
SOME REMARKS ON ME CROSS CORRELATION ANALYSIS OF 
PSEUDO RANDOM GENERATORS 

Sibylle Mund, Dieter Gollmann, Thomas Beth 

Fakultat fur lnformatik 
Universitat Karlsruhe 

7500 Karlsruhe, West Germany 

ABSTRACT 

Siegenthaler has shown how cross-correlation techniques can be applied to identify pseudo random 

generators consisting of linear feedback shift registers and a scrambling function 171. These 

techniques may allow to attack one register in such a generator at a time. The original algorithm 

needs O(R2'N) operations to identify one register. ( r denotes the length of the register examined, 

R the number of primitive polynomials of degree r. and N the minimal number of bits one has to 

observe ). Employing Walsh-Hadamard transform this analysis can be done in O(R(Rr+N)) 

operations [ 8 ] .  

We show that there exists a trade-off between the dimension of the Hadamard matrix and the 

number of bits required to compute the cross correlation coefficients. The complexity of this 

attack is O(R(r2f-6+26N)). The integer 6 can be selected so that the cost of the attack is 

minimized. The MSR-generator will serve as an example to demonstrate our algorithm. 

Furthermore we examine the correlation immunity of the S-boxes used in the DES. 

1. INTRODUCTION : CROSS CORRELATION ANALYSIS OF A CERTAN CLASS OF PSEUDO FiANwM 
GovER4TcIzs 

We will give a short outline of the cross correlation techniques developed by Siegenthaler and of 

the improvements due to Xiao and Massey. Most of the technical details have been omitted and the 

reader is referred to [71 and [81 for a full description. 

We consider pseudo random generators (Fig.1) consisting of a scrambling function f and s linear 

feedback shift registers (LFSR). We use (xin) as a shorthand for (xin)), , the sequence generated 

by register i. The generator produces the sequence (z')), 

zn := f(x,n ,..., xsn). 

D. Chaum and W.L. Price (Eds.): Advances in Cryptology - EUROCRYPT '87, LNCS 304, pp. 25-35, 1988. 
0 Springer-Verlag Berlin Heidelberg 1988 
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FQ.1 A Pseudo Random Generator consisting of s LFSRs and a scrambling function f 

In our experiments we will encipher (y") , the output of a binary memory- less source (BMS) 
with P(yn=0)#0.5 . The ciphertext (c") is thus defined by cn:= yn+zn (addition mod 2). 

Siegenthaler has shown that cross correlation techniques can be used to identify initial state and 

feedback polynomial of register i independently of the other registers when f "leaks" some 

information from (xi") to (2"). 

We will concentrate on the analysis of a single register. Let r denote the length of the register 

examined, R the number of primitve polynomials of degree r and N the minimal number of output 

bits necessary for the correlation analysis as established by Siegenthaler. 

The correlation test works as follows. A feedback polynomial is selected. Let qo be a specially 

designated initial state of the register and let q, be the state reached after n time steps. When we 

denote the state transition matrix of the register by A we have q, = Anqo. Let C denote the output 

matrix of the register. 

Let ak denote the cross correlation between (c") and (CAnqk), the output generated by the initial 

state qk . If uk exceeds the bound of the cross correlation test we assume that the correct feedback 

polynomial has been found and the initial state qk can be computed. However, this inital state is 

not necessarily identified uniquely. If no a k  exceeds the bound the test is repeated for another 

feedback polynomial. 

In the original version of the correlation attack O(R.N.2') operations are required to compute the 

feedback polynomial and initial state [71. 

I 

It is possible to speed up this attack by using the Walsh-Hadamard Transform to CmpUte 

simultaneously the cross correlation between (cn) and the outputs for all possible initial states of 

the given shift register [81. 

The Walsh-Coefficients of a function g:(O,l}n->{-l , O , l }  are defined as 

C(t):= 2-n c g(")(-l)<t'v' for all t c { O , l j n  , 
VE{O,l)" 

where <t,v> is the real scalar product of the vectors t and v. 
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For our purposes define g: {O,l}" ..+ {-1 ,O,l} by 

1.e. we reorder the ciphertext (cn) so that the output at time n is assigned to the position qn. With 

sk:= C A ~  we then have 

and furthermore 

Thus the cross correlation coefficients (a0,...,a2r-1) are the Walsh- Coefficients of our function 

g. These Walsh-Coefficients can be computed by multiplying the vector 

with 

The 

The 

the Hadamard matrix Hr . (The arguments of g are identified with binary strings of length n). 
Hadamard-Matrices are defined recursivly by 

complexity of this algorithm is O(R(r.2'+r.N)). For each feedback polynomial we need 

O(r.23 operations to compute g'Hr recursively [ l  1. [3] and O(rN) operations to initialize g. 
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2. A TRADE-OFF BETWEEN THE DIMENSION OF THE HADAMARDMATRIX AND THE LENGTH OF 
CIPHERTDCT 

If r grows N will lag behind 2'. Therefore a substantial "portion" of g will be equal to 0 and thus 

not contribute to the computation of the correlation coefficients. Simply cutting down the 

dimension of the Hadamard-Matrix does not work. However, i f  the length of the ciphertext is 

increased one will again get a sufficient number of ciphertext bits in a shortened vector g . Thus a 

lower dimension Walsh-Transform will compute meaningful correlation coefficients. 

This statement will now be explained in closer detail. We cut down the vector g by the factor 9 
for some integer 62 0. Ciphertext bit cn will contribute to g(0),...,g(2f-6-1) exactly when 

qn<2r-6. ( Identify q, with the integer that has binary expansion qn ). 

Define Nh:= N*26 and E6 to be the expected number of states qk+n, OSniN6-l, with qk+n< zrd. 
The expected value is taken over all initial states including the all-zero state. We have the 

following 

LEMMA: Eh = N 

PROOF: For all initial states qk we have to count the number of states qk+n with qk+n< 2'-6 , 
OsnsNh-l. To do so we count for all positions i, O<iSN6-l, the number of initial states qk so that 

qk+i< 2r-6 . There are overall Ng positions and 2r-6 such initial states for each position when we 

include the all-zero state. This gives 

Thus we can expect a sufficient number of ciphertext bits to be considered in the amputation of 

the cross correlation coefficients when we use the vector ( g(0),...,g(2r-h-l) ) and the 

Hadamard-Matrix Hr4 . Thereby we have a trade-off between the length of the ciphertext and the 

dimension of the Hadarnard-Matrix. Increasing the length of the ciphertext by the factor 26 will 

reduce the dimension of the Hadamard-Matrix by the same factor. It is therefore possible to 

analyse the LFSR in 

0 (R((r-6)2rd + r . N d  )) 

steps. The best choice for 6 is close to (r-log2N)/2 (see Table 1). Note that this attack will only 

find the correct feedback polynomial . There are still 26 possible initial states corresponding to 

each correlation coefficient. 
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6 1 2 3 4 5 6 7 8 Q 1 0  1 1  1 2 1 3  

Table 1. Schematic plot of the ratio g:= In ( R(Rr+rN) / R((rd)Zrd+rN26) ) 

3. THE ANALYSIS OF THE MSR-GENERATOR 

The MSR-generator (Fig.2) consists of two LFSR and a multiplexer that takes the state of the first 

register to decide which position of the second register shall be tapped to give the output. An 

algebraic analysis of the MSR-generator can be found in 121. 

For each register cell we have to compute the probability that its content and the output of the 

generator are equal. This probability has to be different from 0.5 to allow a cross correlation 

attack. We assume that xj and yk are statistically independent for all j.k , 1SjSm , I l k 9  . We 

also assume that the positions yk are tapped with equal probability. 

Let rn be the length of the first register and let x1 ,..., xm be the contents of its register cells. Let n 

be the length of the second register and y,, ...,yn the contents of its register cells. Let z be the 

output of the MSR-generator. 
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Fig.2 The MSR-Generator 

We have for the first register 

P(x,=z) = 2 P(xj= yi).P(yi is tapped) = 2 L.1 =1 . 
i e l  i = t  2 ' 2 J 

Thus the first register cannot be attacked directly by correlation analysis. The analysis of the 

second register gives 

n 

" i = l , i + k  

As P(yk = z) # 0.5 the correlation analysis is feasible. 

We will demonstrate the cross correlation attack on a MSR-generator with m=12, n=14 and 

feedback polynomials x1 2+x6+x4+x+1 and x1 4+x1 O+x6+x+1. The initial states are 0000 

0000 0001 and 0000 0000 0000 10 respectively. The multiplexer reads positions 3.7,4 of 

register 1. This 3-bit number serves as an index for the array (2,10.4.8,11,5,7.9). The 

entries in this array determine which position of register 2 will be tapped. The error 

probabilities for the test are pm = 0.9 ( dismissing the correct LFSR ) and pf = l l (R14 2 ) 

(accepting a wrong LFSR ). We have R14 = 756 and N = 212. 

The result of the correlation attack for the correct choice of the feedback polynomial is shown in 

Table 2. The attack was performed for 6=2, 6=1, and 6=0. The bound for significant 

Walsh-Coefficients is 430. Note that all significant positions are already highlighted by the attack 

with 6 = 2. 

14 
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vectors s for 

i 6=0 t 

: 4  6-1 
: : 4  6=2 b 

0 : 0 : 0000 001 1 0000 
0 : 0 : 0000 0110 0000 

0 : 0 : 0000 1100 0000 
0 : 0 : 0001 0001 0001 
0 : 0 : 0001 1000 0000 
0 : 0 : 001 1 0000 0000 
0 : 0 : 1100 0000 0000 
0 : 1 : 1000 0000 0000 

initial states 

for 6=0 

0000 01 00 0001 1 1 

00000010000011 

0000 0001 0000 01 

0111 1001 0010 11 

00000000100000 
00000000010000 

0000 0000 0001 00 
0000 0000 0000 10 

Walsh-Coefficients 

6=0 
6-1 

6=2 

504l493572 

5361551151 6 

436IS2Sl546 

5841583642 

5361585161 2 

4801483546 

500146Sl542 

-52815751614 

Table 2. Value and position of the significant Walsh-Coefficients for 6=2, 6=1, 6=0. The initial 

states are only given for 6=0. 

4. ANALYSIS OF THE DES SBOXES 

The S-boxes in the DES are non-linear functions with six inputs, say xl, x2, x3, x4, x5, x6 , and 

four outputs, say z1 ,22,23.24 . The inputs x1 and x6 choose one of four different mappings from 

~ 2 ~ 3 . ~ 4 ~ ~ 5  to the outputs. These mappings can be described as permutations of the numbers 0 

to 15. The 8 DES S-boxes are given in Appendix 1. 

The Walsh-Coefficients of inoutloutout oa irs: 

We examine the amount of information that leaks through an S-box from one input to an output. 

These cross correlations can be measured by the Walsh-Coefficients with Hamming-Weight 1. 

Table 3 gives the Walsh- Coefficients for all inputloutput pairs (xi,zj) , i=2,..,5 , j=1,..4 . The 

Walsh-Coefficients corresponding to the inputs x1 and x6 are zero for all S-boxes and all Outputs. 

Paths in the DES: 

We investigate the amount of information leakage through several rounds of the DES. We consider 

therefore the full set of S-boxes and look for instances where an inputloutput pair with large 

Walsh-Coefficient is linked to another such inputloutput pair. Enumerate the inputs x2, x3, x4. 

x5 of the 8 S-boxes by 0 to 31. The outputs are enumerated likewise. Let i->j denote an 

inputhutput pair and j<=>k the permutation due to wire crossing (see Appendix 2). The largest 

Walsh-Coefficients for inputl output pairs are of size 12. Considering the permuta1ion in each 

round they correspond to the transitions 1+16 and 9->29. Obviously there is no way of getting a 

path of length two with Walsh-Coefficients of size 12 assigned to all transitions. For 

Walsh-Coefficients of size 8 one obtains at most paths of length two. Only Walsh-Coefficients Of 

size 4 will give cycles and thus complete paths through the DES. 
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S-BOX 1: Xi\Zj 21 22 23 24 S-BOX 2 :  xi\zj 22 7.3 24 

x2 0 -4 4 4 x2 0 0 - 8  0 

X3 -0  -12 -4 8 x3 -4 -4 4 0 

x4 -4 -4 -4 4 

x5 4 -4 -4 -4 

0 4 4 - 4  

0 0 0 0  
x4 

x5 

S-BOX 3: xi\zj z1 22 23 z4 S-Box 4: xi\zj z1 z z  z3 z4 

x2 4 4 4 0  x2 -4 4 -4 -4 

x3 -4 0 12 0 

x4 0 4 0 -8 

x5 0 0 -4 4 

8 0 0 - 8  

4 -4 -4 -4 

0 8 8 0  

x3 

x4 

x5 

, Z 1  22 23 24 S-BOX 6: x ~ \ z .  S-BOX 5: xi\z. 
J z1 22 23 24 

x2 0 0 -4 4 ~2 -8 0 0 4 

4 -8 -4 4 

4 4 4 0  

4 4 0 0  

x3 

x4 

x5 

x3 -4 0 4 0 

x4 - 0  0 -4 4 

X5 8 - 4 - 4  8 

21 z2 23 z4 S-Box 8: xi\z. 7 21 z2 23 24 
x2 -4 0 4 -4 

x3 -8 -4 0 -8 x3 -4 0 4 0 

X4 8 0 4 8  x4 4 0 -4 -4 

x5 4 8 4 0  x5 -4 -4 0 4 

S-BOX 7: x ~ \ z .  

0 0 0 0  x2 

Table 3. The Walsh Coefficients for input/output pairs. Inputs x1 and x6 have been omitted. The 

coefficients have not been scaled by 2-6. 

4 -> 6 <=> 1 -> 3 <=> 30 

4 -> 6 <=> 1 -> o <=> a 
4 -> 6 c=> 1 -> 1 <=>16 

13 -> 12 <=> 25 -> 24 <=> 31 

13 -> 12 <=> 25 -> 27 <=> 6 

15 -> 13 <=> 19 -> 16 <=> 7 

15 -> 13 <=> 19 -> 19 c=> 2 

15 -> 14 c=> 9 -> 10 <=> 29 

Table 4. Paths through two rounds of DES for input/output pairs wifh Walsh-Coefficients of sire 8 

Walsh-Coefficients of randomlv selected S -boxes; 

We have generated random S-boxes and computed their Walsh-Coefficients to examine whether the 

DES S-boxes had been chosen specifically to minimize cross correlation effects (conf. 141). The 

S-boxes were constructed according to the following criteria . 
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PO. The mappings selected by x1 and x6 are permutations of <O, ... 1 5  . 
P1. No S-box is a linear or affine function of the input. 

Further criteria used in the definition of the DES S-boxes (see e.g. [4]) have not been considered 

in this analysis. Because of property PO the (unscaled) Walsh-Coefficients are always divisible 

by 4. Table 5 gives the relative frequency of the Walsh-Coefficients of inpuVoutput pairs for 

these randomly selected S-boxes and for the DES S-boxes. Table 6 gives the distribution of the 

maximal Walsh-Coefficients for each row and for each output of an S-box (conf. [61). The 

statistics are based on 88 random S-boxes. In both instances the distributions for DES S-boxes 

and random S-boxes are rather similar. This suggests that non-linearity already explains the 

cross-correlation properties of the DES S-boxes. 

5. coNcLusloN 

The Walsh-Transform is a useful tool for the cross correlation analysis of pseudo random 

generators. We have shown how a further speed-up can be achieved in the analysis of a class of 

generators built from shift registers. The complexity of the attack still depends exponentially on 

the length of the register. However, this makes even a small reduction in the size of the exponent 

all the more interesting for practical applications. 

We have also examined the correlation properties of the DES S-boxes. No obvious weakness was 

encountered. Experiments with randomly generated S-boxes seem to indicate that cross 

correlation properties have not been a special criterion in the design of the DES S-boxes. It 

remains a research problem to check this assumption in a proper statistical framework. 
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0 .45  - 
0 . 4  - 
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Table 5. Distribution of Wakh-Coefficients of input/output pairs for DES S-boxes and for 
randomly selected S-boxes. 

relalive frequency 

random S-boxes 

I I I I I I d the 

4 8 , , 2 o  2 4  28 32 36Walsh-Coefticients 

Table 6. Distribution of the maximal Walsh-Coefficients for DES S-boxes and randomly selected 
S-boxes. 
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S-BOX 1: 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 
0 1 5  7 4 1 4  2 1 3  1 1 0  6 1 2 1 1  9 5 3 8 
4 1 1 4  8 1 3  6 2 1 1 1 5 1 2  9 7 3 1 0  5 0 

1512 8 2 4 9 1 7  5 1 1  3 1 4 1 0  0 6 1 3  

S-BOX 2 :  15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 
3 1 3  4 7 1 5  2 8 1 4 1 2  0 1 1 0  6 9 1 1  5 
0 1 4  7 1 1 1 0  4 1 3  1 5  8 1 2  6 9 3 1 2 1 5  
13 8 1 0  1 3 1 5  4 2 1 1  6 7 1 2  0 5 1 4  9 

S-BOX 3: 1 0  0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 
13 7 0 9 3 4 6 1 0  2 8 5 1 4 1 2 1 1 1 5  1 
13 6 4 9 8 1 5  3 0 1 1  1 2 1 2  5 1 0 1 4  7 
1 1 0 1 3  0 6 9 8 7 4 1 5 1 4  3 1 1  5 2 1 2  

S-BOX 4 :  7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 
13 8 1 1  5 6 1 5  0 3 4 7 2 1 2  1 1 0 1 4  9 

3 1 5  0 6 1 0  1 1 3  8 9 4 5 1 1 1 2  7 2 1 4  
10 6 9 0 1 2 1 1  7 1 3 1 5  1 3 1 4  5 2 a 4 

S-BOX 5: 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 
1411 2 1 2  4 7 1 3  1 5  0 1 5 1 0  3 9 8 6 
4 2 1 1 1 1 0 1 3  7 8 1 5  9 1 2  5 6 3 0 1 4  
11 8 1 2  7 1 1 4  213 615 0 9 1 0  4 5 3 

S-BOX 6: 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 

9 1 4 1 5  5 2 8 1 2  3 7 0 4 1 0  1 1 3 1 1  6 
4 3 2 1 2  9 5 1 5 1 0 1 1 1 4  1 7  6 0 8 1 3  

S-BOX 7 :  4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 
13 0 1 1  7 4 9 1 1 0 1 4  3 5 1 2  2 1 5  8 6 
1 4 1 1 1 3 1 2  3 7 1 4 1 0 1 5  6 8 0 5 9 2 
6 1 1 1 3  8 1 4 1 0  7 9 5 0 1 5 1 4  2 3 1 2  

S-BOX 8: 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 
1 1 5 1 3  8 1 0  3 7 4 1 2  5 6 1 1  0 1 4  9 2 
7 1 1  4 1 9 1 2 1 4  2 0 6 1 0 1 3 1 5  3 5 8 
2 1 1 4  7 4 1 0  8 1 3 1 5 1 2  9 0 3 5 6 1 1  

1015 4 2 7 1 2  9 5 6 1 1 3 1 4  011 3 a 

The nFS wire c r m  

P : DES Wire Crossing 

15 6 19 20 
28 11 27 16 
0 14 22 25 
4 17 30 9 
1 7 23 30 

31 26 2 8 
18 12 29 5 
21 10 3 24 


