
Fair Exchange of Secntr
(extended abstract)

Tom Tedrick *
Computer Science Division

573 Evans Hall
University of California

Berkeley, California. 94720

Electronic mailing address:
tedrickQberkeley

Key Words and Phrases: Exchange of Secret Keys, Contract Signing, Exchange of Secrets, Frac-
tions of a Bit, Oblivious Transfer, Cryptographic Protocols

Abstract
We consider two problems which arose in the context of “The Exchange of Secret Keys” (see 111).
(1). In the original protocol, one party may halt the exchange and have a 2 to 1 expected time
advantage in computing the other party’s secret. To solve this problem, when there is a particular
point in the exchange where this time advantage may be critical, we presented at CRYPT0 83
(see IS]), a method for exchanging “fractions” of a single bit.
In this paper we extend the method so as to apply it to all bits to be exchanged, and show how it
can be used in a more abstract setting (as in 121).
(2). We also present a solution to the problem of how to ensure a fair exchange of secrets when
one party in the exchange is ”risk seeking”, while the other is “risk-adverse”.
Notatlon:
We use
Introduction:
The following scenario occurs in both [I] and [2].
There are 2 parties A (Alice) and B (Bob).
Alice holds n pairs of rn bit long secrets

< a(1,1), a(1,2) >, < a(2,1), 4 2 4 >, ... , < a(n,l), a(n,2) >
Bob knows exactly one secret from each pair, while Alice does not know which one he knows (this
condition can be achieved using an “oblivious transfer” protocol as in (21 and [4\).

Similarly Bob has n pairs of secrets denoted
< b(l,l), b(1,2) >, ... , < b(n, l) , b(n,2) >
Alice knows exactly one secret from each pair, etc.
Each party is eager to know both elements of any pair of his counterpart’s secrets. In Blum’s
”Exchange of Secret Keys” such knowledge allows one to factor (i.e. obtain the secret key of an
RSA/Rabin or Goldwasser/Micali public key crypbsystem). In the Even/Goldreich/Lempel
“Randomized Protocol for Signing Contracts” knowledge of a pair constitutes having a signature
to the contract.
We assume that computing a secret can only be done by an exhaustive search of the secret space
(the set of m-bit long strings).

to signify exponentiation, i.e. 2*k represents 2 raised to the kth power.

*Research sponsored in pan by the National Science Foundation C n n t MCS 82-04506

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPT0 ’84, LNCS 196, pp. 434-438, 1985.
0 Springer-Verlag Berlin Heidelberg 1985

435

Both Blum and Even/Goldreich/Lempel apply the following protocol, in order to reach con-
current knowledge of one pair of secrets:
For k=l to m do

(1). Alice sends the kth bit of each a(i,j)
(2). Bob sends the kth bit of each b(i,j)

Note that in order to prevent the counterpart from getting any pair of secrets, a dishonest party
must send incorrect bits for at least one element in each pair. But the chance of getting away
with this is 1/2^n.
If both parties follow the protocol properly each can compute a complete pair of their
counterpart’s secrets in about the same amount of time. However some problems arise which we
discuss in the following sections.
Flrst Problem:
If Bob halts the protocol after Alice sends the kth bits of her secrets then Bob has a 2 to 1 com-
putational advantage. He needs only search through a subset of 2^(m-k) possible secrets to com-
pute a pair, while Alice needs search a subset of size 2‘(m+ I-k) (twice as large).
In [S] we discussed several methods of exchanging fractions of a bit when there is a key bit that
crucial. MicaIi/Luby/Ftaclcofl have alm written a very nice paper on exchanging a secret bit using
a different approach (see[3]).
We here extend one of the methods in IS] so a5 to carry it out throughout the exchange, keeping
Bob’s computational advantage at any point below a predetermined amount.
The method (an example)
We first illustrate the method by giving an example.
Bob and Alice agree that the maximum computational advantage will be 5 to 4 (instead of 2 to 1
as in the original protocol).
For each a(i,j), Alice stores the strings
000
001
010 *
011

100
101

110
111
Exactly one of these strings corresponds correctly to the first three bits of a(i,j), say 010 (marked
with a * for reference).
Bob acts similarly.
Now a series of exchanges takes place.

For each a(i,j) Alice sends the message:
the next three bits of a(i,j) are not xyz (say not 101 for example).
Bob responds similarly.

Note that after Alice sends her messages Bob has first an 8 to 7, then a 7 to 6, then a 6 to 5, then
a 5 to 4 edge (in the ratio between the size of the secret space Alice has to search and the space
Bob has to search).

436

When only half the original strings remain, say for example
001
010 *
110

111
8 new strings (for each a(i,j) etc.) are created by adding 0 or 1 to the old strings. We get:
0010

001 1

0100

0101

1100

1101

1110

1111

Note again (-at exactly one of these strings corresponds to the correct first 4 bits c - i(i,j).
The exchange then takes place again until 4 strings remain (for each a(i,j)), 8 new strings are
created, etc.
Note that the maximum computational advantage for Bob is 5 to 4.

Note that the chance of getting caught cheating by sending incorrect strings is exactly the same
as in the original protocol: each time incorrect information is sent the chance of being detected is
50%.
A more formal deaeription of the method:
(1). Decide on an acceptable integer k , where the maximum computational advantage will be
(2^k)+ 1 to 2-k.
(2). For each a(i,j) and b(i,j) store the 2^(k+ 1) strings of length k+ 1.
(3). Repeat until done:

For x= l to 2-k do:
Alice sends a string, for each a(i,j)
Bob sends a string, for each b(i,j)

End {For}
Alice and Bob create 2^(k+ 1) strings, for each a(i,j) and b(i,j), by adding 0 or 1 to the 2-k
unsent strings.

End (Repeat)
Time/apace comptexity of the method:
With k chosen as above, there are o(n*(Z^k)) strings of length <= m to be stored. So memory
needed is o(n*m*(2^k)).
Time needed is o(n*(mA2)*(2-k)). We present later a slightly more complicated version of the
method which may require an additional log(m) factor.
Suggested modification of "The Exchange of Secret Keya"
ShamirlGoldreich have announced a method for breaking the original exchange of secret keys
protocol. We suggest that the protocol should be modifed in two ways:
(1). In the original protocol a(i,l) and a($) are distinct square roots of some quadratic residue Xi
modulo Alice's public key, where Bob chooses Xi. We suggest that Alice should choose Xi a t ran-
dom and send Bob a root via oblivious transfer (see 141).

437

(2). In the original protocol Alice sends the bits of a(i,j) in order, Rnrt, second, third Instead
the location of the next bit to be sent should be chosen randomly from the unused locations. The
method described above for sending less than a bit fits well into this type of scheme and will be
described brielly by means of an example.
The method modified to be more random looklnngr
Suppose we set a 5 to 4 advantage limit.
For each a(i,j) we create 8 strings (say the bit length m=ZO). First choose a random location, say
5. Create 2 strings

0 - - - - - - - - - - - - - - -
- - - - I - - - - - - - - - - - - - - -

Note that exactly one of these strings corresponds correctly to the bits of a(i,j).
For each string create '2 new strings by choosing a random location and filling it with 0 or 1.
_ - _ _ 0 - - - - - - - - - 0 - - - - -
- - - - 0 - - - - - - - - - 1 - - - - -
- - - - 1 - - - - - 0 - - - - - - - - -
- - - - 1 - - - - - 1 - - - - - - - - -

Note again that exactly one string corresponds to the real a(i,j).
Repeat the above process for each of the 4 strings:
- - - - o - - o - - - - - - 0 - - - - -
_ _ - _ 0 - - 1 - - - - - - 0 _ _ _ _ _
_ _ - - 0 - - - - - - - - - 1 - - - 0 -

0 - - - - - - - - - 1 - - - 1 -
_ - _ _ 1 - - - - - 0 - - - - - o - - - _ _ _ _ 1 _ _ _ - _ 0 - - - - -
- - - - 1 - - - - - 1 - 0 - - - - - - -

438

And so on. At each step exactly one string corresponds correctly to a(i,j).
Rkk seekhg VE. Rkk Adverrc
We showed that the expected time for computing a secret can be made reasonably equal for both
parties. However this may not be enough to discourage "risk-seeking" parties which may try to
exploit the fact that the variance is large.
Let Ta and T b be random variables representing the time Alice and Bob need to compute each
other's secret. We z s u m e Ta and T b have identical uniform distributions on some interval 1 to
K. Neglecting insignificant terms (as we will throughout this analysis) we get E(Ta)= K/2.
Let Y=Ta-Tb. Then E(IYI)= K/3. So there is a good chance that if Bob halts the protocol at a
certain point, he will discover Alice's secret well before she discovers his.
Note E(YA2)= (KA2)/6, or E(Y-2)= 1.5*(E(Ta))^2
One solution to this problem is to modify the nature of the secret. We take a large number, say
X, old secrets. The new secret is defined to be knowledge of all X old secrets (there are interest
ing crypto-systems based on using a large number of keys, see [S], so this idea is not far fetched).
Note that Ta is now the sum of X uniformly distributed random variables. If Y=Ta-Tb as before,
we find that E(Y*2)= (1.5*(E(Ta))^2)/X as opposed to 1.5*(E(Ta))"2 in the previous case. So the
squared distance Ta-Tb is reduced by a factor of X. So the expected distance between Ta and T b
can be reduced t o any level desired.
This is somewhat analagous to flipping a silver dollar as opposed to flipping 100 pennies ... If
Alice gets the heads and Bob gets the tails then in each case they expect to get 50 cents, but in
the first case the variance is larger.
Overall costs are multiplied by a factor of X if this method is used.
Acknowledgements:
Oded Goldreich made many helpful suggestions.
References:
ill. Blum, M. "How to Exchange Secret Keys", ACM Transactions on Computer Systems, 1983.
121. Even,Goldreich,Lempel "A Randomized Protocol for Signing Contracts"
13). Micali,Rackoff,Luby "The MiRackoLus Exchange of a Secret Bit", 1983 FOCS
141. Peralta,Berger,Tedrick "A Provably Secure Oblivious Transfer", Eurocrypt 84

151. Tedrick,T. "How to Exchange Half a Bit", CRYPT0 83
161. Tedrick,T. "Some Advantages of Using Many Keys in Public Key Encryption Protocols"

