A MESSAGE AUTHENTICATOR ALGORITHM SUITABLE FOR
A MAINFRAME COMPUTER
Donald Watts Davies
Independent Consultant,

Sunbury on Thames,
Middx, UK.

INTRODUCTION

Authenticators are widely used to protect payment messages
against active attack. They produce a number, sometimes called a
'MAC' which is a function of the whole message and a secret key.
the earlier name for them in banking was 'test-key', but this

obsolescent term is confusing to cryptographers.

Several algorithms now in use, such as that of S.W.I.F.T. and the
Data Seal are not revealed to the public. Authenticators based
on the DEA 1 and the DSA algorithms (decimal shift and add - for
decimal calculators) are public but neither is well adapted to

mainframe computers.

Bankers Automated Clearing Services (BACS) suggested the need for
a 'mainframe authenticator' and together, with a colleague, David
Clayden, we developed this one, known in banking circles as

TMAAT'.

The algorithm attracted the attention of the 'Test Key Working
Party' of the CLCB (Committee of the London Clearing Banks) who
arranged for independent testing of the algorithm. It is also

being considered by an ISO working group.

G.R. Blakley and D. Chaum (Eds.): Advances in Cryptology - CRYPTO ’84, LNCS 196, pp. 393-400, 1985,
© Springer-Verlag Berlin Heidelberg 1985



DESCRIPTION

The definition of the algorithm is contained in an NPL Report
DITC 17/83 dated February 1983 with the same title as this paper,
by D. W. Davies and D. 0. Clayden. All I can do here is to
sketch out its structure. Serious Study requires a copy of the
definition. NPL is the UK National Physical Laboratory at

Teddington, Middlesex, TW1I1 OLW, UK.

The key has two numbers, J and K, each of 32 bits. All words
used in the algorithm are 32 bits long. When a new key is

installed, a key calculation called the 'Prelude' produces 6
numbers X , Y , V , W, S, T which are used in the rest of the

0 0 0
algorithm. The choice of J, K is unrestricted.

Multiplication is the principal tool of this algorithm and is
32

used in two varieties, modulo 2 - 1 and modulo 2 - 2. The

prelude is mainly the following calculation:-

! )

X = J (1) XOR J (2)
0
5 5 2
Y = [K (1) XOR K (22-’(1 + P)
0
6 6
v = J (1) XOR Jd (2)
0
7 7
W = K (1) XOR K (2)
8 8
S = J (1) XOR J (2

9
T = K (1) X0R K (2)



395
32 32
Where 1 and 2 refer to the two moduli 2 - 1 and 2 - 2

respectively and XOR is bit-wise on a 32 bit word.

The eight bytes J,K are first treated by a procedure to replace
any byte whieh is 0000,0000 or 1111,1111. A vresultant number
P records the changes made and its use in calculating Yo avoids
reducing the key space. The pairs XO, YO; VO, W and S,T are

similarly treated to remove runs of zeros or ones before they are

used in the body of the algorithm.

The main part of the calculation (we considered calling it the

Fugue) takes in the message in blocks M of size U4 bytes and, for
i

each one repeats the steps in Figure 1. The variables X, Y, V

are initialised to X , ¥ and V respectively. For each block, V

0o (0] 0]
is cyclic shifted left one bit and XORed with W to produce E.
32
The + operations are modulo 2 . The constants 4, B, C, D are

used in the logical operations to set 8 bits of each numbers (F
and G) to fixed values. The aim is to avoid bytes of all zeros
or all ones in the multipliers F and G, as well as to introduce
non~linearity. The two multiplications with different moduli

complete the round.

The authenticator value to be produced at the end of the
calculation is simply Z = X XOR Y, but after the last message
block has been used, the numbers S and T are used as message
blocks for two rounds (as if appended to the message) before the
final XOR operation. This last part, producing Z, is called the

Coda.



396

Ve

pd w Y
M{——3 XOR XOR xR f—— M
E

+ | +
oR B A ar
»mr—o C = AND
G F

X O x@

X Y
EIGURE L

PERFORMANCE

Since this algorithm is designed for a 32 computer containing a
multiplier, the performance figure, for a typical IBM
configuration would be of interest. But in the time that haé
passed since the report was published, no such measurements of
performance have been reported to us. An assembly language
program for a microcomputer (2 MHz 6502 = BBC Micro) takes 47 ms
for the prelude and coda and 5.92 ms for each block of message
(675 byte/s or 5405 bit/s). Since this uses a programmed multi-

plication it is not the way that MAA was designed to be used.



397

TESTING

We have no positive reason for confidence in the security of the
algorithm but at each stage of testing we tried all the

input/output dependancies and statistical distributions we could
think of. We also used a zero message and some constant messages

(such as all ones) and looked for loops.

Most of the testing was done with altered versions of the
algorithm deliberately weakened in someway. For example, we
demanded in most cases that both the X and the ¥ values should
show good statistical properties (and confirmed the results with
Z). We reduced the number of fixed bits in A, B, C, D and
removed E & S and T, though not all these at the same time. For
sensitivity to key changes we varied separately the six outputs

of the prelude, before testing with the prelude in place.

At several stages of development, problems were found and fixed,
but we found the fixes had to be carefully thought through to
avoid bringing back old problems. When all our weakened tests

were passed we tested it again in its complete form.



398

PROBLEMS

Two problems have been pointed out. If X becomes zero and M_
remains zero then X remains zero. If yod know X you could m;ke
M~ = X and engineer this zero value. If both X and Y becomes
z;ro and M. remains zero then X and Y remain zero. In this last
case any s;t of consecutive zero message blocks can be inserted
without changing the value of the authenticater. This is indeed
a flaw but can anyone suggest how an opponent would use it, not

knowing when X = ¥ = 0, a very rare event?

The second problem was posed by H. Block of SAK Data AB in 'File
Authentication - A rule for constructing algorithms', at
Eurocrypt 84. If all the M‘ are fixed, each round of the main
loop maps (X,Y) into (X,Y) ;ith a mapping that is injective. For
an approximation, assume that these are random mappings. Now
imagine that gzu early blocks in a very long sequence are varied

so that all 2 states of X,Y are attained at some point in the

sequence of rounds. With constant M values thereafter, each

i
mapping reduces the number of attainable states. When it falls
34
below about 2 , there is a significant risk that values of 2
32
will be missing from the set of 2 . Eventually, the 'memory'

of these early changes of M will be lost. Bleock concludes that
i

injective functions should never be used. He thinks that the

problem may be worse than we see when random mappings are

assumed.



389

During the testing of the algorithm with 'toy* examples this.
effect was detected and (though with only a few cases to estimate
from) its magnitude agreed with the theoretical value for random
mappings, so we are content to rely on that theory. If we used
the argument that 'it might be much worse' this would disqualify

all but provably secure algorithms, of which there is a shortage.

ANALYSIS OF THE 'LOSS OF MEMORY' PROBLEM

Suppose that the number of states is N and that a set X of these
i
is mapped by a random mapping into the same domain, giving X

i+t
distinet states. Then approximately (Poisson distribution)
X /N = 1 - exp (-X /N)
i+l i
If the sequence is evaluated, starting at X /N = 1, it follows,
o
to a close approximation:
X /N = 2/{i + 1/31n(i) + 9/5}
i
64 32
In the example of the MAA, N = 2 and xg3 = 2 is reached
approximately when i = 2% N

With, say, 10 blocks of data in

q .
the message (4 x 10 bytes), there should be no perceptible
effect. In fact, to measure the effect would require a sample of

33
much more than 2 blocks.



6
We have suggested an arbitary, but very safe upper limit of 10

blocks for any one message. Other considerations (error control

and recovery) usually set a lower limit then this.

Acknowledgement is made to the National Physical Laboratory for
supporting this work and to Open Computer Security for help with

the presentation of this paper at Crypto '84.



