
WHEN SHIFT REGISTERS CLOCK THEMSELVES 

Rainer A .  Rueppel 

Crypto AG 
6312 Steinhausen 

Switzerland 

Abstract : 

A new class of sequences, which we term [d,kl self-decimated 
sequences, is investigated. For appropriate choices of [d,kl these 
sequences possess large periods, balanced k-distributions, large 
linear complexities, and moderate out-of-phase autocorrelation 
magnitudes. Furthermore, they are easy to generate. These properties 
suggest that [d,kl self-decimated sequences may have some 
applications in cryptography and spread spectrum communication. 

1 INTRODUCTION 

Imagine we let the output sequence of a binary linear feedback shift 
register (LFSR) determine its own clock in the following way: 
whenever the output symbol is a ' 0 , 1  d clock pulses are applied to 
the LFSR, and, in case the output symbol is a l l ' ,  k clock pulses 
are applied to the LFSR. Figure 1 illustrates the system. 
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Fig. 1 .  Self-clocking LFSR 

Suppose the above LFSR has a primitive connection polynomial C(D) = 
1 + D t DZ t D3 + D4 t D5 and is started in state [ l  1 1 1 11. When 
the self-clocking rule [d,k] is chosen to be [ 1 , 2 ]  (i.e.' for a 'O', 
the LFSR is clocked once, and for a '1' the LFSR is clocked twice), 
then the following periodic sequence will appear at the output of 
the system: 

This sequence has remarkable properties: ( 1 )  the distribution of 
k-tuples is 'balanced' (to be more precise: for 1 S k S 3 ,  the 
frequencies of k-tuples differ by at most 2); (2) the linear 
complexity (or linear span) of r is 20, which is the maximum 
possible for a sequence of period 20; ( 3 )  the periodic 
autocorrelation function of r has a peak out-0.f-phase magnitude of 
0. This self-clocking operation can be interpreted as a 
generalization of the well-known and widely-studied decimation 
operation for LFSR-sequences ([11,[2],[3],[4]). The conventional 
decimation of a sequence r by a constant d is defined as the 
extraction of every d-th digit of r I usually denoted as r[d]. When a 
binary sequence r is [d,k]-"self-clocked", then it is no longer 
decimated by a constant but by a function of the previous sequence 
digit; we will term the resulting sequence a 
Id,kl self-decimated sequence, Let r be the original m-sequence 
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produced by the LFSR in Figure 1. Then the following example 
compares ordinary decimation by 2, and [1,21 self-decimation of r 
into B .  

r = 1 1  1 1  1001001  100001011010100 ... 

P[2] = 1 1 100 t o o  I 1 0 0 0  ... 
P[1,2] - 1 1  10 10 10000 110 I 10 ... 

Throughout this paper we will restrict ourselves to the case where 
the original sequences are maximum-length sequences over GF(2). 
Furthermore, without loss of generality, it is assumed that 0 < dlk 
< Z L - 1 ,  since, as with ordinary decimation, any d or k greater than 
2L-1 can be reduced mod 2'-1. 

If d is a unit mod 2L-1, (i.e. d has an inverse mod ZL-I), then 

P[d, k] = f"d][ 1 , k '3 

where 

k'- k. d - '  mod2' -  1 

That is, the self-decimation operation can be broken up into a 
constant decimation by d followed by a self-decimation of the 
special form [l,k'l. If d is a unit mod 2 L - 1  then f"d] is again an 
m-sequence of same degree and period. It is to be expected that for 
given self-clocking rules [d,kl certain properties like period or 
bit distribution are invariant over the set of all m-sequences of 
same degree. In general, there are c(2' -1) . (2 ' -2)  pairs [d,kl with d 
being a unit; +(nl denotes Ruler's totient function. If 2L-1 is a 
Mersenne prime then all pairs Id,k] can be reduced to [dl[l,k'l. 
Thus, almost all cases can be covered by investigating 
self-decimation rules of the form [l,kl. 

Clearly the state diagram of the self-decimated m-LFSR will contain 
(one or more) cycles and tails. Depending on the initial state there 
may be a preperiod in the self-decimated sequence. A 
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resetting sequence is a subsequence of the original m-sequence which 
guarantees that the digit directly following the subsequence belongs 
to the self-decimated sequence. As an example let [d,kl be [1,21, 
then 0 is a resetting sequence. For, if the 0 itself belongs to the 
self-decimated sequence, so must its successor by the fact d=l; if, 
on the other hand, the 0 does not belong to the self-decimated 
sequence, its successor must by the fact k=2. This implies that, if 
a resetting sequence can be identified in the original m-sequence, 
then there exists only one cycle in the state diagram of the 
self-decimated m-LFSR, or equivalently, there exists only one 
self-decimated sequence (disregarding the preperiods for the. 
moment ) . 
Let us hypothetically assume that the original sequence is not an 
m-sequence but is comprised of N random bits which are repeated 
periodically. For [d,k] = [ 1 , 2 ] ,  in the average every 1.5th digit is 
selected for the self-decimated sequence, or in other words, 2 1 3  of 
the original N random bits will appear in the self-decimated 
sequence. The first 0 among the N random bits will be a resetting 
subsequence. Thus, the period of  the self-decimated sequence is 
expected to be approximately 2 / 3  N. As we will see in section 2 this 
is in perfect agreement with the theoretical results obtained for 
m-sequences. In section 3 .  some experimental data about characteris- 
tic properties like linear complexity and autocorrelation is shown. 

2 THEORETICAL RESULTS 

This section shall serve to demonstrate that despite the highly 
nonlinear setup of a self-clocking LFSR some analytical results can 
be obtained. The first topic of interest is the period. 

Theorem 1 :  A [d,kl-self-decimated m-sequence of degree L has period 

if [d,k] = g[1,2] mod 2L-1 with gcd(g,2L-1) = 1 .  
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Proof: 0 is a resetting sequence; any following digit in the 
original m-sequence must belong to the periodic part of the 
self-decimated sequence. 

It follows that for any subsequence 01.x of the m-sequence the 
digit x will belong to the self-decimated'sequence if and only 
if m is even. 

From the theory of m-sequences the frequencies of such 
subsequences are known: 

# { 0 x } = 2 L - 1 -  I 
# ( 0 l r n x ) =  2 L - " - 1  
# { O l L x ] =  1 

m =  1 , . . , d ! -  1 

Thus,  the number of digits that will appear in the periodic part 
of the self-decimated sequence can be found by a simple counting 
argument. 

I f  L is odd we have 

If L is even we have 

Using the fact that 

we obtain 

which proves the theorem. 



The identical argument can be carried out for [d,kl = g[1,2L-11 
since 2[1,2L-11 '= [2,l] mod 2L-1. In this case 1 is a resetting 
sequence and 

Note that for odd L [1,2L-l] self-decimation yields a period which 
is one digit larger than for [1,2] self-decimation. The reason lies 
in the fact that the number of ones in an m-sequence exceeds the 
number of zeros by one. 

Theorem 2:  The absolute frequency of ones, NL(~), in the periodic 
part of a [d,k] self-decimated m-sequence of degree L is given as 

if [d,kl = g[l,Zl mod 2L-1 with g~d(g,2~-1) = 1. 

Proof: 0 is a resetting sequence; any following 1 in the original 
m-sequence must belong to the periodic part of the 
self-decimated sequence. 

Thus, for any subsequence 01=+1 of the m-sequence the final 1 
will belong to the self-decimated sequence if and only if m is 
even. 

From the theory of m-sequences the frequencies of such 
subsequences are known: 

# { 0 1 m- '  } I 2L-rn-2 m - 0, .., L- 2 
# ( O l L ) =  1 

If L is odd we have 

N,( 1 ) -  2 L - 2 +  2L- '+  ... + 2 '  + 1 

If L is even ue have 
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We obtain 

N , (  1 ) = 3 ( 2 ' +  1 1 )  L o d d  

1 
3 

N 1 ( 1 ) = - ( 2 ' -  1 )  L even  

which proves the theorem. 

Note that for even L the bit distribution is perfectly balanced, 
i.e., Ni(0) = N L ( ~ )  T1/2. 

Theorem 3: Let [d,k] = g[1,2] mod 2 L - 1  with gcd(g,ZL-1) = 1. Then 
the absolute frequencies of bit pairs, NL(bl,bz), within one period 
of a [d,k] self-decimated m-sequence of degree L are bound bp 

Proof: case a: 00 
0 is a resetting sequence; any following pair '00' in the 
original m-sequence must belong to the periodic part of the 
self-decimated sequence. 

It follows that for any subsequence 01.00 of the m-sequence the 
pair 00 will belong to the self-decimated sequence if and only 
if m is even. 

From the theory of m-sequences the frequencies of such 
subsequences are known: 
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# { 0 0 0 ) - 2 ' - s -  1 

#(o  1 "00) - 2z-m-3 m -  1 , . . , L - 3  

Subsequences longer than L may or may not exist as long as the 
number of consecutive 1's does not exceed L. Thus 

It follows that 

which proves the lower bound. 

From the uncertain overlong subsequences at most 2 could 
contribute an entry, which proves the upper bound. 

case b: 01 
For any subsequence 01.01 of the original m-sequence the final 
pair 01 will belong to the self-decimated sequence if and only 
if m is even. 

It follows that 

case c: 10 

For any subsequence 01=xO ( x  arbitrary) of the original 
m-sequence the final pair 10 ( x  dropped) will belong to the 
self-decimated sequence if and only if m is odd. 

8 { 0  1 " X O }  - 2 L - m - 2  
t t { o l " x O } - O o r l  m -  L - ~ , . . , L  

m -  l , . . , L - 3  
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Theref ore 

medd 

case d: 11 
This case is analogous to case c with the final 0 in the 
subsequence replaced by 1. 

Since the lower bounds differ by at most 1, theorem 3 implies that 
the abaolute frequencies of bit pairs cannot differ by more than 3 .  

The trace from GF(2L) into GF(2) is defined as 

where @ is an element of GF(2L). With the help of the trace function 
the jth digit of an m-sequence can be compactly expressed [ 4 1  as 

where a is a root of the minimal polynomial of f ,  and A relates to 
the initial phase of r .  

For a [d,d+l] self-decimated m-sequence we obtain 

s, - T r  ( A  at)) 

with 
i- I 

e , - d .  j + x s ,  
t - 0  

This leads to the following (nonlinear) recursion of the exponents 

e,,, = e , + c i + ~ r ( ~ a ' ' )  

As was mentioned before, the state diagram of a [d,k] self-decimated 
m-LFSR contains (one or more) cycles and tails. Every tail must 
contain an initial state (which we call a root in this context), and 
must finally join either another tail o r  a cycle. These junction 
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states are particular in the sense that they have two predecessors 
but only one successor’. This implies that for a junction state’s 
exponent ej+l there exist two distinct exponents ej and ej I, 
corresponding to the two distinct predecessors. Consequently 

Without loss of generality assume ej > ej’. Then, for [d,d+ll 
self-decimation, we obtain 

1 - T r j  A d - ’ )  - T r (  A a C ’ )  

This equation tells us that a transition from 1 to 0 has occurred in 
the original m-sequence. The number of such transitions is ZL-*. 
This proves the following theorem. 

Theorem 4 :  The number of roots, (i.e. states with no predecessor) in 
the state diagram of a [d,d+l] self-decimated m-LFSR of length L 
is 

Since roots cannot be part of a cycle the following corollary is 
obvious. 

Corollary 5: The period of a [d,d+l] self-decimated m-sequence of 
degree L is bound from above by 

3 EXPERIMENTAL RESULTS 

Extensive simulations have been run for [1,2] self-decimated 
m-sequences of degrees L=3, ..., 11. They showed that, for given L, 
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also the pair distributions, (beside period and bit distributions), 
were independent of the minimal polynomial of the m-sequence (see 
table 1 ) .  

L 

5 

6 

7 '  

8 

Table 1. Periods, bit, and pair distributions. 
Exhaustive searches over all primitive polynomials of degree L = 
5 , 6 , 7 , 8  revealed the following agerages and minimum values for the 
linear complexities of [ 1 , 2 ]  self-decimated m-sequences: 

TL La v g  Lmi m 

20 19,3 16 

4 2  3 8 , 7  3 3  

8 4  82  78 

1 7 0  169,3 166 

Table 2 .  Linear complexities 
The proximity of L a r g  to the period length TL and the largeness of 
the minimal encountered linear complexity L.i speak for themselves. 

Another topic of interest is the periodic autocorrelation function. 
Exhaustive searches over all primitive polynomials of degrees L = 
4 , 5 , 6 , 7  revealed the following averages R a s g  and minimum value8 Rmi I) 

for the peak out-of-phase autocorrelation magnitude of [ 1 , 2 1  

self-decimated sequences: 

9 . 3  

7 2 0 . 5  12 

Table 3 .  Out-of-phase autocorrelation magnitudes 
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4 CONCLUSION 

[d,kl self-decimated m-sequences are (almost) as easy to generate as 
m-sequences; for appropriately chosen [d,k],they exhibit similar 
properties as m-sequences with respect to period, k-distributions, 
and autocorrelation. But they behave much more like 'truly' random 
sequences as is indicated by the high linear complexity values. 
Therefore [d,kl self-decimated sequences may have some applications 
in cryptography and spread spectrum communication. 
But a word of caution has to be added; if a [d,k] self-decimated 
m-LFSR is employed alone and [d,k] are made public, then from its 
output sequence the feedback polynomial and the initial state of the 
LFSR are easily retrieved (a system of linear equations has to be 
solved). 
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