WHEN SHIFT REGISTERS CLOCK THEMSELVES

Rainer A. Rueppel

Crypto AG
6312 Steinhausen
Switzerland

Abstract

:

A new class of sequences, which we term [d,k] self-decimated sequences, is investigated. For appropriate choices of [d,k] these sequences possess large periods, balanced k-distributions, large linear complexities, and moderate out-of-phase autocorrelation magnitudes. Furthermore, they are easy to generate. These properties suggest that [d,k] self-decimated sequences may have some applications in cryptography and spread spectrum communication.

1 INTRODUCTION

Imagine we let the output sequence of a binary linear feedback shift register (LFSR) determine its own clock in the following way: whenever the output symbol is a '0', d clock pulses are applied to the LFSR, and, in case the output symbol is a '1', k clock pulses are applied to the LFSR. Figure 1 illustrates the system.

Fig. 1. Self-clocking LFSR

Suppose the above LFSR has a primitive connection polynomial C(D) = $1+D+D^{2}+D^{3}+D^{4}+D^{5}$ and is started in state $\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]$. When the self-clocking rule [d,k] is chosen to be [1,2] (i.e., for a' \mathbf{a}^{\prime} ', the LFSR is clocked once, and for a'1' the LFSR is clocked twice), then the following periodic sequence will appear at the output of the system:

$$
s=(11101010000110110011)_{0}^{\circ}
$$

This sequence has remarkable properties: (1) the distribution of k-tuples is 'balanced' (to be more precise: for $l \leq k \leq 3$, the frequencies of k-tuples differ by at most 2); (2) the linear complexity (or linear span) of 5 is 20 , which is the maximum possible for a sequence of period 20; (3) the periodic autocorrelation function of 5 has a peak out-of-phase magnitude of 0 . This self-clocking operation can be interpreted as a generalization of the well-known and widely-atudied decimation operation for LFSR-sequences ([1],[2],[3],[4]). The conventional decimation of a sequence r by constant d is defined as the extraction of every d-th digit of r, usually denoted as $r[d]$. When a
 decimated by a constant but by a function of the previous sequence digit; we will term the resulting sequence a
[d,k] self-decimated sequence, Let r be the original m-sequence
produced by the LFSR in Figure 1. Then the following example compares ordinary decimation by 2 , and [1,2] self-decimation of r into 5.

```
        \(r=11111001001100001011010100 \ldots\)
        \(r[2]=1110010011000 \ldots\)
\(r[1,2]=11101010000110110 \ldots\)
```

Throughout this paper we will restrict ourselves to the case where the original sequences are maximum-length sequences over GF(2). Furthermore, without loss of generality, it is assumed that 0 < d, k < $2^{\text {L }}-1$, since, as with ordinary decimation, any d or k greater than $2^{1}-1$ can be reduced mod $2^{2}-1$.

If d is a unit mod $2^{t}-1$, (i.e. d has an inverse mod $2^{t}-1$), then

$$
f[d, k]=f[d]\left[1, k^{\prime}\right]
$$

where

$$
k^{\prime}=k \cdot d^{-1} \bmod 2^{2}-1
$$

That is, the self-decimation operation can be broken up into a constant decimation by d followed by a self-decimation of the special form [1,k']. If d is a unit mod $2^{\text {L }}-1$ then $[$ [d] is again an
 given self-clocking rules [d, k] certain properties like period or bit distribution are invariant over the set of all m-sequences of same degree. In general, there are $\phi\left(2^{4}-1|\cdot| 2^{2}-2\right\}$ pairs [d,k] with d being a unit; $\Phi(n)$ denotes Euler's totient function. If $2{ }^{\text {t }}-1$ is a Mersenne prime then all pairs $[d, k]$ can be reduced to [d][1,k’]. Thus, almost all cases can be covered by investigating self-decimation rules of the form [1,k].

Clearly the state diagram of the self-decimated m-LFSR will contain (one or more) cycles and tails. Depending on the initial state there may be a preperiod in the self-decimated sequence. A
resetting sequence is a subsequence of the original m-sequence which guarantees that the digit directly following the subsequence belongs to the self-decimated sequence. As an example let [d,k] be [1,2], then 0 is a resetting sequence. For, if the 0 itself belongs to the self-decimated sequence, so must its successor by the fact $d=1$; if, on the other hand, the 0 does not belong to the self-decimated sequence, its successor must by the fact $k=2$. This implies that, if a resetting sequence can be identified in the original m-sequence, then there exists only one cycle in the state diagram of the self-decimated m-LFSR, or equivalently, there exists only one self-decimated sequence (disregarding the preperiods for the moment).

Let us hypothetically assume that the original sequence is not an m-sequence but is comprised of N random bits which are repeated periodically. For [d,k] = [1,2], in the average every 1.5 th digit is selected for the self-decimated sequence, or in other words, $2 / 3$ of the original N random bits will appear in the self-decimated sequence. The first 0 among the N random bits will be a resetting subsequence. Thus, the period of the self-decimated sequence is expected to be approximately $2 / 3 \mathrm{~N}$. As we will see in section 2 this is in perfect agreement with the theoretical results obtained for m-sequences. In section 3 . some experimental data about characteristic properties like linear complexity and autocorrelation is shown.

2 THEORETICAL RESULTS

This section shall serve to demonstrate that despite the highly nonlinear setup of a self-clocking LFSR some analytical results can be obtained. The first topic of interest is the period.

Theorem 1: A [d,k]-self-decimated m-sequence of degree L has period

$$
T_{L}=\left\lfloor\frac{2}{3}\left(2^{L}-1\right)\right\rfloor
$$

if $[d, k]=g[1,2] \bmod 2^{2}-1$ with $\operatorname{gcd}\left(g, 2^{L}-1\right)=1$.

Proof: 0 is a resetting sequence; any following digit in the original m-sequence must belong to the periodic part of the self-decimated sequence.

It follows that for any subsequence 01 x of the m-sequence the digit x will belong to the self-decimated sequence if and only if m is even.

From the theory of m-sequences the frequencies of such subsequences are known:

$$
\begin{aligned}
& \#\{0 x\}=2^{L-1}-1 \\
& \#\left\{01^{m} x\right\}=2^{2-m-1} \quad m=1, \ldots, L-1 \\
& \#\left\{01^{2} x\right\}=1
\end{aligned}
$$

Thus, the number of digits that will appear in the periodic part of the self-decimated sequence can be found by a simple counting argument.

If L is odd we have

$$
T_{t}=2^{L-1}-1+2^{2-3}+2^{L-5}+\ldots+2^{0}
$$

If L is even we have

$$
T_{t}=2^{t-1}-1+2^{t-3}+2^{L-5}+\ldots+2^{1}+1
$$

Using the fact that

$$
\sum_{i=0}^{n-1} q^{i}=\frac{q^{n}-1}{q-1}
$$

we obtain

$$
\begin{array}{ll}
T_{t}=\frac{2}{3}\left(2^{L}-2\right) & \text { Lodd } \\
T_{2}=\frac{2}{3}\left(2^{2}-1\right) & \text { L oven }
\end{array}
$$

which proves the theorem.

The identical argument can be carried out for $[d, k]=g\left[1,2^{L-1}\right]$ since $2\left[1,2^{-1}\right]=[2,1] \bmod 2^{L-1}$. In this case 1 is a resetting sequence and

$$
T_{L}=\left\lceil\frac{2}{3}\left(2^{2}-1\right)\right\rceil
$$

Note that for odd L [1, $\left.2^{L-1}\right]$ self-decimation yields a period which is one digit larger than for $[1,2]$ self-deciration. The reason lies in the fact that the number of ones in an m-sequence exceeds the number of zeros by one.

Theorem 2: The absolute frequency of ones, $N_{L}(1)$, in the periodic part of a $[d, k]$ self-decimated m-sequence of degree L is given as

$$
N_{1}(1)=\left[\frac{1}{3}\left(2^{2}-1\right)\right]
$$

if $[d, k]=g[1,2] \bmod 2^{L}-1$ with $\operatorname{gcd}\left(g, 2^{L}-1\right)=1$.

Proof: 0 is a resetting sequence; any following 1 in the original m-sequence must belong to the periodic part of the self-decimated sequence.

Thus, for any subsequence $010+1$ of the m-sequence the final 1 will belong to the self-decimated sequence if and only if m is even.

From the theory of m-sequences the frequencies of such subsequences are known:
$\#\left\{0 I^{m-1}\right\}=2^{L-m-2} \quad m=0, \ldots, L-2$
$\#\left(01^{2}\right)=1$
If L is odd we have
$N_{i}(1)=2^{i-2}+2^{l-4}+\ldots+2^{1}+1$
If L is even we have

$$
N_{t}(1)=2^{i-2}+2^{t-4}+\ldots+2^{0}
$$

We obtain

$$
\begin{array}{ll}
N_{L}(1)=\frac{1}{3}\left(2^{2}+1\right) & \text { L odd } \\
N_{L}(1)=\frac{1}{3}\left(2^{2}-1\right) & \text { Leven }
\end{array}
$$

which proves the theorem.

Note that for even L the bit distribution is perfectly balanced, i.e., $N_{L}(0)=N_{L}(1)-T_{L} / 2$.

Theorem 3: Let $[d, k]=g[1,2] \bmod 2^{5}-1$ with $\operatorname{gcd}\left(g, 2^{2}-1\right)=1$. Then the absolute frequencies of bit pairs, $N_{L}\left(b_{1}, b_{2}\right)$, within one period of a $[d, k]$ self-decimated m-sequence of degree L are bound by

$$
N_{2}^{0} \leq N_{2}\left(b_{1}, b_{2}\right) \leq N_{l}^{0}+2
$$

with

$$
\begin{aligned}
& N_{L}^{0}(00)=\left\lfloor\frac{1}{6}\left(2^{2}-1\right)\right]-1 \\
& N_{L}^{0}(01)=\left\lfloor\frac{1}{6}\left(2^{2}-1\right)\right] \\
& N_{L}^{0}(10)=\left\lfloor\frac{1}{6}\left(2^{2}-4\right)\right] \\
& N_{L}^{0}(11)=\left\lfloor\frac{1}{6}\left(2^{L}-4\right)\right]
\end{aligned}
$$

Proof: case a: 00
0 is a resetting sequence; any following pair ' 00 ' in the original m-sequence must belong to the periodic part of the self-decimated sequence.

It follows that for any subsequence $01-00$ of the m-sequence the pair 00 will belong to the self-decimated sequence if and only if m is even.

From the theory of m-sequences the frequencies of such subsequences are known:

$$
\begin{aligned}
& \#\{000\}=2^{2-3}-1 \\
& \#\left\{01^{m} 00\right\}=2^{2-m-3} \quad m=1, \ldots, L-3
\end{aligned}
$$

Subsequences longer than L may or may not exist as long as the number of consecutive 1 's does not exceed L. Thus

$$
\#\left\{01^{m} 00\right\}=0 \text { or } 1 \quad m=L-2, \ldots, L
$$

It follows that

$$
N_{L}(00) \geq-1+\sum_{\substack{m=0 \\ m \in 0 \in}}^{2-3} 2^{2-m-3}=-1+\left\lfloor\frac{1}{6}\left(2^{t}-1\right)\right\rfloor
$$

which proves the lower bound.

From the uncertain overlong subsequences at most 2 could contribute an entry, which proves the upper bound.
case b: 01
For any subsequence $01 \mathbf{0 1}$ of the original m-sequence the final pair 01 will belong to the self-decimated sequence if and only if m is even.

$$
\begin{array}{ll}
\#\left\{01^{m} 01\right\}=2^{t-m-3} & m=0, \ldots, L-3 \\
\#\left\{01^{m} 01\right\}=0 \text { or } 1 & m=L-2, \ldots, L
\end{array}
$$

It follows that

$$
N_{i}(01) \geq \sum_{\substack{m=0 \\ m+\infty \times n}}^{2-3} 2^{L-m-3}=\left\lfloor\frac{1}{6}\left(2^{t}-1\right)\right\rfloor
$$

case c: 10
For any gubsequence $01^{-x} \times(x$ arbitrary) of the original
m-sequence the final pair 10 (x dropped) will belong to the self-decimated sequence if and only if m is odd.

$$
\begin{aligned}
& \#\left\{01^{m} \times 0\right\}=2^{1-m-2} \quad m=1, \ldots, L-3 \\
& \#\left\{01^{m} \times 0\right\}=0 \text { or } 1 \quad m=L-2, \ldots, L
\end{aligned}
$$

Therefore

$$
N_{2}(10) \geq \sum_{\substack{m=1 \\ m o d d}}^{L-3} 2^{t-m-2}-\left\lfloor\frac{1}{6}\left(2^{t}-4\right)\right\rfloor
$$

case d: 11
This case is analogous to case o with the final 0 in the subsequence replaced by 1 .

Since the lower bounds differ by at most 1 , theorem 3 implies that the absolute frequencies of bit pairs cannot differ by more than 3.

The trace from $G F\left(2^{2}\right)$ into $G F(2)$ is defined as

$$
\operatorname{Tr}(\beta)=\beta+\beta^{2}+\ldots+\beta^{2^{L-1}}
$$

where β is an element of $G F\left(2^{4}\right)$. With the help of the trace function the jth digit of an m-sequence can be compactly expressed [4] as

$$
r_{1}=\operatorname{Tr}\left(A a^{\prime}\right)
$$

where a is a root of the minimal polynomial of r, and A relates to the initial phase of r.

For a $[d, d+1]$ self-decimated m-sequence we obtain

$$
s_{1}=\operatorname{Tr}\left(A \alpha^{e_{1}}\right)
$$

with

$$
e_{j}=d \cdot j+\sum_{k=0}^{j-1} s_{k}
$$

This leads to the following (nonlinear) recursion of the exponents

$$
\mathrm{e}_{j+1}=\mathrm{e}_{j}+d+\operatorname{Tr}\left(A \alpha^{e_{j}}\right)
$$

As was mentioned before, the state diagram of a [d,k] self-decimated m-LFSR contains (one or more) cycles and tails, Every tail must contain an initial state (which we call a root in this context), and must finally join either another tail or a cycle. These junction
states are particular in the sense that they have two predecessors but only one successor. This implies that for a junction state's exponent e_{j+1} there exist two distinct exponents e_{j} and $e_{j}{ }^{\prime}$, corresponding to the two distinct predecessors. Consequently

$$
e_{j}-e^{\prime}=\operatorname{Tr}\left(A \alpha^{\prime}\right)-\operatorname{Tr}\left(A \alpha^{e_{1}}\right)
$$

Without loss of generality assume $e_{j}>e_{j}$ '. Then, for $[d, d+1]$ self-decimation, we obtain

$$
1=\operatorname{Tr}\left(A \alpha^{e_{j}-1}\right)-\operatorname{Tr}\left(A \alpha^{e_{1}}\right)
$$

This equation tells us that a transition from 1 to 0 has occurred in the original m-sequence. The number of such transitions is 2^{2-2}. This proves the following theorem.

Theorem 4: The number of roots, (i.e. states with no predecessor) in the state diagram of a [d,d+1] self-decimated m-LFSR of length L is

$$
N_{t}(\text { roots })=2^{t-2}
$$

Since roots cannot be part of a cycle the following corollary is obvious.

Corollary 5: The period of a [d,d+1] self-decimated m-sequence of degree L is bound from above by

$$
T_{t} \leq 2^{t}-1-2^{L-2}=\left\lfloor\frac{3}{4}\left(2^{i}-1\right)\right\rfloor
$$

3 EXPERIMENTAL RESULTS

Extensive simulations have been run for [1,2] self-decimated m-sequences of degrees $L=3, \ldots, 11$. They showed that, for given L,
also the pair distributions, (beside period and bit distributions), were independent of the minimal polynomial of the m-sequence (see table 1).

L	T_{L}	$\mathrm{N}_{\mathrm{L}}(0)$	$\mathrm{N}_{\mathrm{L}}(1)$	$\mathrm{N}_{\mathrm{L}}(00)$	$\mathrm{N}_{\mathrm{L}}(01)$	$\mathrm{N}_{\mathrm{L}}(10)$	$\mathrm{N}_{\mathrm{L}}(11)$
4	10	5	5	2	3	3	2
5	20	9	11	4	5	5	6
6	42	21	21	10	11	11	10
7	84	41	43	20	21	21	21

Table 1. Periods, bit, and pair distributions.
Exhaustive searches over all primitive polynomials of degree $L=$ $5,6,7,8$ revealed the following agerages and minimum values for the linear complexities of [1,2] self-decimated m-sequences:

L	T_{L}	$\mathrm{L}_{\mathrm{av}} \mathrm{s}$	$\mathrm{L}_{\mathrm{mi}} \mathrm{m}$
5	20	19,3	16
6	42	38,7	33
7	84	82	78
8	170	169,3	166

Table 2. Linear complexities
The proximity of Lave to the period length T_{i} and the largeness of the minimal encountered linear complexity lain speak for themselves.

Another topic of interest is the periodic autocorrelation function. Exhaustive searches over all primitive polynomials of degrees $L=$ $4,5,6,7$ revealed the following averages $R_{a} \mathrm{~g}$ and minimum valueg $R_{\text {nim }}$ for the peak out-of-phase autocorrelation magnitude of [1,2] self-decimated sequences:

L	$R_{a v i}$	$R_{\text {mi }}$
4	4	2
5	4	0
6	9.3	6
7	20.5	12

Table 3. Out-of-phase autocorrelation magnitudes

4

[d,k] self-decimated m-sequences are (almost) as easy to generate as m-sequences; for appropriately chosen [d,k] they exhibit similar properties as m-sequences with respect to period, k-distributions, and autocorrelation. But they behave much more like 'truly' random sequences as is indicated by the high linear complexity values. Therefore [d,k] self-decimated sequences may have some applications in cryptography and spread spectrum communication.

But a word of caution has to be added; if a [d,k] self-decimated $m-L F S R$ is employed alone and $[d, k]$ are made public, then from its output sequence the feedback polynomial and the initial state of the LFSR are easily retrieved (a system of linear equations has to be solved).

5 REFERENCES

[1] N. Zierler, "Linear recurring sequences", J. Soc.. Indust. Appl. Math., Vol. 7, 1959.
[2] D.V. Sarwate, M.B. Pursley, "Crosscorrelation properties of pseudorandom and related sequences", Proc. of the IEEE, Vol. 68, May 1980 .
[3] J.L. Massey, R.A. Rueppel, "Linear ciphers and random sequence generators with multiple clocks", Proc. of Eurocrypt 84, Paris, Lecture Noteg in Computer Science, Vol. 209, Springer-Verlag.
[4] R.A. Rueppel, "Analysis and design of stream ciphers", Springer_ Verlag, 1986.

