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Abstract 

A key stream generator is analyzed which consists of a single linear feedback shift 
register (LFSR) with a primitive connection polynomial and a nonlinear feedforward 
logic. It is shown. how, for arbitrary integers n and r and a binary LFSR of length 
L = n . r the linear complexity of the generated keystream can be determined for a 
large class of nonlinear feedforward logics. Moreover, a simple condition imposed on 
these logics ensures a n  ideal r -tupel distribution for these keystreams. Practically 
useful solutions exist where the keystream has linear complexity R . T"-' together with 
an ideal r-tupel distribution. 

1 Introduction 

A common type of keystream generator consists of a single binary linear feedback 
shift register (LFSR) and a feedforward logic (see Fig. 1). If the sequence produced 
by the LFSR has period p, all binary (key-stream-) sequences of length p are 
generated by suitable feedforward logics. This makes the keystream generator of 
Fig. 1 attractive from the theoretical point of view. The type shown in Fig. 1 is also 
of considerable practical interest because it needs only a single (instead of several) 
LFSR. However. in the  general case the analysis of this type of keystream generator 
has shown to  be rather difficult [l]. Groth [2] proposed a layered structure for the 
feedforward logic t o  control the linear complexity of the generated keystream. 
This arrangement generates keystreams of large linear complexities, however, the 
statistics of these keystreams are hard to control. Rueppel suggested [3] a simply 
realisable and therefore practically useful class of feedforward logics such that 
a lower bound for the keystream's linear complexity is guaranteed. A closely 
related structure had independently been proposed by Gunther/Bernasconi [4] 
which is also simple reahsable and also guarantees a minimal linear complexity of 
the keystream. The  latter two methods are based on the existence of one or several 

-Information Systems Engineering AG. Leutschenbachstr 45 ,  8050 Zirrich. Switzerland 
'ETH Zentrum, Sternaar ts t r .  7 .  8092 Zurich. Switzerland 

D. Chaum and W.L. Price (Eds.): Advances in Cryptology - EUROCRYPT '87, LNCS 304, pp. 15-23, 1988. 
0 Springer-Verlag Berlin Heidelberg 1988 



16 

*m.. . . .... . ... . .. . .. 

LFSR 
I I I I I I 

1 I 1 1 1 1  
I ... 

Feedforward logic Keystream 

Figure 1: A common type of keystream generator 

high order products in the corresponding algebraic normalform of the feedforward 
logic. A new approach [8] is proposed here. First, a number of "well chosen" 
delayed replicas (called "phases") of the sequence generated by the LFSR are 
picked, then every nonlinear feedforward logic is allowed. The analysis uses the 
theory of finite fields GF(2"). The approa.ch is strongly based on an interpretation 
of two results recently obtained by Brynielsson. It is assumed that the LFSR of 
Fig. 1 has a primitive connection polynomial. 

2 Synthesis of keystream generators 

In finite fields, every function f : GF(q) - GF(q) wit.h z t-+ f ( z )  can be 
expressed as a polynomial [ 5 ] :  

Definition 1 If  the  symbol yi: of the sequence {yk} over GF(q) is obtained as 
yk = f(xk) where f denotes the polynomial in (1 )  and {xb} is a sequence over 
GF(g) ,  t h e n  {Yk} i s  called a polynomial sequence. 

The following theorem is shown to be crucial for the computation of the linear 
complexity of the keystream produced by a generator as given in Fig. 1. 

Theorem 1 (Brynielsson [S]) Let {xk} be a max imum length sequence over 
GF(2") with a pr imi t i ve  characteristic polynomial of degree r and let H ( i )  de- 
note the H a m m i n g  weight of t he  integer i .  The  polynomial sequence {yk} with 
yk = f ( z k )  has l inear complexity LE;({yb}): 

LK((yi:}) = C ~ ~ ( ' 1 .  a, E GF(2"), (3) 
Q,#O 
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where the at's denote  the coef ic ients  in (1). 

At a first glance, polynomial sequences together with Theorem 1 seem not to  
have any connection to  the system of Fig. 1. Next, this connection is worked out 
with the help of Lemma 1 and Lemma 2 .  We consider a maximum length sequence 
{zk} over GF(2"). Symbols xk from GF(2") may be written as 

-k zl ka + Z0.k (4)  xk = x n - l , k a R - '  + xn--, k a n - 2  + . . . 

where the xz,k's  belong t o  GF(2)  and where a denotes a primitive element of 
GF(2"). The n binary sequences {z,,k}, i = 0.1.. . . ,n - 1, in (4)  are called the 
binary subsequences of { rk} . 

Lemma 1 (Brynielsson [7]) Let { rk}  be a max imum length sequence over GF(2") 
with (primit ive)  characterist ic polynomial p (  x) of degree r .  The binary subse- 
quences {z,,k},  i = 0.1.. . . . n. - 1, of {zk} are linear independent and fulfiI the 
same linear recursion wi th  a n  associated (primitive) characteristic polynomial 
q(s)  of degree L = r . R. 

Therefore, the subsequences {xl,k} differ only by delays of each other. The 
polynomial q(z )  can be determined [7:8]. The following Lemma 2 is well known. 

Lemma 2 Let { Z k ]  be a binary m a x i m u m  length sequence with (primit ive)  cha- 
racteristic polynomial  q ( x )  of degree L .  Every  delayed version { Z k - d } ,  where d 
denotes a n  integer in the  range (0 , .  . . , 2 L  - I] of { z t }  can be obtained by some 
linear combinat ion of t he  sequences { z k - 1 )  ,{zk-?}. . . . , ( 2 : k - L ) .  

This means that  every phase of the maximum length sequence generated by the 
LFSR of Fig. 1 can be obtained as a linear combination of the sequences from the 
L stages of this LFSR. MTe are now ready to  establish the connection between The- 
orem 1, Lemma 1. Lemma 2 and a system as given in Fig. 1. Consider a maximum 
length sequence {zk} over GF(2"). Choose any of the binary subsequences { z P p , k }  

mentioned in Lemma 1, say { z g , k } .  This binary subsequence is generated by a bi- 
nary LFSR of length L .  its feedback connections are known from q ( x ) .  The binary 
subsequences {z,.k}.  z = 1.2.  . . . , R - 1, are only phase shifts of { x O , k }  (Lemma 
1) and can be obtained as linear combinations of the sequences at the L stages 
of the LFSR that generates { I O , ~ }  due to Lemma 2. (Instead of generating the 
niaximum length sequence { X k }  over GF(2") by a corresponding LFSR of length 
J -  with feedback connections due to p ( z , ) ,  { z k )  is generated by a (binary) LFSR 
of length L with feedback connections due to q(z)  and linear combinations of the 
sequences occuring at  the L stages of this LFSR.) Every feedforward logic can now 
be applied to the n binary sequences {zO,k}, {z , ,k} .  . . . . { s n - ' , k }  to produce the 
binary keystream { y k } .  This feedforward logic is then described as a polynomial 
f : GF(2") -i G F ( 2 )  with yk = f ( . r k )  as given in expression (1). The h e a r  
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Figure 2: Synthesis of keystream generators 

coinplexity of {yk} is computed by theorem 1. The corresponding system is shown 
in Fig. 2. 

Because of the required EXOR blocks, the system of Fig. 2 is a slightly re- 
stricted version of that  shown in Fig. 1. But the linear comp1exit.y can be exactly 
determined for arbitrary feedforward logics as given in Fig. 2. 

So far we have not mentioned the r-tupel dstribution of the keystream {yk}. 
The r-tupel yt - is defined as a sequence [y,, Y ~ + ~ ,  . . . . y,, of successing symbols 
of {yk}. The set = [yo,yl.. _ _  . . )yp-l]  - contains all r-txpels of the sequence {yk} 
of period p .  The follow-ing definition is useful: 

Definition 2 A b inary  sequence {yk} of period p = 2 L  - 1 ezhibits a n  ideal 
r-tupel distribution x. 1 5 T 5 L ,  if exactly one of the 2' possible and  disjoint 
binary r - tup les  occurs 2L-' - 1 t imes  in a period of {yb} and each of t he  others 
occurs 2L-' t i m e s .  

Lemma 3 An ideal r-tupeI distribution of 4: implies ideal r'-tupel distribution 
of f o r  all T '  wi th  1 5 r f  5 r .  

Proof: From an ideal r-tupel distribution follows that exactly one of the 
2' possible and disjoint binary r-tupels occurs 2L-' - 1 times and each 
of the others ZL-' times. Therefore. exactly one r'-tupel. 1 5 rf 5 r ,  
occurs ( 2 L - r  - 1) t 2L-' . (2"'' - 1) = 2L-r' - 1 times and each of the 
others occurs 2L-' . 2'"' - - 2L-'' times, as was to  be shown. 

Theorem 2 Le t  {xk} denote  a m a x i m u m  length sequence over GF(2") of period 
2"' - 1 and f a po lynomia l  f : GF(2") --+ GF(2).  A poZynomiaI sequence {yk} = 
f ( { z k } )  ezhibits a n  ideal r f - tupe2  distribution f o r  alI rf with 1 5 r f  5 r for x E 
GF(2") if and only zf 

I {. : f(.) = l} /= 2"-'. ( 5 )  
where 1 {.} I d e n o f r s  the cardinality of the enclosed s e t  { .}. 



19 

Proof: Assume I {z : f(z) = l} /= b and I (2 : f(z) = 0) I= c 
with b + c = 3" and f ( 0 )  = 0. All r-tupels - z, = [ ~ ~ , z , + ~ ,  . . . ,zZLr-l] 

for i = 0,1, .  . . .2"' - 1 in the maximum length sequence {zk} are dis- 
joint and every possible 2*-ary nonzero r-tupel occurs exactly once. 
Binary r-tupels in {yk} occur from - z, = [ z Z : z + l r . .  . ,z,+,-1] as yt = 
[y,, y t t 1 7 . .  . ,y,-r-l] with yz = f ( x z ) .  First, we note that the 1-tupel dis- 
tribution of is ideal iff b = c = 2"-'. Lemma 3 implies that none of 
the r'-tupel distributions for 1 5 T' is ideal if the l-tupel distribution 
of is not. Therefore, ( 3 )  is a necessary condition for an ideal r-tupel 
distribution of 1. This condition is also sufficient as is shown now. First, 
nonzero r-tupels - y, are considered. From the assumption f(0) = 0 fol- 
lows that for nonzero y,'s the involved - 5,'s are nonzero too. From ( 5 )  
follows that ( 2 n - * ) r  - 1 or 2L-' - 1 (for L = n . r )  r-tupels - z, are mapped 
into yl = Q ,  where the -1 accounts for the missing r-tupel - z, = 0 in the 
maxiGum length sequence {zk}. This completes the proof. If f (0)  = 1 
is assumed, a similar proof exists. 

- 

3 Nonlinear feedforward logic 

From theorem 2 follows that a system as given in Fig. 2 generates a keystream {yk} 
with an ideal r-tupel distribution iff the polynomial f : GF(2") - GF(2) which 
describes the feedforward logic of Fig. 2 fulfils condition ( 5 ) .  The designer of such 
a system prefers polynomials f as given in (1) such that the following properties 
hold 

(a) f : GF(2") - GF(2) (produces a binary sequence) 

(b) f such that 1 { z  : f ( z )  = 1) /= I  { z  : f ( x )  = 0} 1 (ideal r-tupel distribu- 

( c )  f produces a keystream of large linear complexity 

(d) f is easy to implement. 

tion) 

Solutions which fulfil all of the above requirements are described in [9] and will 
be hscussed hereafter. As the polynomial f has to map GF(2") onto GF(2), it  
makes sense to use the so-called '-trace" function. 

Definition 3 For Q E GF(q"), the trace of o over GF(y)  is defined by 

It can be shown [ lo .  Theorem 2.231 that TrGF(qm)/GF1q) is a linear transformation 
from GF(q") onto the subfield GF(q) .  >loreover. considering the special case 
q = 2 .  one can prove [9] that the function TrGF(qm);GF(q)(a) computed for all the 
a 's  in GF( 2") takes on the value 0 exactly 2 " ~ '  times, and the value 1 consequently 
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271- 1 times. 
function 

Therefore, the conditions (a)  and (b) will both be satisfied by a 

f(..) = TrGF(2n)/GF(2)(g(2)), E GF(2") (7) 
where g(z)  permutes the finite field GF(2"). In [lo,  Theorem 7.81 it is shown that 
the monomial x b  is a permutation polynomial of GF(.q) if and only if b and q - 1 
are relatively prime. Consider the function 

( 8 )  b f(x) = T ~ G F ( ? ~ ) /  GF(?)(T 1 
where 

gcd(b,2" - 1) = 1 

From definition ( 2 )  we get 
(9) 

+ . . . f- Z*.zn-l. (10) f(.) = z b  + xb.? + Zb.?2 

Theorem 1 can be employed to compute the linear complexitmy of the polynomial 
sequence {yk} with yk = f ( x k ) :  

LK((&}) = c T X ( * )  
1:a,#O 

Nonzero at's only occur for indices i = b, b . 2, b . 2 2 , .  . . , b . 2"-'. All of these 
indices are simply obtained by shifting the binary representation of the integer b. 
Thus 

H ( i ) = H ( b ) ,  for i = b , b q 2 , b . 2 ?  ,... ?b.2"- l  ( 1 2 )  
In order to obtain a keystream-sequence of large linear complexity, one should 
choose an integer b of large Hamming weight H(b) .  On the other hand, b and 
2" - 1 must be relatively prime, according to (9). Thus, the choice b = 2" - 1 
(which would provide the maximal Hamming weight H ( b )  = n is excluded, and 
therefore 

b = 2" - 2 = -1 mod ( 2 n  - l ) ,  with H ( b )  = R - 1 ( 1 3 )  

f ( x )  = T ~ G F ~ ~ ) / G F ( ~ ) ( X - ~ )  (14) 

is optimal. Let 

be the filtering pol>xomial applied to the symbols xk of the maximum length 
sequence { z b }  over G F ( 2 n ) .  According to  Theorem 1. the polynomial sequence 
{yk} = f({zk}) has linear complexity 

LK({Yk}) = c Tn-' - - rn-' . n .  
i:a,#O 

The maximal linear complexity reachable for given integers T and n is easily 
computed by considering the case where all the a,'s in (1) are different from zero 
[91: 
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From (2) follows that all coefficients a, of the polynomial 

0, when x =  1 
1, else f n l a z ( 4  = 

are nonzero and therefore t,his polynomial reaches the maximal linear complexity 
as given in (16). However, note that this polynomial does not fulfil Theorem 2 
and that the statistical properties of the generated polynomial sequence are quite 
disastrous. 

The ratio 
- L W Y k H  - nr"-' - 

L K m a z ( { y k } )  ( T  + 1)" - 
can be optimized with respect to T for any given integer n by means of a simple 
derivation. The value T = n - 1 turns out to be optimal, and we obtain 

For large values of n: and consequently of r ,  this ratio converges to e- l .  This means 
t,hat the proposed structure can provide a pseudo-random sequence with a linear 
complexity of about 1/3 of the reachable maximal linear complexity together with 
an ideal (n - 1)-tupel distribution. 

3.1 Connection to GMW-Sequences 

After finishing this work our attention was drawn to the so called GMW-sequences 
(Gordon, Mills and Welch [ll]). These binary sequences have correlation prop- 
erties identical to  those of maximum length sequences but possess a larger linear 
complexity. Some of these sequences {yr,} can be specified as 

where cr is a primitive element of GF(2"') and b is any integer relatively prime 
to 2" - 1, r in the range 0 < T < 2" - 1. The interior Dace-function corre- 
sponds to a maximum length sequence over GF(2"). This has been discussed in 
[12] together with an analysis of the tuple distribution, periodic autocorrelation 
and linear complexity of GMW-sequences as defined in (19). The results of our 
analysis with respect to  the ideal tuple distribution and the linear complexity co- 
incide with the results in [12]. However, the following difference concerning the 
derivation should be mentioned: Our analysis is based on Brynielsson's powerful 
Theorem 1 from which the linear complexity for every polynomial f applied to a 
maximum length sequence can be computed even if we use it only for a function 
as specified in (8). This function belongs to  the same class of functions used in the 
GMW-construction according to  expression (19). Moreover, Theorem 2 gives the 
necessary and sufficient condition for a polynomial f ( r )  such that the correspond- 
ing polynomial sequence e-xhibits an ideal r-tuple distribution. The function f(z) 
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as defined in expressions (8) and (9) is a special case only which fulfils the require- 
ments of Theorem 2. Finally, we proposed a practical implementation of these 
keystream generators which is completely different to the mechanization shown in 
PI- 
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