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Interest in the cryptanalysis of the National Bureau of Standards’ Data Encryption 
Standard (DES) has been strong since its announcement. Here we describe an attack on a class 
of ciphers like DES based on linear factors. 

If DES had any non trivial factors, these factors would provide an easier attack than one 
based on complete enumeration. Basically, a factor of order n reduces the cost of a solution 
from 2s6 to 
machine from 20 million dollars to 10 million dollars: a 10 million dollar savings. At best 
(n-281, even without iteration, the method could reduce the cost from 2s6 to 228+228: a 
computation well within the reach of a personal computer. 

A t  worst (n-1 or 551, this reduces the cost of a Diffie-Hellman search 

Alas. DES has no such linear factors. 

INTRODUCTION 

The basic idea here is an elaboration of a trivial idea, too good to be true. If, for each 
distinct value of the key, DES mapped the plaintext blacks into the ciphertext blocks linearly, 
one could deduce the matrix of that linear transformation from a small number of corresponding 
plaintext/ciphertext blocks. Similarly, if the dependence of the ciphertext on the key was linear, 
one could solve for the key. Unfortunately, the S boxes introduce strong nonlinearities: each bit 
output from each S box can only be represented by polynomials (in 6 variables) over GF(2) with 
many terms (for a discussion of these representations and their connection to coding theory see 
121, chapters 2,13,14). 

The current elaboration is that there might be three special linear functions of the 
plaintext. ciphertext and the key respectively such that the mapped ciphertext depends only on 
the mapped plaintext and mapped key. If the mapped key has lower dimensionality than the 
unmapped key, one can attempt to solve the mapped cryptosystem (possibly by brute force 
search). 
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This mapping behavior is called cryptosystem fuctorizotion. In general, a cryptosystem 
consists of a plaintext space, a key space, a ciphertext space, and a family of invertible maps 
indexed by the key space. W e  say that cryptosystem A is afucror of cryptosystem B if there are  
maps (called factor maps 
enciphering and deciphering actions of cryptosystem A can be recovered from those of 
cryptosystem B using the factor maps. If the factor mappings are linear functions we say A is a 
linear factor of B. If the key space of A is smaller than that of B one can profitably break B by 
first breaking A. 

between the plaintext, key, and ciphertext spaces such that  the 

There is no special reason to suppose that the DES has any factors, linear or not. But if 
it had they probably would have the same general round-by-round flavor that DES itself has. 
This paper shows that  the individual round of DES has no linear factors. 

DES NOTATION 

DES is a product cipher. The key dependent transformation that DES induces on the 
plaintext is a product of a family of (involutory) transformations p and hi.  If L and R are the 
two 32 bit subwords of a 64 bit input, we have* 

p : LR 1-RL 

and 

and, 

* The sign "+" in this paper denotes addition. Here, we do addition in at least three different rings: the ordinary 
integers [1+1--21, GFt2) [l+l=Ol,  and vector spaces over GFC?) [(l ,O,l , l)~(l , l ,O,l)-(O,l . l ,O) 1. TO 
emphasize that we are interested in the arithmetical properties of the "+" operator. we use + in all three Cases. 
We rely on the reader to distinguish which ring (and hence which operator) is being used in any given equation. 
In the second disphyed equation, for example, the first plus denotes addition done in the vator  space of 
dimension 32 over GF(2); the sccond plus refers to arithmetic done in the vector space of dimension 48 Over 
GF(2). Readers who are not familiar with DES will see in a few paragraphs why the rings in the second 
equation are what we say  they are. 
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0 1  L 

The transformation IP consists of a permutation of the input bits; it has no cryptographic 
significance and need not be mentioned any further. E, P and the S boxes Sl ,..., s8 are defined 
in [ 1 1  and will be discussed in more detail below. ki (i-1,2,3, ..., 16) is a 48 bit subkey for round 
i derived from a 56 bit key k according to a key schedule described in 111. We refer to the 
composed map ui - 4,. as a “round” of DES. Note that DES is composed of 16 encrypting 
rounds with the switch of the 32 bit subwords suppressed in the final round. 

Denoting the vector space of dimension n over GF(2) by V,, we have: 

R 

E :  V32 + V48 

E is the expansion matrix which takes x - (xl, . . . , x j 2 )  to GiE(lf. . , . , x ~ ( ~ ~ ) ) .  The function f 
is obtained by applying successive S boxes to the successive six bits of the argument and then 
applying the permutation matrix P to the resultant vector, i.e.: 

y - 61b1, . . . ,x6) ,  . . . .sg(x43, I . .  .x48)) 

It is convenient to employ another set of equations to describe DES. Setting x o  - E ( L ) ,  
x 1  - E ( R )  and x 2  = E C L + f ( ( E ( R ) + k , ) ) ,  we can write a recurrence based on the second 
column of the table above. 

where 
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In fact, if we write down all 16 rounds (and perform an extra switch of the two 32 bit subwords 
at the end), we see that  

given the obvious definition for xi  for i - 1,2, ..., 16. With this notation, the output of the DES 
algorithm consists of two 32  bit subwords of X I 6  and x I 5 .  

PER ROUND LINEAR FACTOR OF TYPE A 

For reasons that will become clear momentarily, we would like to find a matrix A ,  and a 
function $ such that 

A d x )  - $ ( A x ) .  ( 3 )  

for all x. Under these conditions, we say we have an Afacror, in honor of A occurring in 
equation (3) above. If (11, (21, and ( 3 )  hold, 

+ AXi-1 = $(Ax,+Ak,) 

where yi - Axi , fi - A k i .  Equation (4) is identical in form to equation (21, so the pairs (yi,li) 

form a new cipher system. We call this the “mapped” cipher system. yo.y I form the mapped 
plaintext, y15 and y16  form the mapped ciphertext and the li are the mapped per round keys. 

Let KS, be the key schedule matrix for round i,  then the map 

k I- (KSl(k),...,KS,,(k)) 

has an image (in v 7 6 8 )  of dimension 56. If the corresponding key schedule for the mapped 
cipher, given by 

(-4 KS,(k)  ,,.., A KS,,(k)) 1 - (1, ,..., l l J ,  

has dimension n (0 < n < 561, we can recover the original key as follows. Search over the 
mapped keyspace to find the 1 producing the correct behavior in a transformed plaidciphertext 
pair. This costs 2“ time. Then go back to the original cipher, looking for the key k in the w e t  
of the null space of A mapping to 1. This costs 256-n time. Total cost: 2” + 256-n. 

We need some more notation for later, most of the notation concerns projection operators 
of various sorts to wit: 
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LOOKING FOR AN A 

Now we show that  no such non trivial A exists. The following characterization will 
facilitate the search for A .  Statement 1 is the one we want for cryptanalysis. Statement 2 is 
easier to verify; statement 3 is still easier to verify. 

THEOREM 1. Suppose A:V 4 V and 4:V + V, with A h e a r .  The following are 
equivalent. 

1. There is a $:W + W  such that Aq5(x)=$(Ax). 

2. If Ax = Ay then A&c) = A&). 
3. For all x in V, &X(NA) LN,. 

PROOF. 3 ->2: If A x  - A y ,  A (x -y )  - 0 so x-y is in NA. By the conclusion of 3, 
A ( ~ ( z + ( x - ~ ) ) - ~ ( z ) )  - 0 for all z in V. Setting z = y and distributing the A ,  we get 

2 ->3: If z is in N A ,  A ( x + z )  = A h )  for any x ;  so, by 2, A + k + z )  - A&). Thus, 
A @ ( x + z ) - & ~ ) )  - 0; so 9(x+z)-&) is in N A .  
I ->2: A (d(x)-&)> - $c.(Ax)-$&y) - 0, the last equality follows from 1 if x - y .  
2 -> 1: Define $ ( A x )  - A 4 k ) .  W e  need only show that the given map is well defined. If 
Ax - Ay, AqLdx) - A+(y) ,  so the map is well defined. Note that W is just the image (in V) of 
A. This condition insures that  the diagram below commutes. 

A&) - AI#J(y). 
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* w +  w 

Commuting diagram for 2 -> 1 

By Theorem 1 (31, we want to look for subspaces S satisfying the following condition. 

CONDITION S. +x 6) ES for all x in V. 

THEOREM 2. Let T i ( a )  - span( Si(a+b>-Si (b)  , ail 6 in V6). If i Z 4 and a # 0 
then Ti ( a )  is V"'). If i-4 and a # 0, Ti ( a )  is one of two 2 dimensional spaces, a 3 
dimensional space or the entire 4 dimensional space, 

PROOF. A simple computer program was written to verify these. 

THEOREM 3. Suppose S is a subspace satisfying "condition S'. Further. suppose there is 
a y in S with pi (y)  + 0. If i # 4, W(') C S; if i-4, S contains at least a two dimensional 
subspace of W(;) .  

PROOF. Suppose u,v are in V(i). Then by condition S, 

U *  ~ ( . Y + u ) - $ ( u )  EP(S,(p,(u+y))-S,(p,(u)), . . . ,Ss(pi(~+y))-Ss(pi(~))) 

and 

are in S. u*-v* must also be in S and pj(u+y) = pj(v+y) = p j ( y )  if j # i. So, 

u'-v* - EP (O,O, ..., o+sj (p; (u +y)>-Si (pi (u))-S; b; (v+y))+Si hi (V)),O, ..., 0) 

is also in S .  Setting 

T (u ,v) - s; (p; (u +y ) 1 -si (p; (u 1) -sj bi (v +y )) +S' (pi (v) 1, 

theorem 2 tells us that span(T(u,v): u , v E  Y ( i ) ]  is all Y(;) if i f 4 and is at least a two 
dimensional subspace of VG') if i-4. Thus, if i Z 4 S contains EP(VO") - F@; if i-4, E P G )  
is (at least) a two dimensional subspace of W(i ) .  QED. 

REMARK. We say output block k is affected by input block i if at least one of the bits of 
V ( k )  is calculated using S box i. EP switches and expands outputs from the S box calculation SO 

its easy to see that output block k is affected by input block i iff @)n W(')#O. 
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In block 

1 

2 

3 

Out block (round 1) Out block bound 2) 

7,4,2,5,6,8 all blocks 

6,8,3,7,5,1 all blocks 

5,1,4,6,7,2 all blocks 

4 

5 

I 8 I 2,6,3,1,7,4 all blocks I 

7,2,5,8,3,1 all blocks 

3,1,2,6,4,8 all blocks 

LEMMA. Suppose S is a subspace satisfying “condition S” and suppose i # 4. If a 6 bit 
output block k is affected, during the calculation of 4 ( x ) ,  by a bit from a six bit input block i 
and if S contains a y ,  such that  p i ( y )  # 0, then W(k)GS provided k $ 4. If k-4, there is at 
least a two dimensional subspace of Wy(k) contained in S. 

PROOF. If output block k is affected by input block i, pk (W“) n Vc(k)  f 0. Since 
pi(y) f 0, theorem 3 yields W(’) 5 S; this, in turn, means there is a y in S such that 
pk ( y )  f 0. Applying theorem 3 again, we get W ( k )  !Z S ,  if k # 4; if k-4 there is a two 
dimensional subspace,W, FV ‘G S, with W S; W ( k ) .  This is exactly what the lemma claims, so 
we are done. QED. 

THEOREM 4. If S is a subspace satisfying “condition S’ and S f 0 then S - W. 

PROOF. We prove this by pumping up S to W. Suppose S f 0, then there is an i 
(1 < i  G8) and a y  in S with pi(y) f 0. 

For the sake of simplicity, let’s assume i-I ,  so p , ( y )  f 0. By theorem 1, W”)  S; S ;  by 
the Lemma, W(k)  E S, for k - 2,5,6,7,8 and, in addition, there’s a t  least a 2 dimensional 
subspace of W(4) in S. Now, W”) G S so by reapplying the Lemma, we get dk) S; S, for 
k = 2,3,5,6,8. To recap, p I ( y )  f 0 implies that W ( k )  E S for k f 4. 

2 (WCk’ n V(4))=V(4). It’s easy to see that Y(4)  G S implies W(4) S; S. Thus W(k)  C s 
k-1.3,5,6,8 
for 1 6 k 6 8, hence S-W. 

For values of i other than 1 and 4 the argument in the preceding paragraph applies 
mutatis mutandis. If p 4 ( y )  # 0, the table and Theorem 3 show that W(4) n Y(”) f 0 for some 
n in (1,2,3,5,7,8}. Thus, for some y in S p, (y )  # 0, for some i # 4 provided only that S f 0. 
By the above argument, S - W. QED. 
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REMARK. The proof of the theorem above basically “reapplies” the mapping 4, (y>  for 
non zero y in S until 4x gobbles up S. 

EXTENSION TO AB FACTORS 

We have called the sort of per round linear factor discussed above an A factor. in honor 
of the equation 

A 4 ( x )  - $&XI 

which holds for all x. A fancier kind of factor is the ABfactor, which we now discuss. Here we 
suppose we are given a pair of linear maps A and B, and a possibly non linear function $, so that 
for all x both of 

hold. Clearly an A factor is an AB factor: just let B .. A. 

A non trivial AB factor can also be used to solve the DES. One applies A and B 
alternately to the DES rounds. Let 

Ti - A 
if i is even and 

if i is odd. Then 

Ti - B 

li - Ti ki 

as in equation (4) above. This is a factor cryptosystem of DES type, but it may have a smaller 
keyspace. 



385 

Unfortunately, if a n  AB factor exists, so does an A factor. This follows from the 
following fact, whose proof is easy: 

THEOREM 5. Let 

be maps between vector spaces, 4, J.l, and $2 not necessarily being linear. Suppose, for all v in 
V we have 

and 

Then there is a vector space W and a linear map A:V + W and a function J.:W 4 W such 
that for all v in V. 

PROOF. Let W - W18W,. Then A ( v )  = (T1(v ) ,T2(v ) )  and 
$(wl.w2) - (JII(wl).$2(w2)) satisfy the conclusion of the theorem. QED. 

EXTENSION TO aj3y FACTORS 

Stepping back a moment, we might say that the point of the above attack is to find a per 
round linear relationship among the bZainlext,cipherlext,key) triples. If we don’t insist that the 
relationship be linear, a broader attack may hold. For example. wnsider the following, which we 
call an a& factorization. 

Let ai be a basic enciphering operation (like a round of DES) depending on the key bits 
k, Then the plaintext 
we can find a, 8, and y with y linear satisfying 

is converted to the ciphertext x, by the iteration xi+,  * ai(xi). Suppose 
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(Equivalently, we might require 

a(x)+a(ai (4) - @(ai(x))+8(x) 

instead of (61.) Now we can apply (5) to the enciphering equations, yielding (term by term) 

a(xi)+@(xi+l) y(kj) 

and, on summation, 

Rearranging and using (2) and canceling terms appearing an even number of times, we get 

i-0 

when n is even and 

when n is odd. Belaboring the point, we might write 

or 

n-I 

i-0 
@(plaintext) + akiphertext)  = 2 y(ki). 

(7) 

(8a) 

(8b) 

TO use such a relation to help find the key, suppose we are trying to find a key in V,. Let 
W be the k-1 dimensional subspace satisfying (8a) or (8b). Instead of searching all elements in 
v k ,  restrict the search to elements of W. This produces a computational savings of M; if many 
such relations can be found, determination of the key (even for a large keyspace) would be quick 
and painless. 
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Whether a$,y satisfying (5) and (6) exist is a deep question. Sometimes their existence 
and discovery are not too difficult. For example, Equation (6) automatically holds if (5) holds 
and ui is an involution. Significantly, it is easy to show that (6) also holds for a round of DES 
(where ui=yAi) if (5) holds with ui - ki and a(p(x))+@(p(x)) = a(d+j3(x). If an S box had a 
non trivial affine dependence, we could manufacture such functions in the following manner. 
Suppose we had 

MS(X) + L ( x )  - 0 

for some S box S with M and L matrices of size 1 x4. Set a - M and j3 - y - L. As a 
consequence of the above relation, we have 

or since 0-7 is linear 

It is easy to see how to modify a,@ and y when we replace S by the ui of DES. 

Once again, no S box has this linear property. But this begs the larger question: Do any 
such aJ,y exist for DES? Unfortunately, it can be shown that any afly factor already takes this 
form. To see this, it will be convenient to switch notation. Writing a round of DES as 

(x,y) I - (y,x+f(y+k,)) 

equation (5) becomes 

f, being the cryptographic function defined in the section on DES notation. Now set y = 0, and, 
as before, let 
V j 2 .  Now make the following definitions (Caution: the f below is not the same as the f in 
equation ( 5 ) ;  also, remember that P is not the P defined in the section on DES notation.) 

- Ef b). Let P be a quasi inverse of E on V,,, i.e., PE ( x )  - x for x. in 

g ( x )  - a(Px,O) 

Then for all x and y in W (=V48). 

We now show that the above equation holds only i f f  is affine. 



THEOREM 6. Suppose +:W + W and that for all x .  y in W 

f ( x + + ( y ) )  - g(x) + h ( y )  

where h is linear and g ( a )  = 0 for some a in W. If Image(+) is an abelian group thenf is 
affine on Image(+). Since f is affine and h is linear, g is also'affine. 

Since we are in GF(21, 

g(a )  = 0 and (*I imply 

Since the image of + is in W and CI is in W, we can set x = a + +(y2)  yielding 

f ( d y  1) ++(y 2 )  +a 1 = f (a ++(y +f (a +dJ(y*)) +f (a 1 

Finally, since Image(+) is an abclian group, for all u l ,u2 in Image($),- we can find y l y z  in w 
with u1 = +(yl), u2 = 4(yZ) giving: 

f(u1+u2+a) - f ( a + u J  +f(a+u2) + c. 

as claimed. 

THEOREM 7.  D S  has no per round h e a r  factors of a$,y type. 

PROOF. If DES had a per round factor of a,&y type, then by theorem 6, the factor 
functions would express a (non trivial) affine relationship among the input, output, and key bits 
of a round. Since the outputs of different S boxes are algebraically independent, it suffices to 
show that no such relationship holds among the four output bits of any of the eight S boxes. 
Application of the following lemma concludes the proof. 

LEMMA. Let S46-1)+, denote the j ' th  bit of S box i. Then for all i ,  

4 . 6  
2ajbs4(i-1)+jklp . . . ,x6)+2 1 bjxj-kd-0 

j-1 j 

implies that uj = bk = 0 for j - 1,2,3,4, k = 1,2 ,..., 6. 
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PROOF. Linear algebra applied to the truth tables of all of the output bits of all of the s 
boxes. QED. 

CONCLUSION 

DES seems to have no non trivial linear per round factor structure. It’s hard to imagine a 
non linear per round factor structure that is useful for cryptanalysis. It is barely possible DES 
has a non trivial global factor structure that induces trivial factor behavior per round but nobody 
we know has a clue about what that would look like. The conclusion is that DES will not be 
solvable by factorization. 

Nothing in this note says anything about approximute factorizations, or factorizations 
that usually hold, nor have we given up on finding non linear per round factors that yield 
tractable (non linear) constraint equations. 
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