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Abstract. New general properties in the S-boxes were found. Techniques and theo- 
rems are presented which allow to evaluate the non-substitution effect in f and the key 
clustering in DES. Examples are given. Its importance related to the security of DES is 
discussed. 

1. Introduction 

The Data Eslcryption Standard, in short the DES, is the NBS cryptographic standard 
for the protection of commercial computer data (FIPS, 1977). Since 1981, it is also an 
ANSI standard. In the meantime, it is called DEA by ANSI (ANSI, 1980), and it is yet 
in use in many industrial applications. Recently it has been proposed to become an Is0 
(International Standard Organisation) standard under the name of DEAl (ISO, 1983). 

There exist severaI reasons to explore the internal structure and the functional prop- 
erties in the DES. 

1. It can help to  understand the DES. Remark that the design criteria of the DES 
are still classified (Bernhard, 1982). 

2. A better understanding of the DES can have two consequences: on the one hand, 
the detection of weaknesses can speed up a cryptanalysis attack. The detection 
of inherent strengths will on the other hand simplify the task of defining new 
standards when they will be needed. 

3. The structure can be used in order to simplify or to speed up hardware and 
software implementations. 
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To achieve the proposed goals, we first survey (section 2) the technical description 
of the DES as it appeared in the NBS publication. The reader, who,knows the NBS 
description of the DES, can skip section 2. As the full description of all functions in the 
DES is very long, we refer to the literature (FIPS, 1977; Konheim, 1981; Meyer & Matyas, 
1982; Morris & al., 1977) for these functions. 

In section 3 general properties in the S-boxes and in the key scheduling will be 
combined. 

We analyze several functions in order to combine their properties. As a consequence 
this can be used to  find different cleartexts €or which the function f in the DES gives the 
same output. These results can also be used to analyze the key clustering in the DES. 
It means to verify if there exists different keys which gave €or most cleartext the same 
ciphertext. 

2. NBS description of the DES 

The DES algorithm, as described by NBS (FIPS, 1977), consists of three fundamental 
parts: enciphering computation, calculation of f ( R ,  K )  and key schedding calculation. 
They are are briefly described below. 

First observe that several boxes are used in the DES algorithm. It would be a too long 
explanation to give the details of all these boxes; it can be found in the NBS description. 
The kind of boxes (e.g. permutation) will be mentioned. Remark that the input numbering 
starts from 0 for some boxes and from 1 for the other ones. 

In the enciphering computation, the input is first permuted by a fixed permutation 
IP from 64 bits into 64 bits. The result is split up into the 32 left bits and the 32 right 
bits, respectively L and R. Then a bitwise modulo 2 sum of the left part L and of f ( R ,  K) 
is carried out. After this transformation, the left and right 32 bit blocks are interchanged. 
Observe that the encryption operation continues iteratively for 16 steps or rounds. In 
the last round, no interchange of the last obtained left and right parts is performed; the 
output is obtained by applying the inverse of the initial permutation ZP to the result of 
the 16th round. 

In the calculation off( R, K )  the 32 right bits are &st expanded to 48 bits in the box 
E ,  by taking some input bits twice, others only once. Then a bitwise modulo 2 s u m  of the 
expanded right bits and of 48 key bits is performed. These 48 key bits are obtained in the 
key scheduling calculation, which will be explained later on. The results of the modulo 2 
s u m  go to the eight S-boxes; each of these boxes has six inputs and four outputs. The 
S-boxes are nonlinear functions. The output bits of the S-boxes are permuted in the box 
P. 

Let us finally describe the key scheduling calculation. The key consists of 64 bits, of 
which 56 bits only are used. The other 8 bits are not used in the algorithm. The selection 
of the 56 bits is performed in box PC1, together with a permutation. The result is split 
into two 28 bit words C and D. To obtain the 48 key bits for each iteration, the words 
C and D are first Ieft shifted once or twice. A selection and a permutation PC, are then 
applied to the result. The output of PC, is the 48 bit key word which is used in f ( R , K ) .  
An additional table tells the user how many shifts must be performed to obtain the next 
48 key bits of the key for the following round. The DES c a n  be used in four modes (FIPS, 
1980; Konheim, 1981). 
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3. Propagation characteristics 

We first analyze the new properties, which we observed in the expansion phase, the 
S-boxes and the key scheduling. We combine our results with older ones (Davio, Desmedt 
& al., 1983) in order to discuss the non-substitution property in f and the key clustering 
in the DES. Let us first discuss the importance of the fact that f is not a substitution 
and of the key clustering. 

3.1. The importance of the propagation characteristics 

If f is not a substitution, for fixed key, the cardinality of the image plays an important 
role in the evaluation of the security of the DES. Indeed if the image of f contains only 
one element, the DES is completely linear. More generally, if the cardinality of the image 
o f f  is small the DES may be insecure. 

If there is a key clustering present in the DES, it may be possible that for many 
cleartexts the effect of modifying the key in a special way does not affect the ciphertext. 
If this is true for the DES it simplifies enormously an exhaustive attack. 

3.2. The expansion phase 

The expansion phase plays a very important role in this section. 

3.3. The S-bcrxes 
3.3.1. An introduction 

We observed several new properties in the S-boxes. Most of our new properties are 
valid for all S-boxes and are consequently called ‘general properties”. In the following 
sections some of these properties are used in order to analyze in which measure f is not a 
substitution and to analyze the key clustering. We did not apply all general properties in 
the following sections; perhaps in the future one will be able to explain why the S-boxes 
have these properties or to use them in some deeper analysis of the DES. 

TWO kinds of properties are discussed. In the first kind we fix some input bits of the 
S-boxes (1, 2, . . . , or 5 of the 6 possible bits). We are interested in what changes are 
propagated at the output and how? E.g. for the output one can wonder if the four output 
bits are always distinct if we change the non-fixed input bits, or if for some inputs the 
output is not affected, Secondly we discuss how the output changes if we complement 
some input bits of the S-boxes. 

We number the inputs of one S-box by abcdef as Davies did (Davies, 1981). We 
number the S-boxes from 1 to 8 and denote them as Si. Remark that representations of 
the S-boxes, other than in the NBS norm, may be useful (Davio, Desmedt 8 al., 1983). 

3.3.2. Properties of the S-boxes if some input bits are fixed 

The inputs a, b , e , f  of the S-boxes play a special role in the DES. Indeed one half 
of the message input bits in each round influences two S-boxes. These bits will go to  
the mentioned input bits. These bits will play an important role in the analysis of the 
non-substitution property of the function f in the DES. The next properties draw specid 
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attention to the mentioned input bits. The following properties can however easily be 
generalized. one  can easily verify them using a computer program. 

We number the properties by a double numbering technique, such that it is easy to 
refer to them. 

1. The observed properties hold for all S-boxes. We analyze if the output of an s- 
box can or cannot change if one modifies the inputs of an S-box in the following 
way: 

(a) fix the inputs e and f, 
(b) one is allowed to change c and d to an arbitrary value c' and d', 
(c) one changes the inputs a and b as described in the propedies, 

1.1. ~ ( V C ,  d ,c ' ,  d ' ,e ,  f : S ; ( O , O , c , d , e , f )  # S i ( l ,O ,c ' ,  d', e ,  f)), 
1.2. l ( V c ,  d,  c', d', e , f  : Si(O,l, c,d,e, f) # S i ( l , l , c ' ,  d', e, f)), 
1.3. V c , d , c ' , d ' ,  e ,  f : S i ( O , l , c ,  d , e ,  f) # Sj(l,O,c',d', e , f ) ,  
1.4. Vc, d ,  c', d ' ,  e ,  f : Si(O,O,c, d, e, f) # &(I, l ,c ' ,d ' ,e ,  f). 

Remark One can wonder why e.g. S i ( O , O , c , d , e , f )  was not compared with 
S;(O, 1, c', d',  e, f). This property is already known. Indeed it is known (Konheim, 
1981) that each row (see NBS notation) of each S-box is a permutation. In other 
words &(a,  b ,  c ,  d ,  e ,  f) # &(a,  b', c', d', e', f )  independent of b ,  c, d ,  e ,  b', c',d', e'. 
The properties described here are in fact a generalization of it. 

2. The observed properties hold for all S-boxes, except property 2.4. We analyze 
if the output of an S-box can or cannot change if one modifies the inputs of an 
S-box in the following way: 

(a) fix the inputs a and b ,  
(b) one is allowed to change c and d to an arbitrary value c' and d', 
(c) one changes the inputs e and f as described in the properties, 

2.1. l (Va,  b ,  C ,  d ,  d , d '  : S ~ ( U ,  b,c,d,O,O) # S;(U, 6, c', d',O, 1 ) ) ,  

2.2. ~ ( V U ,  b ,  C ,  d ,  c', d' : S ~ ( U ,  b, C ,  d ,  1 , 0 )  # S ~ ( U ,  b ,  c', d', 1, l ) ) ,  

2.3. i ( V a ,  6, C, d ,  c' ,  d' : S;(U, 6, C ,  d ,  0,l) # S;(a, b ,  c', d', l , O ) ) ,  

2.4. If i # 4 then: 
l ( V a ,  C,  c ,  d,e ' ,  d' : &(a,  6 ,  c ,  d,O, 0 )  # Si(a, b,  c', d', 1 , l ) ) .  
If i = 4 then: 
Va, 6 ,  c ,  d ,  c', d' : Si(a,  b, c ,  d ,  0,O) # $ ( a ,  b ,  c', d', 1 , l ) .  

Remark The properties 1.3 and 1.4 change if one also allows that the input e changes 
to  the input e'. Then it will be possible to find identical outputs for special inputs. A 
similar remark is true for property 2.4 (i  = 4) if one allows that the input b changes. 

3.3.3. Complementation properties of the S-boxes 

A well known (Hellman & al., 1976) property for the S-boxes is that if one com- 
plements one input of an S-box at least two output bits will change. We analyze the 
effect of complementing two input bits, while leaving the other ones unchanged. It is 
evident that one can easily generalize our properties for the case that 3 or more bits are 
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ab ac  ad oe af bf cf df ef 
S-box1 0 6 6 5 0 3 5 2 7 
S-box2 0 4 5 2 0 3 7 1 2 
S - ~ O X ~  0 3 2 6 5 4 5 3 4 
S-box4 0 8 0 4 0 2 4 2 4 
S-box5 0 1 3 7 0 3 4 6 4 
S-box6 0 3 5 8 1 3 5 5 0 
S-box7 0 7 2 5 2 3 5 3 4 
S-box8 0 5 2 4 0 O 4 2 3 

Table 1: shows for how many out of 32 inputs a complementation of two bits of the input 
of an S-box has no effect. 

complemented. The first aim was to  observe whether it is possible to maintain a constant 
output if only two bits are complemented. First observe that in order to maintain a fixed 
output one has to  complement bit a or f, otherwise we codict  with the permutation 
property of the ‘rows” in the S-boxes. For special abcdef inputs the output of an S-box 
remains unchanged if one complements two of the input bits. We give now the results of 
our research in table 1. 

It is remarkable for each S-box that if only ab is complemented, the output changes. 
This is however very easy to  prove starting from our properties 1.3 and 1.4 of the previous 
section. 

3.4. The key scheduling 

In our analysis of the key clustering we used in detail the key scheduling in the  DES. 
The ideas of Neutjens about the key scheduling in the DES were very useful in this context 
(Neutjens, 1983). We now survey them and explain them systematically. We number the 
56 key bits from 1 to 64 as in the NBS description (FIPS, 1977). 

First of all remark that after PC1 one can split up the key scheduling in the DES 
completely in two parts. PC2 does not affect this decomposition (Davio, Desmedt & al., 
1983). As a consequence of this decomposition, one can separate for one round in the 
DES the selection of the key bits which will influence the first four S-boxes and the last 
four S-boxes. Let us now construct the equivalent scheme. All used notations, e.g. the 
registers C and D, originate from the NBS representation of the DES. 

We represent the register content of C by (c1,c2, ..., czb)  and that of D by (4,  
d2, .  . . , &). Mostly in the key scheduling the registers C and D are shifted twice to  
obtain the Ki of the i* round, e.g. (cl, cz, c3,. . . , cza) is transformed into ( ~ 3 ~ ~ 4 ,  ~ 5 , .  . . , 
cz). This can now be  reformulated for the C register as one shift on the following two 
registers (c1, c3, c5,. . . , c27) and (CZ, c4 ,  e e l . .  . , c28). We call them respectively the odd and 
the even registers. One can then realize the key scheduling with 4 registers instead of 
two, which shift only once when in the NBS representation the registers shift twice. This 
reorganization affects the PC2. 

One has now still t o  discuss what happens if only one shift is performed on C and D 
as in the iterations 1 , 2 , 9  and 16 using our equivalent representation. The first shift in the 
first iteration can be  realized together with PC1. In the other situations we interchange 
the content of the odd and the even registers, by performing first a shift on the old content 



Figure 1: An equivalent key scheduling. 
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of the odd register and no shift on that of the even register. We then change also the name 
of each register: odd becomes even, even becomes odd. Indeed (CI ,  cs ,  c5 , .  . . , c27), ( C Z ,  c4,- 
cg, . . . , c28) is then changed into (c2, c4 ,  c 6 , .  . . , cag), (c3, c5, c7, - .  . , cl). One can verify that 
previous operations are identical to one shift in the NBS notation. 

The register D can be treated in a similar way. Remark that it is more difficult to 
perform one shift in the NBS representation. However we are able to see better which 
bits of the key affect a particular S-box. We now represent this result in tables 2-5 and 
fig. 1, where X means that this key bit is not selected by PC2. 

Let us now apply all the described properties. 

3.5. The function f is not one-to-one for h e d  E 
Let us remember here that the function f consists of the expansion box E ,  of the 

EXOR-ing with the key bits, of the S-boxes and of the permutation P .  It has sometimes 
been wondered whether the f function is by itself a substitution. The answer to  that 
question is negative (Davio, Desmedt & al., 1983; Konheim, 1981). A more systematic 
discussion is given in this section. 

We will now use the properties described in section 3.3.2. to demonstrate how they 
can be used in the analysis of the non-substitution of the function f. Evidently we 
assume that the key K is fixed. We analyze which bits of the message part R (see NBS 
notation) one must change in order to maintain the same output of the fmction f. We 
will progressively increase the number of changed bits. First we only change the inputs (or 
message part of the input) of one, two and then three S-boxes and generalize afterwards. 
We will mostly use the new as well as the well known (Hellman Q al., 1976; Konheim, 
1981) general properties of the S-boxes, together with the structure of E (Davio, Desmedt 
& al., 1983). 

Theorem 1 : If for fixed key, one only changes the input of one S-box the output of 
the function f will change. 

Proof :  In order not to affect the inputs of the other S-boxes one can only change 
the inputs c and d .  However if the inputs a and f are not changed an S-box forms a 
substitution. 

I 

Theorem 2 : If for fixed key, one changes only the input of two neighbourhood S-boxes 

Proof :  Let us call the two affected S-boxes, Si and S,+, and let us define Sg 

the output of the function f will change. 

being S1 (this again shows that it can be more interesting to start the numbering from 
0: see (Davio, Desmedt & al., 1983)). In order not to affect the input of S+l the inputs 
u and b of Si may not change and similarly for the inputs e and f of Si+1 in order not 
to affect the inputs of Si+Z. In order not to conflict with the permutation properties of 
the “rows” of the S-boxes and using the previous remark, at least the input f in S; must 
be complemented in order to maintain a fixed output. A similar remark is true for the 
input a of &+I. As consequence of the expansion box E a complementation of the bput 
e (respectively f) of S; is equal to  a complementation of the input of a (respectively b )  
of Sj+l. SO in order t o  produce a dame output we have at Ieaat to complement a and b in 
Si+l. Remark that the inputs t and d in S;+l do not influence the proof. In other words 
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Table 2: The effect of the selection of the key bits (1-64) by PCI and PC2. The first row 
of the table indicates to which input of the S boxes the key bits go. (Neutjens, 1983) 
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TabIe 3: Similar as table 2. (Neutjens, 1983) 
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Table 4: Similar as table 2. (Neutjens, 1983) 
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61 
53 

- 

- 

- 
36 
29 
21 
5 
20 
4 
55 
39 
23 
15 
62 
46 
30 
14 
61 
45 
37 

- 

- 

- 
45 
13 
5 
20 
4 
55 
39 
23 
7 
62 
46 
30 
14 
61 
45 
29 
21 

- 

- 

- 
26 
28 
20 
4 
55 
39 
23 
7 
54 
46 
30 
14 
61 
45 
29 
13 
5 

- 

- 

- 
X6 
12 
4 
55 
39 
23 
7 
54 
38 
30 
14 
61 
45 
29 
13 
28 
20 

- 
- 
40 
63 
55 
39 
23 
7 
54 
38 
22 
14 
61 
45 
29 
13 
28 
12 
4 

- 

- 

- 
31 
47 
39 
23 
'I 
54 
38 
22 
6 
61 
45 
29 
13 
28 
12 
63 
55 

I 

- 

- 
48 
31 
23 
7 
54 
38 
22 
6 
53 
45 
29 
13 
28 
12 
63 
47 
39 

- 

- 

- 
41 

7 
54 
38 
22 
6 
53 
37 
29 
13 
28 
12 
63 
47 
31 
23 

15 

- 

- 
46 

54 
38 
22 
6 
53 
37 
21 
13 
28 
12 
63 
47 
31 
15 
7 

62 

- 

38 
22 
6 
53 
37 
21 
5 
28 
12 
63 
47 
31 
15 
62 
54 - 

Table 5: Similar as table 2. (Neutjens, 1983) 
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even if one additionally changes the inputs e and d in Sj+, or does not, the output of &+I 
will change, by virtue of property 1.3 and 1.4 of the S-boxes. 

M 

Theosem 3 Assume that for fixed key one changes only the input of three neighbouring 
S-boxes, the output of the function f will for some inputs remain identical only if at Ieast 
all of the following conditions are satisfied together: 

1. one complements the inputs a, b and e of the middle of the three S-boxes, 

2. one complements the input c or d of the last S-box, 
3. one does not complement the input f of the middle of the three S-boxes. 

Proof :  We call the three S-boxes Si-1, Si and Si+1 where So is equal to  SB and S g  
equals S1. The proof is for a large part similar to that of theorem 2. Let us first give the 
similar part of the proof. 

We must fix the inputs a and b of &-I, and e and f of Si+l. The input f of Si-1 must 
be complemented and similarly for the input a of &+I. This last condition is equivalent to 
say that the inputs 6 and e of Si must be complemented. Now we apply the consequences 
of theorem 2 to continue our proof. 

the output will change (see proof of theorem 
2 or properties 1.3 and 1.4 of the S-boxes). Using previous observations the input b in 
S;+l may not be complemented, or equivalently the input f in Si. At this moment we 
already know that for S; the inputs b and e must be complemented and f may not. 
Because each row in the S-boxes is a permutation and because the input f may not be 
complemented in S;, the input a must be complemented in Sj. Remark that in fact one 
must still complement input c or d in $+I. Indeed if only one input bit in an S-box is 
complemented, the output changes. 

If a and b are both complemented in 

rn 

We have now proven the theorem. It is now very easy to generate in a systematic 
way several examples for which the function f remains constant even if some bits are 
complemented. 

3.6. The key clustering 

We analyze the clustering from the point of view that the DES contains i rounds, 
where i is between 1 and 16. The input for these i rounds is fixed, while we complement 
or change some bits of the'key. So if we speak now about an input of an S-box, this input 
is related to a modification of the key. 

We first prove some general theorems for the key clustering, and afterwards we give 
some examples. 

3.6.1. A general approach 

First of all for a fixed input the permutation I P  has no influence on the key clustering. 
We can start the analysis from L, and R,.  This means that if we are interested in a 
complete DES analysis B = 0 and j = 16. Let us now apply the DES with the key K and 
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K' and call the subkeys K1 till K16 and Kl till F18. The key K will produce some L and R 
register content, while K' produces L' and R'. The effect of the 6rst of the i rounds is that  
in the case we use the key K we have L8+1 = R, and R,+I = L8 8 f ( R , ,  K,+1). Applying 
the key K' we obtain ILL+, = R, and R:+, = L, 8 f(&, P8+l). After t rounds we obtain 
using key K the register content L S + t  = R,+t-1 and R,+t = Z,+t-1 8 f(R6+t-1?K#+t)- 
Using the key K' we have: LL+t = R'6+t-, and g+t = L:+,-, 8 f(R:+,- , ,  KL+t). Remark 
that in general by changing the key the content of the registers L and R change too. Let 
us now call H,+t = f(R,+t-l, K,+t) 8 f(Ri+t- l ,  It is now easy to see using (Davio, 
Desmedt & al., 1983) that  the global effect of a change in the key has no final effect on 
the ciphertext if the two following conditions are satisfied together. 

1. He+l @ @ H,+s @ . + . @ Ht = 0, where t = 8 + j if j is odd, else t = 8 + i - 1. 
2. H,+2 @ I?,+* @ H,+s 8 .  . -8  H, = 0, where u = s + j if j is even, else u = s + j - 1. 

Using previous conditions it is now easy to  analyze the conditions necessary for key 
clustering if one analyzes only 1, 2, 3 or 4 rounds. The analyze of more rounds seems to  
be more difficult. 

3.6.2. A n  analysis of the key clustering in a DES with 1, 2, 3 or 4 rounds 

In the case one round is considered we must have RE+, = 0. This means f ( R , ,  K,+1) = 
f(R,,Ki+l). Using previous knowledge on the S-boxes this means that the input of an 
S-box is not changed or that at least two bits change. It is very easy to generate several 
examples for this case. Using the fact that E is an expansion of 32 bits to 48 bits and its 
structure (Davio, Desmedt & al., 1983) and because PC2 selects only 48 bits out of the 
56 bits of the key we have the following result. For each (cleartezt, ciphertezt) pair i n  a 
one round DES there eziat ezactly 224 keya which generate the dame (cleartezt, ciphertezt) 
pair atarting f rom a fized cleartezt. If a similar remark remains true for the complete DES 
algorithm (16 rounds), the DES is very easy to break using a simplified exhaustive attack. 
Let us therefore start  to  analyze more rounds. 

In the case two rounds are considered we must have H,+l = 0 and H,+2 = 0. This 
means f ( R , , K , + l )  = f(R,,lf,+,), as in previous case, and additionally f (Rs+ l ,Ks+2)  = 
f(R,+1,f18+2), because from the first equality we have RL+l = &+I. Remark that the 
S-boxes must satisfy similar conditions as in the case only one round was considered. 
However to satisfy i t  for the two rounds together we must take the key scheduling in the 
DES into consideration. This is now easy to do if one uses the tables explained earlier. 
We now give a simple example of it. 

Ezample 1 .  If one complements the bits 3 and 44 (in the NBS notation) of any 64 bit 
key, then there exists 6 .  259 pairs of (cleartext, ciphertext) which remain identical during 
round 1 and 2 in the  DES. In other words, about 1/5 of all pairs (cleartext, ciphertext) 
are not affected by the complementation of 2 bits of the key, during round 1 and 2. 

Let us now explain using fig. 2 what happens and how one can calculate the (cleartext, 
ciphertext) pairs. The bits 3 and 44 go both after the key scheduling in the first round to  
S3 and become there the inputs a and e .  Using table 1 we know that for 6 out of 32 (or 12 
out of 64) possible inputs a complementation of a and e in S3 does not change the output. 
This means that the possible inputs for which the above property is true are restricted 
from 284 to 6.2". The cardinality of the set of cleartezts for which the ezplained clustering 
i a  aatiafied i a  independent of the used key. However the set of cleartezts for which the above 
clustering is satisfied, changeo i f  other keys are considered. This is a consequence of the 
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abcde f 

j 100111 1 goy 1 
010000 

110110 
010111 

011011 

Table 6: Inputs (in binary form) for S3 which generate the same output if the bits u and 
e are complemented. 

exor of the subkey with the expanded R register in the function f.  Let us now analyze 
which input for the S-bozes we must force in order to satisfy the key clustering. The input 
for S3, in the first round, must be one of those collected in table 6, in order to satisfy the 
key clustering. Now we must still analyze which restrictions the second round imposes on 
the possible cleartext. The analysis in this example is straightforward because the key 
bits 3 and 44 are not selected in the second round, so no extra condition is necessary. 

One may obseme that we were lucky in the construction of the previous example. 
First the non-selection of the key bits in the second iteration seems to be lucky. Secondly 
example 1 is only valid for rounds 1 and 2 in the DES. In the following example the reader 
can observe that similar examples can be given for all rounds and that it is not necessary 
that some key bits are not selected in the second or first round. 

Ezample 2. This example is true for most consecutive rounds. As a consequence of 
the ideas of Neutjens on the key scheduling (see section 3.4), two consecutive rounds can 
mostly be analyzed systematically. (Neutjens, 1983). This is true if one uses two shifts b 
the key scheduling, as represented by the NBS, to move to the next round. This means 
the rounds 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 9-10, 10-11, 11-12, 12-13, 13-14 and 14-15. In 
order not to affect the generality we will use a more general descriptions of the property. 
If one complements the two bits of the key which will “arrive’ in S-box 4 at locations u 
and e during the first of the two above rounds, then for every key there exists 2 4 .  264 (or 
about 1/43 of all possible) pairs (cleartext, ciphertext) which remain identical during two 
consecutive rounds mentioned earlier. This c a n  be easily analyzed (similar as in example 
1) using tables 2-5, and using our properties of the S-boxes (table 1). 

Let us now consider three consecutive rounds. First more restrictions on the cleartext 
are then imposed in order not t o  affect the ciphertext if one modifies the key. This is a 
consequence of the key scheduling. However the output of the function f in the first and 
last (of the three) rounds must no longer be constant [see section 3.6.1). This relaxes the 
imposed restrictions. Let us give a short example to illustrate it. 

Ezample 8. The three consecutive rounds may be 2-3-4, 3-4-5, 4-5-6, 5-6-7, 6-7-87 
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9-10-11, 10-11-12, 11-12-13, 12-13-14 and 13-14-15. Hereto one complements (e.g.) 
three bits of the key (fig. 3). h our example the three key bits must %riven at location a 
and d in S-box 8 in the first round (of the three consecutive) and at location d in S-box 
4 in the second round (of the three consecutive). We call these three key bits respectively 
kl, kz and k3, By analyzing the box P (see (Davies, 1981)) and using section 3.6.1 two 
cases can be distinguished. 

1. The third output bit of SS is complemented in the first and third iteration (of the 
three consecutive) as a consequence of the prerious modification of the key. In 
other words bit 15 of the output of f (after the box P) must be complemented 
in the first and last round. The modification of the previous bit will have no 
influence a t  all in the second round of the three. Indeed after the expansion phase 
it is exored with key bit k3 which we complemented too. Remark first that the 
set of cleartezts for which the above clustering i a  satisfied changes if other keys 
use considered. This is a consequence of the exor of the subkey with the expand 
R register in the function f. Let us now analyze which input we must force at the 
input of the S -bozee, in the three rounds, in order to satisfy the above conditions. 
Remember from Fig. 2 that the input of the S-boxes is equal to  the subkey 
exor the expanded R register. In the first round key bits kl and kz influence 
respectively the input a and d in Ss, as a consequence of our choice. ks is not 
selected. The input of Ss must be chosen from table 7. In the second round (of 
the three consecutive) we yet discussed the influence of key bit k3. Using table 2-5 
we fmd that kl and k2 become now the input u and e respectively in S7. The 
input of S7 must be chosen from table 8. In the third round kl and k2 influence 
respectively the inputs b and f from SS. The input of Ss must be chosen from 
table 9. 

2. The second and third output bits of Ss are complemented in the 6rst and third 
round as a consequence of the previous modification of the key. We must then 
choose the inputs of 58 in the first round out of table 10, the inputs of S, in the 
second round out of table 11 and the input of SS in the third round out of table 12. 
This can be analyzed in a similar way as for the first case. 

We can then analyze that for 50% of the keys: For 21 on 16384 (about 1/780) cleartexts, 
the ciphertext is not modified. For the other 50% of the keys this happens for 1 on 2048 
cleartexts. This analysis is involved. The reader can check it using tables 7-12. He must 
then take into consideration that the tables impose conditions on the cleartext input of 
the three rounds. Using fig. 3 he can then easily prove that the fint round imposes some 
conditions on the right input of the cleartext. Similarly the second round imposes some 
conditions on the cleartext at the left side input of the three rounds. To analyze the 
restrictions on the input as a consequence of the third round the reader must use the 
property that each round is a substitution from 2e4 to Y"' elements (Davio, Desmedt & 
al., 1983) for fixed key. Care should be taken in performing this last step. It is possible 
that previously imposed conditions influence the new one. Indeed by imposing special 
conditions on the cleartext, some restrictions can exist on the output of f in previous 
rounds. 

Other examples can easily be generated. It would be interesting to generalize the 
previous examples to the complete DES with 16 rounds. 
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we complement only 3 bits 
of the key 

ckrnge 

Figure 3: The key clustering in a three round DES. 
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input s, 
abcde f 
000000 
100010 
001001 
101011 
001111 
101101 
011000 
111010 
011001 
111011 

Table 7: Inputs (in binary form) for Ss which generate outputs in wbich the third output 
bit is complemented if the bits a and d of the input are complemented. 

output s7 

0100 
idem 
0100 
idem 
1010 
idem 
0101 
idem 
0010 
idem 

input S8 
abcde f 
001100 

Table 8: Inputs (m binary form) for S7 which generate the same output if the bits a and 
e are complemented. 

output s, 

1011 
011101 
110000 
100001 

1001 
0000 
0010 
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000010 
100100 
000101 
100011 
010101 
110011 

abede f 

1011 
idem 
1011 
idem 
0101 
idem 

Table 10: Inputs (in binary form) for Ss which generate outputs in which the second and 
third output bit is complemented if the bits a and d of the input are complemented. 

input s7 output s7 r 

Table 11: Inputs (in binary form) for S7 which generate the same output if the bits a, d 
and e are complemented. 

abcde f 

000011 
010010 

Table 12: Inputs (in binary form) for S8 which generate outputs in which the second and 
third output bits are complemented if the bits 6 and f of the input are complemented. 
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4. Conclusions and perspectives 

A cryptographic system can  only be  considered secure if a small modification in 
the  cleartext and/or in the  key strongly affect on a non-linear way the  ciphertext. We 
described techniques for analyzing this constraint for the DES. We found that if the DES 
had only a few rounds it would b e  a weak system. Our analysis demonstrated at the same 
time that the known probabilistic test done on the  DES are insufficient to conclude that 
the  scheme is secure. Were it possible to work out on a 16-round DES the techniques 
presented here one could possibly prove the  so often alleged existence of a key clustering 
in the DES. 
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