotocols to be used both for increasing 
security and flexibility of Public-Key Cryptosystems and as tools for implementing 
Cryptotransactions. T h e  security of these protocols is based on the intractability of 
the factorization problem. T h e  basic cryptographic tools used are Rabin’s Oblivious 
Transfer F’rotocol and a n  algorithm for number embedding which is provably hard 
to invert. The  results reported here were motivated by Blum’s paper [4] a n d  are 
based on [19]. 

We introduce the  protocol Subscription to a f ib l i c  K e y ,  used for transferring 
keys over insecure communication channels and which has useful applications for 
cryptosystems. W e  then develop the  Secret Blocking Rotocol, specified as follows : 
”A transfers a secret to B. B can block the  message. If B does not block t he  
message he gets i t  with probability = P, where 1/2 <P < 1, and we can  control 
the size of P. A does not know if the message was kocked ,  bu t  he can find o u t  
later”. 

The classic cryptotransaction is the Mentul Poker Game. The  problem, proposed 
by Robert  Floyd, is: ‘Is i t  possible to play a fair poker game over the telephone ?’ 
Shamir, Rivest and Adleman (171 proved that from an information theoretic point of 
view i t  is impossible to play the  game. They showed, however t h a t  from a 
complexity theoretic point of view, the game can be played, using the  one  way 
commutative modular exponentiation function. Although their protocol is elegant 
and the number of players is unlimited, Lipton 1101 showed tha t  one can  easily 
mark some subsets of cards using i t .  We present a cryptographically secure 
solution to the Multi Player Mental Poker Game. Different solutions to t h e  T w o  
Player Mental Poker  Game  have recently been obtained independently by Blum [SJ, 
and by Goldwasser and  Micali [8]. Their solutions include a protocol for T w o  Player 
Card Dealing. 

The approach used in constructing the solution gives a general methodology of 
provable and modular Protocol Composition. 
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2. Number  Theore t i c  and Cryptographic  Background 

2.1. NUMBER THEORETIC ALGORITHMS AND PUBLIC KEY SYSTEMS 
The main assumption is: FACTORIZATION of a number n=p q, where p and q 

are large (say 100-digit) prime numbers is HARD to solve. On the other hand, 
some number theoretic algorithms that  we use are EASY (random polynomial time). 
These include the primality test, 118) 191, prime generation and root extraction of 
x2(modn) given the factors of n [12]. (For a survey of number theory and number 
theoretic algorithms see [ll] [g] [l].) In the protocols presented in this paper, we 
need an underlying public key system in order to transmit encoded and signed 
messages and to hide information using one way functions. Either the RSA system 

(If 
we use RSA we add the assumption that  RSA breaking is HARD)’ 

[15], the Rabin system [12], or the Blum-Goldwasser system [3] can be used. 

2.2. RABIN’S OBLIVIOUS TRANSFER PROTOCOL 
Rabin found a way to send a secret obliviously, that  is, the sender A does not 

know if the secret is successfully transmitted to B, the probability of success is 1/2. 

Protocol 1 -THE OBLMOUS TRANSFER: 
s t e p  1 : A creates a number n =p q. (The prime factorization of n is the secret.) 
step 2 : A-->B : ” n”. (--> means ‘sends to’.) 
s t e p  8 : B selects a random x and computes z = x2(mod n). %>A : ” 2”. 

s t e p  4 : A, knowing the factorization of n, computes the 4 square roots of z = 
{ x,-x,y,-y}. 
s t e p  5 : If B receives y or -y he gets the secret, if he receives x or -x he does not. 
end {protocol 1) 

He selects at random one of them, calls i t  s and A->B:” s” 

Theorem 1: Given x,yEZ,,’ (that is x,y<n and do not divide n), x e y  
(mod n), -x #y (mod n) and x2=y2 (mod n), there is an EASY algorithm 
for factoring n. 

Based on the previous theorem we can prove the properties of the above protocol: 
Using the  oblivious transfer protocol, B can factor n (get 

the secret) with a probability (virtually) equal to 1/2. A can not know if 
he transferred the secret successfully. 

Theorem 2: 

2.3. ONE WAY NUMBER EMBEDDING 
Number embedding is an  algorithm which gets a number M as input and 

distributes it into some pieces of information EM(M) which hide M. Giving EM(M) 
does not compromise M because in order to recover the number from the available 
hiding information one has to solve a HARD problem. EM(M) can be recovered to 
one and only one number: M. In [4] Blum gave such an algorithm. Here we use 
polynomial interpolation to design a number embedding algorithm that  is provably 
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HARD to recover 

Algorithm 2 - EMBEDDING USING INTERPOLATION : 
s t e p  1: Choose K (say K=lO) random 100-digit prime numbers pil i=ll..,lO. 
s t e p  2: Choose 10 random 99-digit prime numbers %, .i=l,..,lO. 
s t e p  3: Construct a polynomial of degree 10: P (mod R), where R is a large prime 
(R>pi,qi i=l,. .]lO), by using the 11 interpolation points : (pi'%) i=l,..,lO, and 
(0,M). 
step 4: Compute ni=pi qi (ni hides interpolation point i). The embedding of M is 
the sequence consisting of: R (the modulus), the numbers ni, i=l,,.,lO, and a point 
(u,v) such that v=P(u), where u is a random number different from 0 and the pi's. 
end (algorithm 2) 

The Result of the Algorithm: 
Given EM(M), one has to factor the 10 ni's to recover the unknown 
M. Factorization of any 9 of them does not help (see [16]). Given M, +&I we 
can embed both using the same nits; only the additional random point (u,v) is 
different. EM is 
a one way one to many random operator. Using the fact  that  generation of 
numbers of the form n=p q is easy, and the random polynomial algorithm (2) (131 
for finding roots of polynomials over GF(R) we can show that recovering of M is 
polynomially equivalent to factorization. The reduction to factorization is given in 
the following theorem: 

Therefore we can prepare all the ni's before the communication. 

Theorem 3: If we can easily recover M from EM(M) (even in L of the  
times) we can easily factor numbers of the form n=p q. 

Now consider the oblivious transfer protocol. Lf we want A to be able to check 
whether or not he gave B the secret then we use Oblivioue Transfer With Receipt: 
When B sends z = x2 (mod n) he also sends EM(x) which is the receipt which 
hides x unambiguously. The  receipt also makes it possible to check tha t  z was 
created by squaring an xEZ,' and is not a 'special quadratic', a quadratic such that  
knowledge of any of its roots enables factorization. It was suggested in 1141 
overcoming this problem by sending K quadratics in step 3 from which B chooses 
K-1 at  random and asks A to send their roots first and then the protocol goes on 
with the remaining quadratic. 

3. SUBSCRIPTION TO A PUBLIC-KEY 
The problem is: 
[12] or Blum-Goldwasser [3]). 

A has a public-key E =(n,e), based on n=p q (RSA [IS], Rabin 
A wants B to subscribe to the key, namely to get 

To solve this problem without compromising the key, the decryption key D=(n,d). 
A and B use the following cryptotransaction: 
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Protocol 8 - SUBSCRIPTION TO A KEY 
step 1 : A publicizes E. 
step 2 : 
a. B chooses K random numbers (say K=10): xl, xl0. 
b. B checks: if gcd(xi,n) is not trivial for some xi, then STOP. (B got the key, the 
chance for this is virtually zero.) 
Otherwise B computes zi = xi' (mod n), i = l , . . l O .  &>A : "zi, i=ll..,lO". 
step 3 : 
a. A, knowing the factorization of n,  computes the 4 square roots of zi = 
{ xir -xi, yi, -yi 
b. A uses procedure SELECT t o  choose one of the roots, and calls it si (the 
SELECT process makes sure tha t  if zi is sent twice then the same 9 is chosen). 
c. A->B : "si, i = l , . . l l O " .  
end {protocol 8 }  

i=l , . . ,  10. 

Theorem 4: T h e  protocol "Subscription to a Public-Key'' ensures: 
1. B gets the decryption key with probability a t  least l - ( l /  21°). 
2. An eavesdropper cannot get information from the .protocol which helps 
him factor n. 

The above protocol has several applications to cryptosystems (e.g. distribution of a 
group key). 

4. ABSTRACTION OF THE "MENTAL POKER GAME" 

4.1. SPECIFICATION OF THE GAME 
For A and B to play a fair "Mental Poker Game" we need the following 

protocols: 
1. A protocol for Dealing Cards. The security and verifiability specifications 
contain some antagonistic requirements which make the problem interesting. 
2 .  Protocols for other game steps: These include discarding cards from one's hand, 
opening a card, etc. in a secure and checkable way. 
3. A Protocol for the Game Management which links all the game steps together 
into a complete game 

4.2. DEFINITION OF CARD SETS 
We define sets which are changed dynamically during the game. 

ALL - the set of all t he  cards which is the universal (ordered) set: 
AHAND (BHAND ) - cards w h c h  are currently in the hand of A (B). 
AWSED (BUSED ) - cards which were thrown from the hand of A (B). 
M A W  = AHAND 
SAW = M A W  U BSAW . 
AOPEN ( BOPEN ) { TOPEN } - cards opened by A (by B) {to the table}. 

{lg2,3, ..., 52}. 

u AUSED , BSAW = BHAND U BUSED , 



444 

OPEN = AOPEN U BOPEN U TOPEN. 
DECK = ALL - {SAW U OPEN } - the cards currently in the deck. 
DECK, = DECK 
still be in the deck. 
DECK, = DECK U ASAW - possible deck according to B’s partial knowledge. 

U BSAW - cards that  according to A’s partial knowledge can 

4.3. REPRESENTATION OF THE GAME 
The game is fully represented by the card sets, so we can look at the game as a 

Knowledge Set Transition System: The  Interpretation of the game as a formal 
system helps us to design it and to prove its properties, using formal inference 
about user knowledge and card sets. 
States : States are positional vectors of sets which are subsets of Au. 
A game-state : GS = (DECK, AHAND, BHAND, ASAW, BSAW, OPEN). 
A special state is the illegal state which is a dead state. 
The initial state is (ALL, 0, 0, 0, 0, 0 ) 
Knowledge : The  player’s partial knowledge of the game, a t  any moment of the 
game is also represented by a set vector. The set notation is augmented by the 
following: 1. 7 - an  unknown set. 2. ti - an unknown set of size i, where the 
size is the only knowledge about it.  A’s Partial-Knowledge (PK) of the game is: 

Transitions : The  transitions are the game steps {Dealing, Discarding, Opening, 
Opening from DECK}. 
Our proof technique uses assertions on knowledge and card sets, showing for 
example that  the following are game-invariant: MAW n BSAW =8, DECK n 
SAW =0, 
ASAW n BSAW =0, DECK, n DECK, =DECK and the fact that  combining 
both players PK’s gives the game state. 

Any illegal game step leads to the illegal state. 

5 .  A n  Algori thm for Deal ing Cards 

5.1. FIRST APPROXIMATION OF THE DEALING PROTOCOL 
The general idea: When B draws cards from DECK, they are actually offered to 

him by A as follows: 
A knows DECK, = ( DECK U B S A W )  = ALL - { M A W  U OPEN }. 
Using this knowledge, A tries t o  transfer cards he has not yet seen without 
revealing which cards he is offering and without being able to know which cards 
are chosen by B. During the process of dealing B gets a card M E DECK, this 
card is a random card from the deck. When B gets the j cards he needs 
M,, ......, M, he is responsible for halting the dealing without trying to look at other 
cards in DECK. 
BSAW := BSAW u BHAND. 

Then  B updates : BHAND := BHAND U {M, ,........, Mj); 
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Protocol 4: THE DEALING OF CARDS PROTOCOL 

- s tep  1 : 
a. A chooses M, ,........, M,, random 100-digit numbers to represent AU 
b. A computes flU)=qM,),....,f(M6,), f- is A s  one way function. 
C. A->B ’ qAU) ”. 

- s tep  2 : A tries to transfer cards from the 1 cards of DECK,: 
a. A embeds the cards in DECK,. 
b. Permutation choosing - (this substep is eliminated later, we need i t  
just for the first approximation): 
- A chooses a random permutation of {1, .... l ) :  PA, and hides it 
unambiguously in EM(. .PA. .) 

- B chooses a random permutation P,, &>A : ’ P, ”. 
- A computes P = (P,.P,). Let {l,..)} be the order of DECKA derived 
from the order of ALL. P is a random permutation of it, and B does 
not know what P is. 

- A-->B:” EM(..P,..) ” 

- s tep  3 : A sends cards to B: 
a. A-->B : ” EM(M,(,)), i= 1, 1 ’’ 
b. Oblivious transfers : 
(The goal of this step is to let B factor the embeddings of cards. The 
permutation P, the probability of success of a single transfer and the 
merging of the transfers of the different cards, randomizes which cards 
are to  be factored. This is Blum’s idea for sendmg certified mail [4].) 
begin loop : 

for j= 1 to k { k is the size of each embedding } 
for i= 1 to 1 do : 
A single OBLIVIOUS TRANSFER with RECEIPT 

to enable factorization of n(p(ilj) 
end loop. 
c. Get t ing  a card : During the above transfer process B factors all 
EM(M) so he gets M, then he computes flM) and he knows which card 
M represents. If M E BSAW nothing happened, else B adds M to his 
hand. 

- s tep  4 : After B gets the number of cards he needs, he halts the 
protocol by 
&->A :” stop, I got j cards ” .  

end {protocol 4) 

The Remaining Problems:  
1. It is possible that in step 4 player B must halt the process right after he took 
the last card he needed, and if he does not halt, he may see an extra card from 
DECK which he is not supposed to see. We will show a solution for this ‘Halting 
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Problem’. 
2. A knows a priori the order in which the cards are offered. Even if we let B 
choose which ni he wants to try to factor in any order, there is still a bias. A 
knows at any moment (including the end of the dealing) the current probability 
with which any card is given, and different cards have different probabilities at 
least 1-( 1/l ) of the time. The solution to problem 1 will solve problem 2 as well. 

5.2. SECOND APPROXIMATION OF THE DEALING PROBLEM - THE SOLUTION TO THE 
‘PROTOCOL HALTING PROBLEM: “THE SECRET BLOCKING” 

The purpose of this approximation is to explain the idea of ‘The Secret Blocking’. 

,- T h e  Solution to the Roblems: 

- 1. A (symmetrically B) has a set of public keys : 
KEY, = REALKmA U DUMMYKEYA 
REALKWA is the set of keys for which A has both the encryption and 
the private decryption keys. For the dummy keys, A has only 
encryption keys and he can not decode messages encrypted by them. 
Half of the keys are real; half of them are dummy. (symmetrically 
KEYB has the same subsets.) We assume temporarily that  KEYS are 
given to the parties before the game by a Judge who knows which keys 
are real and w h c h  keys are dummies. 
A (B) publishes all his encryption keys in a random order. B (A) can not 
know which keys are real, and which are dummies. We call these keys 
‘root-trans fer keya ’. 

- 2. the oblivious transfers in step 3 of protocol 4 are as follows: 
a. Before A obliviously transfers a root, &>A : 
key Ki ” and then 
A-->B : )) a root si encrypted by this key ”. 
b. At first B chooses a key at random from KEYB If he chose a r e d  
key he may get the factorization with probability = 1/2, but if he chose 
a dummy key he gets information he can not decrypt. Hence the 
probability tha t  B gets the factorization is 1/4. 
c. It is agreed tha t  the halting of the protocol is a t  the end of the loop 
in step 3. After B gets all the cards he needs, he must continue the 
transfers until the end of the loop. For M, which he has not yet 
recovered, he chooses a random number from EM(4)  not yet factored, 
and for its root transfer he chooses a random dummy-key. Doing so he 
ensures tha t  he gets information he can not decode and still he can not 
tell what EM(M,) hides. Because of the random choice of root-transfer 
keys during the whole process A has no idea which information was 
blocked like this by B. This is ”The Secret Blocking“. The secret 
blocking also solves the second problem. What is actually done is : B 

use my roottransfer 
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chooses a priori which embeddings of cards to try to take and which to 
block. Thus P (the random permutation of the offered cards) can be 
chosen by A alone. 

- 3. We have a Rotocol for Open Replay of the Dealing which is used for 
verification. When the game is over the Judge uses the receipts to 
replay the dealing and verifies that: 
a. B got exactly the number of cards he needed, he got them from 
DECK, and he did not see any extra cards. 
b. A always used the encryption key E which B asked him to use, and 
did not try to check a key’s status by sending some other random 
message. 

5.3. HOW TO ELIMINATE THE CENTRAL JUDGE: THE SOLUTION TO THE DEALING PROBLEM 
The Idea i s  as follows: 

1. A chooses KEY, for B. 
2. A publishes the chosen encryption keys. 
3. 
protocol”, using one root and receipts. 
with probability = 1/2 (1/2). 
30) of each subset of keys. 
4. Symmetrically B chooses keys for A. 
5. The fact that B (A) knows the encryption and the decryption keys of all keys in 
KEY, (KEY, ), does not compromise the secret blocking. 

KEY, are distributed to B using a variant of ”the subscription to a public-key 
As a result B gets a real-key (dummy-key) 

B takes keys until he has as many as he needs (say 

The Improvements to The Dealing Rotocol are : 
1. In step 2.b the permutation (P) is chosen at random by A alone. 
2. In step 3.b B randomly chooses which card embedding8 to try to take. 
applies the secret blocking to embeddings he decides not to take. 
3. In step 3.b B halts the dealing and moves to step 4 at the end of the loop. 

He 

As a result of the improvements the following theorem holds: 
Theorem 6: T h e  ”dealing of cards protocol” is correct according to its 

specification: 
a. If no player cheats, then when a player draws the cards, the following 
properties hold: Fairness, Disjointness of Dram Cards, Security, 
Verifiability. 
b. Any case of cheating is detectable. 
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6. THE COMPLETE GAME OF TWO PLAYER MENTAL-POKER 
We design a main protocol called The Game Manager which organizes the game 

and links the different steps and we design Protocols for other game etepe as well. 
The game steps are: 
1. Discarding a card : A moves a card M from AHAND to AUSED in a secure 
and checkable way. 
2. Opening a card : A moves a card M from AHAND to AOPEN in a checkable 
way. 
3. Opening a card from DECK: first, using protocol 4, A gives a card M to B 
then B opens M. 
It is easy to design these protocols since at the beginning of each of them a new 
random code of the abstract card sets is used. The order of Au is the interface 
between steps and we can prove the following theorem: 

Theorem 8: The  two player mental poker game is fair, secure, 
checkable and a direct simulation of the regular game (using cards) as was 
specified. 

7 .  GENERALIZATION: THE MULTI-PLAYER MENTAL POKER 

7.1. THE PROBLEM IN MULTI-PLAYER GAME 
In the two player game the cards are offered to B from the set  DECK, = 

DECK u BSAW, and B adds the opened cards he did not previously see to his 
hand. The disjointness of the cards he takes and cards that have already been seen 
by A (at any given moment) is a consequence of the fact that  the combining both 
players partial knowledge is the full knowledge of the game, and tha t  DECK, 
ASAW and BSAW are mutually disjoint while their union is ALL. How can we 
guarantee, however, t ha t  B takes cards only from DECK and does not get any 
additional partial information, while DECKA, n DECKB + DECK in the 
generalized situation? W e  must somehow let all the players participate in the 
dealing and still keep the mutual privacy and security constraints. 
Assumption : All messages are sent to all players. This is a minimal assumption, 
because otherwise if even two ou t  of the K players can communicate privately, they 
can make a coalition and get an advantage over the others just by knowing each 
others' hands. Also, in order to be able to replay the protocols, we M u m e  tha t  
every message is acknowledged by all the players. 
The Change8 : For each player j we define the following sets: HAND,., USEDi and 
SAW,. are respectively the cards in his hand, cards he already used and their union. 
During the game we keep 
{ SAWj n SAWi = 0 for i +j  } and { SAWj n DECK = 0 }. 
Suppose there are K players. Let B be the K-th player and 4, i=l , . . ,K-l  all the 
others. We define 
DECKTOB =f21 n (DECK,.) = DECK U BSAW This is the set that  player B, 
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who is taking the cards, is allowed to see and to c h m e  cards from. W e  call these 
cards Candidate Cards,  because such a card is a candidate to be drawn by B, 
namely if a card MEDECKTOB - BSAW then MEDECK, and B can take it. 
The multi-person dealing protocol is a two-stage protocol: DECKTOB generation 
stage and Card drawing stage. These two stages are two coroutines, each of them 
has a current state and they run concurrently. 

7.2. THE SOLUTION : A PROTOCOL FOR MULTLPLAYEFt DEALING OF CARDS 

(A,, i=l,.,K-1 deals cards to B=A,. 
current state of stage A is : ”begin the stage in step 1”. 
current state o f  stage B is : ”begin the stage in step 6”. 
Stage A: DECKTOB GENERATION 
The stage starts at its current state: 
step 1 : The K-1 players choose a common random perautation of 1, ....., 52 : Q 
(B does not know what Q is). They embed Q unambiguously in EM(Q), and 
transfer i t  to B. (The communication between the k-1 players can be done using a 
group key, see section 3 . )  
step 2 : Every player A, chooses his own private current code of ALL : ALL’ 
each A,-->B : ’’ Q(fi(ALLi)) ”. 
(The players do not reveal the cards in the right order, but rather, a random 
permutation of them.) 
step 9 : For player 4 let  : 
=ALL - SAW,. 
s t ep  4 : Each A, chooses a private random permutation Pi. 

(The cards are offered in order Pi, 4 has to remember this order.) 
step 5 : Opening of cards : B tries t o  open cards using OBLMOUS TRANSFERS, 
alternately with A,, i=l , . ,  K-1. He makes iterations over the embedded cards as in  
the two player case. 
a .  Factoring of a card embedding : B gets a card code M of some of the other 
players 4. He can compute fi(M), but this gives him no idea what M is because 
he gets only the place of M in the permutation Q which is a random permutation 
and M is just a random number. 
b. Getting a candidafe card : During the transfers B realizes that  a card is offered 
to him by all the other players, (the same place in Q was revealed in all Q(ALL‘)). 
This card is either in DECK or in BSAW so i t  belongs to DECKTOB (it is a 
candidate card). Suppose B needs u cards and during the process he gets u random 
candidates. Then the players remember the current slate of stage A and go to 
Stage B. 
end {Stage A} 

Protocol 6 : MULTI-PLAYER DEALING 
They start  at stage A.) 

DECK, = DECK U 
A, embeds each card MEDECK, in EM(M). 

(U j:j+ i{SAY.}) 

A,-->B : ” Pi(EM( DECK,)) I’ 

During this process B can get the following information : 
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Stage B : CARD TAKING 
(In this stage only B and one of the players (A,) are playing, but the others get 
and acknowledge all messages.) 
The stage starts at its current state: 
step 6 : A, chooses a new code of ALL: ALL’. 
A,->B: ” f,(ALL‘) (This time without permuting the order.) 
step 7 : A embeds each MEDECK, in EM(M). 
A,->B: ” P,(EM(DECK,)) ”. ( He uses the same permutation P, he used in  stage 
A; the permutation of DECK, is the interface between the two stages.) 
step 8 : B and A, use iterations of OBLIVIOUS TRANSFERs in order to let  B 
factor the embeddings. B knows which card in the permutation P, is a candidate, 
using the SECRET BLOCKING he chooses to open only candidates. 
Taking a card : When B gets all the factors of the embedding of a candidate card, 
he recovers M and computes f,(M). If MQBSAW he takes i t .  If B gets all the  
cards he needs, he stops the process by B->4: ”stop, I got j cards”:’ If he has 
already seen some of the candidates, then the players return to stage A. 
end {Stage B} 
end {protocol 6) 

The reduction of the multi-player case to several two-player protocols implies the 
following: 

Theorem 7: T h e  protocol for Multi-player Dealing of Cards simulates 
dealing of cards and has the specified properties of security, verifiability 
and fairness. 

8. CONCLUSIONS 
We presented cryptoprotocols which can be used with a public-key cryptosystem. 

The subscription to a public-key and the secret blocking protocols are cryptographic 
tools, augmenting the power of public-key systems. Developing these tools and  their 
applications and solving the multi-player mental poker game extends our knowledge 
of the power of cryptographic techniques, the range of applications of these 
techniques, and the boundaries between the possible applications and the impossible 
ones. The  study of these subjects is one of the main targets of recent 
cryptographic research. 

In designing the protocols, we used a methodology that can be used for designing 
and proving the correctness of long cryptoprotocols. We observe four main design 
stages: 
1. The aziomatic stage: W e  have two kinds of axioms: a. The underlying 
mathematics. b. T h e  computational environment: rules of communication, user 
behavior, etc. 
2. The  basic Cryptographic Techniques: Based on our axioms, we use or construct 
basic algorithms and cryptotransactions like the RSA system, Oblivious Transfer, 
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Number-Embedding. 
3. Top-Down Design 01 the protocol: The problem at hand is divided into sub- 
problems (an analogous to modular design of a computer program). For every sub- 
problem we develop a cryptoprotocol using the basic tools of stage 2. We take 
care of the security and other specified properties of’ the subproblems’ protocols, at 
the same time ensuring the specified properties of the whole process. We use an 
inference system which includes ”security logic” and Dprocess logic”. (In our  case 
we prove formal assertions about card sets and users’ information and we use the 
global order of the cards to concatenate steps.) 
/. The fiocess Rotocol: After stage 3 the process is executed over the 
communication channels according to the rules of the original process. We also 
handle additional administrative communication which we ignored when we 
concentrated on the problem. 

This approach of divide and conquer (using the same or other system’ axioms and 
proof techniques) will undoubtedly be used in other complex and long 
cryptoprotocols that will be designed in the future. 
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