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$1. INTRODUCTION 

A blockcipher maps each pair of plaintext and key onto a ciphertext in such a way that 
for every fixed key, the relationship between plaintexts and ciphertexts is one-to-one. It is 
assumed that plaintexts and ciphertexts belong to a message space comprising all bit- 
strings (sequences of zeros and ones) of a given length; keys are taken from a key space 
made up of aU bitstrings of a possibly Merent given length. A well-known blockcipher 
is the NBS Data Encryption Standard (DES) [6] ,  whch is the iteration of sixteen essen- 
t i d y  equal “rounds”. 

If a blockcipher is merely a linear mapping (with respect to exclusive-or) of the 
plaintext and key, then it is very easy to find an unknown key from a known pair of 
plaintext and corresponding ciphertext. Reeds and Manferdelli [7] pointed out that 
blockciphers with “partial linearity” are also vulnerabIe to a known plaintext attack much 
faster than exhaustive key search. We say that a blockcipher has partial linearity if there 
are non-injective linear mappings on the plaintext, key and ciphertext, respectively, and a 
“linear factor”, which maps each pair of mapped plaintext and mapped key onto the 
mapped ciphertext. Given the plaintext and corresponding ciphertext, one can search for 
the unknown key by investigating the linear factor rather than the blockcipher itself. 
Reeds and Manferdelli considered the problem of whether DES has partial linearity. In 
[7], they proved that DES has no partial linearity caused by “per round linear factors”, 
whch means, roughly speaking, that DES has no partial hsarity built up from the same 
kind of partial linearity in each round. 

Chaum and Evertse [I]  extended the notion of a per round linear factor to that of a 
“sequence of linear factors”, and proved that DES has no partial lmearity caused by such 
a sequence. Essentially, this means that DES has no partial linearity built up from possi- 
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bly different kinds of partial linearity in the rounds. Chaum and Evertse also analysed 
blockciphers consisting of a reduced number of rounds of DES, and proved that blockci- 
phers with less than five rounds of DES do have partial linearities caused by sequences of 
linear factors. 

In the present paper, the notion of partial linearity is extended to that of “linear 
structures”. Apart from the partial linearities, the class of linear structures contains struc- 
tures like the complementation property of DES. We discuss the cryptanalytic impor- 
tance of linear structures and among other things, the linear structures of DES are investi- 
gated. It is shown that, as a consequence, blockciphers consisting of at least seven con- 
secutive rounds of DES have no “recursive linear structures” other than the complementa- 
tion property of DES; this means that apart from the complementation property, these 
blockciphers have no linear structures that can be built up from h e a r  structures in the 
rounds. In fact, recursive linear structures are natural generalisations of sequences of 
linear factors. The results on DES just mentioned are derived from a general theorem on 
recursive linear structures in “DES-like ciphers” which we also prove. 

In 92 we explain precisely what is meant by a h e a r  structure in a blockcipher. 
More informally, one could say that a blockcipher has a hea r  structure if there are sub- 
sets P, K and C of plaintext bits, key bits and ciphertext bits of this blockcipher, respec- 
tively, such that for each plaintext and each key, a simultaneous change of all plaintext 
bits in P and all key bits in K has the same effect on the exclusive-or sum of the bits in C 
of the corresponding ciphertext; thus, either this exclusive-or sum is always changed or it 
always remains unchanged. Below we gyve a few examples of linear structures. 

The complementation property of DES (cf. [4]): simultaneously changing all bits of 
the plaintext and the key of DES results always in the change of all bits of the 
corresponding ciphertext. 

Bit independencies: the values of some ciphertext bits are independent of the values 
of certain plaintext bits and key bits; in other words, these ciphertext bits can be 
expressed as Boolean functions depending only on the other plaintext bits and key 
bits. It was pointed out in [ 5 ]  and [ 11 that versions of DES with less than five 
rounds have such bit independencies. 

Structures that will change into linear structures when the blockcipher is modified 
by applying certain h e a r  transformations (with respect to exclusive-or) to the 
plaintext, key and ciphertext respectively are h e a r  structures themselves; for 
instance partial hearities are linear structures that change into bit independencies 
by applying appropriate linear transformations to the plaintext, ciphertext and key 
of the blockcipher. 

We argue in 53 that blockciphers with h e a r  structures may be vulnerable to 
known- or chosen plaintext attacks faster than exhaustive key search. 
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We are particularly interested in h e a r  structures of product ciphers. These are 
blockciphers composed of “simple” blockciphers (“rounds”). In 54 we explain how linear 
structures of product ciphers can be constructed from linear structures in their rounds; 
h e a r  structures constructed in this way are said to be recursive over the rounds. As men- 
tioned before, recursive linear structures in product ciphers are generalisations of the 
sequences of linear factors introduced in [ 11. In many situations, the linear structures of 
the rounds, and consequently the recursive linear structures of the product cipher, can be 
found quite easily; however it is often a hard problem to decide whether a product cipher 
has a linear structure not recursive over its rounds that is of any use in cryptanalysis. 

In $5 we deal with DES-Ue ciphers. These are product ciphers b d t  up in a simi- 
lar way as DES from S-boxes, exclusive-or operations and mappings that are h e a r  with 
respect to exclusive-or. It is shown that the linear structures of a round of a DES-like 
cipher can be expressed easily in terms of linear structures of the S-boxes. Like DES, 
each DES-like cipher has a complementation property. The main result of $5 states, that 
any DES-like cipher satisfying certain easily verifiable conditions has apart from its com- 
plementation property no h e a r  structures whch are recursive over its rounds. 

In $6 we show that each blockcipher consisting of seven or more consecutive rounds 
of DES is a DES-like cipher satisfying the conditions of the main result of $5. Therefore, 
blockciphers that consist of seven or more consecutive rounds of DES have no recursive 
h e a r  structures other than the compIementation property. 

In $7 we explain briefly, that a DES-like cipher might be weak if some of its S- 
boxes have structures that change into h e a r  structures by appropriately changing some 
of the output values of these S-boxes. Further, we discuss the relationship between the 
existence of such structures and the statistical properties of the S-boxes. 

$2. NOTATION AND DEFINITIONS 

In this section we introduce some notation to be used in the remainder of this paper, and 
give a formal definition of a linear structure in a blockcipher. 

Let F2={0, I }  be the finite field of two elements. When using notions from linear 
algebra such as vector spaces, linear mappings, etc., it is assumed that the underlying field 
of scalars is 52. For every vector space we consider, we denote the adhtion operation by 
+ and, if confusion is not likely to arise, the zero vector by 0. Fg denotes the vector 
space consisting of all strings of m bits in whch the addtion of two strings is just bitwise 
exclusive-or. Elements of FT are denoted by a, b, etc.; 0, denotes the string of m zeros 
and 1, the string of m ones. Vectors in Cartesian products IF:‘ X * . XFi;”r are often 
denoted as (XI, . . . ,x,), where xi EFT for i = 1, . . . , r. [XI denotes the vector space gen- 
erated by X. If V a ( a € A )  are (linear) subspaces of the same vector space, then 03 Va 
={ X a :  X a  GVa} denotes the smallest vector space containing each “i,. Thus, 

a E A  

lZEA 
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@ [xJ denotes the vector space generated by the set of vectors {G: a E A } .  For any 

linear mappingA with domain IF? we put ker (A)={xEFT:  Ax=O}  and 
irn(A)={Ax: XEIFT} .  A linear mapping is said to be rriviul if it maps every vector in its 
domain onto 0. 

U E A  

A blockcipher is a mapping 

F:  lFy XIFi+IF? 

(where IF? and lF5 are the message space and key space, respectively) such that for each k 
in IF;, the mapping 

Fk:=F(. ,k):  [F?+F? (1) 
is invertible. 

Definition. A linear srructure of a blockcipher F :  IF? XlF:+.F? is a pair (V,w), Where v 
is a subspace of IF ? X IF$ and 'W a subspace of IF?, such that for each pair (po,ko) in V, 
each p in lF!f and each k in IF$ we have 

Remark 1. Each blockcipher has trivial linear structures. 

Remark 2. It is easy to see that this definition implies that of $1. For let (Y,W) be a 
linear structure and let B be a h e a r  mapping on IF? with ker(B)=W.  Then (2)  implies 
that there is a function $I, defined on V, such that 

BF(P+po,k+ko)+BF@,k) = BF(po,b)+BF(Orn,Ok) = $4.4dQ) 

for all (po,b)~T, pEF? and kEF$.  (3) 

In other words, if we fix po and ko, then exclusive-oring a plaintext with w and a key 
with b causes a change in the B-value of the corresponding ciphertext, whch is for each 
plaintext and key the same. 

We now give a few examples of linear structures. 

Example 1: complementation property of DES. The blockcipher DES, with message space 
F44 and key space FZ6, has the property that DES(p+l~ ,k+l56)=DES(p,k)+l~  for 
every plaintext p and key k. Hence ([(164,156)], [O,,]) is a linear structure of DES, and in 
(3) we can take for B the identity and for +b the mapping defined by Ic(Oa,O56)=Oa and 

Example 2 partial linearity. A blockcipher F is said to have partial linearity if there are a 
triple of linear mappings ( A  1 , A z , B )  and a mapping F such that BF(p,k)=F(A lp,A zk) 
for all plaintexts p and keys k. Then (Y,'W), with Y=ker (A  1 ) x k e r ( A 2 )  and 'X=ker (B) ,  

"(1649 156) = 164. 
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is the corresponding linear structure of F. The function + in (3) is identically zero. 

53. CRYPTANALYTIC SIGNIFICANCE OF LINEAR STRUCTURES 

In this section we describe a known- and a chosen plaintext attack, which are both based 
on the existence of linear structures. In these attacks, the following fact is used: 
Lemma 1. Let F: ff? XIF$+IF?f be a blockcipher and (Y,%) a linear structure o f F .  
Further, let A,B be linear mappings with domains IF ?f X ff $ and Fg, respectively, Such that 
ker(A)=rV and ker(B)='%. Then there exist a linear mapping C: 55 Xffi+im(B) and a 
(not necessarily linear) mapping F :  im(A)+im(B), both easirv computable from F, A and B, 
such that 

- 

BF(p,k)=tA(p,k)+C(p,k)far all p in IF?, k in IF$ . 

hf. Let (Y,W) be a linear structure of F and A,  B linear mappings with 
ker(A)=Y, ker(B)=%. Further, let + be the function on ?; defined by (3) in $2. + is 
h e a r  on Y and therefore easy to compute from F, A and B. Indeed, let (pa,b), 
@1 ,kl ) EY. Then (3) implies that 

4 b o + ~ i , b + k i )  = W p i  +po,ki +ko)+BFtO,,Od 
= BF(pl  +po,kl +ko>+BF@l,kl)+BF@l,kl)+BF(O,,Ok) 
= r n t k o ) f N P l , k l ) .  

Let A be a pseudo-inverse of A ,  that is a h e a r  mapping A *: im(A)+F?f XF; 
such that AA is the identity on im(A). Such a pseudo-inverse exists and can be easily 
computed from A. Let D : IF T X IF $ +F ?f x ff ! be the linear mapping d&ed by 
D(p,k)=(p,k)+A*A@,k). Then D(p,k)Eker(A)=Y for all p ~ f f ? f  and kE5g .  f i t  
F= BFA *, C =+D. Then 1. and C are well-defined mappings that are easily computable 
from F, A and B, and C is linear. Let p and k be arbitrary elements of F? and F i ,  
respectively and put (m,ko)=D(p,k). Then (3 )  and the fact that @o&)EYimply that 

= FA ( p ,  k )  + C ( p ,  k). 

l lus completes the proof of Lemma 1. 0 

In what follows, F: ~ ? f  xF$+lF?f is a blockcipher and ('T,t',vur) a non-trivial h e a r  
structure of F, and A, B, C and 
WedefinethelinearmappingsA1,A2, C I  and C2 byA@,k)=Aip+Azk, 
C(p,k)=Clp+Czk. We describe two attacks: a known plaintext attack, where it is 
assumed that O<n : =dimension ker(A 2)Gk; and a chosen plaintext attack in which 
ker(A2) is supposed to have dunension 0. 

are the mappings satisfying the conltions of Lemma 1 
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A known plaintext uttuck Suppose that a cryptanalist has a plaintext-ciphertext 
pair (p,c) and wants to find the secret key k with F@,k)=c. In order to find k, he 
proceeds as follows: 

(i) he runs through all values 
equations 

in im(A 2) and checks for each it, if the system of linear 

is soluble (the costs of this are approximately those of a computation of F, if we 
suppose that F is much more “complicated” than a linear mapping); it follows at 
once from Lemma 1 that the unknown key k must satisfy (4); 

for each i; in im(A2) for which (4) is soluble, he checks for each solution k of (4) if 
F(p, k) = c. 

(ii) 

Supposing that the cryptanalist finds L values of i; in (i), and that the null space of the 
linear mapping k&l2k,C2k) has dimension n 1 dn, he will lind the key after about 
2k -’ +L X 2”’ encryptions. In general, h s  number of encryptions is smaller than that 
needed in exhaustive key search, which is 2k.  By a heuristic argument like in [l], 52, one 
can argue that the expected time in which the cryptanalist finds the key can be made 
smaller if he has more plaintext-ciphertext pairs for that same key. 

Example 1: partial linearity. Let A 1 ,A2,B be linear mappings such that 
BF(p,k)=F(A lp,Azk) for every plaintext p and key k. and suppose that ker(A2) has 
dimension >O. In [7] and [ I ]  a known plaintext attack based on partial linearity was 
described that is faster than exhaustive key search. That attack is the same as the attack 
described above, with C1 and C2 being trivial. 

ciphertext pairs, (pl,cl), . . . , (PN,CN), say, and wants to find the unknown key k for 
which F(p1, k) = c1, . . . , F(pry, k) = c ~ .  Assume that p1, . . . , p~ have the property that 
there are kl,  . . . , kN EF$ such that 

A chosen phintext attack. Suppose that a cryptanalist has N different plaintext- 

A(~i ,k i )=A(pz ,k2)=  . . . =A(piv,kN). (5 )  
Note that plaintexts p1, . . . , p . ~  with this property exist if and only if ’T has cardinality 
at least N .  In order to find k, the cryptanahst proceeds as follows: he chooses keys k’ 
from IF $ at random and checks for each k’ if 

Cz(k’+kl +ki) = BcjfFA(p1,k’)SClpj (6) 
holds for some i in { 1, . . . , N } .  If this is the case, the cryptanalist concludes that 
k=k’+kl +k, must be the proper key. His motivation for this is, that by (9, (6) and 



255 

Lemma 1 this k satisfies 

Bc, =FA (p,,k) + C@, , k) = BF(p, , k). 

Thus for the costs of only a single encryption, the cryptanalist can check N keys. There- 
fore the expected running time of this attack is about N times as fast as that of exhaustive 
search. 

Example 2 complementation property of DES. Hellman et al. ([4], $111) showed that there 
is a chosen plaintext attack on DES, using the complementation property, which is twice 
as fast as exhaustive key search. That attack is essentially the chosen plaintext attack just 
described, applied to DES and two plaintext-ciphertext pairs (PI ,q), (pz,c2) with 
pz =p1+164. Note that such two pairs satisfy (5 )  with N =2,  where A is a linear map- 
ping with ker(A)=[1@,156], and kl and k2 are any two keys with k2 =kl f l 5 6 .  

Example 3 multiple complementation properties. Let f : F T d T  be a one-to-one func- 
tion such that both f and its inverse are easy to compute, and let F*:lFT XIF?+E? be the 
blockcipher defined by F*@,k)= f(p+k)+k. Then (ci-,%j is a linear structure of F * ,  
withY={(x,x): XEIF?} and mJ=[O,]. LetA: IFTXIF?+F? be thehea r  mapping 
given by A(p,k)=p+k; thus ker(A)=Y. Any N different plaintexts P I , .  . . , p ~  of F* 
satisfy condition ( 5 )  with k, =pr for i = 1, . . . , N .  Hence if a cryptanalist knows N arbi- 
trary plaintext-ciphertext pairs of F * ,  corresponding to the same unknown key, then he 
can find that key about N times faster than with exhaustive search by using the chosen 
plaintext attack described above. Note that for the blockcipher F * ,  this chosen plaintext 
attack is in fact a known plaintext attack. 

in that case its benefit is much less than that of the known plaintext attack described 
above. However, it is possible to combine both attacks into a chosen plaintext attack that 
is somewhat faster than the known plaintext attack described in this chapter. Further, it 
is possible to use linear structures in meet-in-the-middle attacks like in [I]. We do not 
work this out here. 

The chosen plaintext attack can also be used when O<dimension ker(A 2 j s k ,  but 

54. LINEAR STRUCTURES IN PRODUCT CIPHERS 

Let F 1 ,  . . . , F R  : 
Fl  , . . . , FR is defined (cf. (1)) by 

x F$+iF!f be blockciphers. The product F =  FR . . . F 1 of 

Fk(p>=FR,k ' . . F I , k ( P )  (7) 
(composition of mappings) for p E lF!f and k E IF$. F 1 ,  . . . , FR are called the rounh of F. 
We describe how Linear structures of F can be constructed from linear structures in 
F 1 ,  . . . , FR. To this end, we introduce so-called T-spaces and U-spaces. 

For any blockcipher F :  F!f X IFk+IF T, and any subspace Y of IF7 X F i ,  we define 
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the spaces 

(V7’2f) linear structure of F w U(F,?T)C%. (8) 
In other words, U(F,  53 is the minimal space “I such that (T,3J) is a linear structure of 
F. The T-spaces are auxiliary spaces, needed to construct linear structures in blockciphers 
from linear structures in the rounds. For certain simple blockciphers like the rounds of 
DES the U-spaces are easy to compute. The next lemma describes how T-spaces can be 
computed from U-spaces. 

Lemma 2. k t  F :  F?f x IF$+IFY be a blockcipher and ‘v= @ [(p,,k,)] a subspace of 

IFTXIF~.  Then 

S 

1 = I  

S 

T(F,v) = {u(F,ct-)x[okl} @ { @ [ ( ~ ( p i , k i > + F ( o , , O k ) , k i ) l } .  (9) 
i = l  

Proof. Denote the space at the rigfit-hand side of (9) by %. It is easy to check that 
5% c T(F,  Y). In order to prove that T(F ,  Y) c%, it suffices to show that for each @o,ko) 
in V, p in IF? and k in IF? we have 

Without loss of generality we may assume 

(10) 
I 

i = l  
that (po,h)= 2 (pi,ki), where l<t<’s. Then 

where a1 =(F(p+ p1 ,k  t kl )+F(p,k),kl)  and 

for i =2, , . . , f .  It is easy to check that for each i, a, +(F(pi,ki)+F(O,,Ok),ki) belongs to 
LI(F,’v)X[Ok].  Thls proves Lemma 2. 0 

The linear structures of a single round of a blockcipher can be found by investigat- 
ing the U-spaces of that round. The next lemma describes, how linear structures of the 
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whole product cipher can be constructed from those T-spaces and U-spaces of the rounds 
satisfying some recurrence relation. 
Lemma3. Let F1 , .  . . , F ~ :  IF? x(Fk+Fy be blockciphers andput F=FR . . . F1. Sup- 
pose that Yo, Y1, . . . , F K ~  are subspaces of IF i X IF i, and OJo,  %J 1, . . . , WR are subspaces 
of IF?, such that 

(8) and Lemma 3 motivate the following: 
Definition. Let F 1, . . . ,FR: I F ~ x I F ~ + I F T  be blockciphers and put F=FR . . . F1. A 
linear structure (V,%) of F is called recursive over F l ,  . . . , FR if there are subspaces 
Yo,. . . ,VR of IF? XIF; and %Jo, . . . ,WR of IF? for which (11) holds and for which 
%'=Yo and W = W R .  
Remark 1. If a product cipher can be decomposed into rounds in two different ways, 
then it is possible that a linear structure of that product cipher is recursive over the 
rounds of the first decomposition but not over the rounds of the second decomposition. 

Remark 2. If the rounds of some product cipher are such that their linear structures are 
easy to find, then in general, the linear structures of that product cipher which are recur- 
sive over its rounds are also easy to detect. However, one can not exclude that a product 
cipher has linear structures that are not recursive over its rounds, and it might be a very 
difficult problem to check if such non-recursive linear structures exist. 

Proof of Lemma 3. In the roof of Lemma 3 we need the following facts: for any two 
blockciphers G, H: FT X IF2+F? We have f 
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HG(p + po, k + b) + HG@, k) + NG(po,b)  + HG(O,,Ok) = a+ b+ c, 

where 

V; 2 T(F( ' ) ,?T~) ,  w i  2 u(F('),v~> for i = 1, . . . , R, (14) 

which is obviously sufficient. (14) is trivially true for i = 1. Suppose that (14) holds for 
i =t - 1 (induction hypothesis). In the induction step, we apply (12) and (13) with 
G =F(' - '1, H = Ft and Y= VO. First we have, by (1 1). the induction hypothesis and 
(12), that 

wt x [Okl 1 T(Fr,Osf - I x [Okl)  @ { U(Ff ,% - 1) x [Okl} 

2 T(Ff ,  u(F(' - ' ) , ~ o )  x [o~I) @ { U(Fr, T(F(' - '1, ?CO)> x [o,]) 
- 3 U(F('),VO)X[Ok]. 

Hence (14) holds for i = t. l k s  completes the induction step. D 

Example. LetF1,. . .,FR: I F ~ X F $ + I F ~  beblockciphersandF=FR . . - F l .  A 
sequence of linear factors for F is a tuple of h e a r  ma pings (C0,Cl , . . . , CR,D) such 
that CO, . . . , CR have domains IF?, D has domain F2, and there are mappings ! 
F1,. . . ,FR with 

C,F,(p,k)=F,(C, -1p,Dk) for i =1, . . . , R, PEE?, kE[F$. ' 
Th~s  notion was introduced in [ 11. It is easy to check that the spaces 
V,=ker(C;)Xker(D) and %,=ker(Ci) (i =0, . . . ,R) satisfy (11). Hence (Yo,ZU'R) is a 
h e a r  structure of F, which is recursive over F 1, . . . , FR. 

This deht ion is not consistent with that of a "linear Factor'' in [7] or in $1 of the present paper. 
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$5. LINEAR STRUCTURES IN DES-LIKE CIPHERS 

In this section we introduce DES-like ciphers, whch are product ciphers with a similar 
structure as DES. We investigate the recursive linear structures of these DES-like ciphers. 
The class of DES-like ciphers contains, among others, DES and Lucifer (after some slight 
modifications) and uuncated versions of these product ciphers with a reduced number of 
rounds. 

Let m,k,l,n,m 1 ,n  1 ,R be positive integers with m =21m 1 and n =Inl. Elements of 
F$' are often denoted by (p,q), where p,qEIFFm. Whenever convenient, we write elements 
of IFF"' as (ql, . . . , q) with qj €IF?' for j = 1, . . . , l  and elements of [F! as I-tuples of 
elements of F;' . A DES-like cipher with message space IF$' and key space IF$ is a pro- 
duct cipher 

F'FRFR-~  . . . F1, 

whose rounds Fi (i = 1, . . . , R )  are defined by 

Fi @, q, k) = (9, p + S (Lq + K; k)) for (p, q) E IF ? , k E IF 4. 
Here the mapping S : F!-+IFF" is given by 

~ ( x l , .  . . , x r ) = ( ~ l x l , .  . . , S / X ~ )  for X I , .  . . ,~~EIF;', 

where S 
is a linear mapping; and K1, . . . , KR : iFi+lF! are linear mappings (the key scheduhg) 
such that for i = 1, . . . , R, the linear mapping J;: Fy XFi+F$, given by 

. . . , S,: IF;' +IF;' are certain non-linear mappings (the S-boxes); L : FY"'+E! 

JI(Pl9, k) = Lq + K;k, 
is surjective. 

Linear structures in the rounds Fi can be described in terms of linear structures in 
the S-boxes, as defined below. We remark that searching for the linear structures in the 
S-boxes is feasible when the input size n 1 of the S-boxes is small. In that case it is also 
feasible to find the linear structures in the rounds. For each j in { 1, . . . ,I} and each 
subspace % of IF;' we define the subspace 

U(S/ ,%) = 63 F/<. + u) +- S j < X >  + S/<.> + S,(Ofl ' >I .  
xEF;' 
U€% 

A linear structure of Sj is a pair (%,%) for which % is a subspace of IF;', % is a sub- 
space of lF?' and U ( S / , % ) c % ;  (%,%) is said to be rrivialif%=[Ofl,] or %=ff?'. 

Let p,: Fq4F;' be thej-th projection p e n  by p,(xl,. . . ,x,)=xJ. If 
(p,q,k)EF? XF: is an input to some round F, then plJ,@,q,k) is the part of that input 
going into S-box S j .  In the lemma below, elements of Fy are written as (p,qi, . . . ,Q), 
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with p € F f m  and 91,. . . ,q,€Fy'. 

Lemma 4. Let i E 1, . . . , R }, and suppose that F, is given by (16). Further, let Y be u 
subspace of IFF X F2. Then I 

U(F~,CV)~[OE~IX( [O~~, IX  . . . X U ( S t , d i ( V ) X  . . X[Omll), (19) 

where the space U(Sf,pJI(")) is preceded by t - 1 spaces [ O m , ]  and followed by I - t  
spaces [Om, 1. In order to prove (19), it is sufficient to show that for each t in {I, . . . , l } ,  
u in p,Ji(rv) and x in F;' , U ( F , , V  contains ( O ~ ~ , y 1 ,  . . . , y ~ ) ,  where yf = 
S,(x+u)+St(x)+S,(u)+S,(O,,), andy] =Om,  for j#t .  Fix r ,  and for each u in pJ,(?T) 
and x in F;', choose (p,,,qu,k,,) from Y such that p,J,(p,,,q,,k,,)=u and (px,&,kx) from 
FT XF$ such that pJ,(I)x,&,k,)=x and p , J f ( ~ , ~ , k x ) = O , ,  for all j#t .  This is possible 
since we assumed that J ,  is surjective. By (18), U(Ff,"c] contains the vector 
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f o r j  = I ,  . . . ,t. But it is easy to check that yt=S,(x+u)+S,(x)+S,(u)+S,(O,,,), while 
y, =Om, for j#t -  This completes the proof of Lemma 4. 0 

In the lemma below we show that each DES-like cipher has a recursive linear struc- 
ture comparable to the complementation property of DES. Let 

1 LqO+Kjb=O, for all odd i in (1 , .  . . , R }  
e~ = ~ ~ ~ ~ ~ ) E F T x ~ ~ :  L ~ O + K ~ ~ = O ,  for all even i in (1, .  . . , R }  . i 

( 2 ~  is called the complementation space of F. Then we have: 

Lemma 5. Ler F be the DES-like cipher defned by (15) and (16). Then ((2,,[Omn is u 
linear structure of F, which is recursive over Fl , . . . , FR. 

Proof. Let Wi =[Om] for OGiGR and 

Y~=C?F if O<i<R, i even; 
Yi=((q~,po,ko): @o,qo,ko)EC!~} if O G i f R ,  i odd. 

From Lemma 2 we infer that for every subspace Y= [ ( p , , ~ , k ~ ) ]  of IFF X IF! We have 
t = 1  

Using this fact together with Lemma 4 and the fact that Ti - 1 c ker(Ji) for i = I, . . . , R, 
it follows that To, . . . , YR, %o, . . . , %R satisfy the relations (1 1) in Lemma 3. Since 
Y O = ~ F  and % R = [ O m ]  this proves Lemma 5 .  0 

Let F be defined by (15) and (16). To F we associate an errorpropagation map DF, 
of subspaces of FY' to the I-tuple ('3 1, . . . , "Y) which maps every I-tuple ( % I ,  . . . , 

of subspaces of lFy' for which 

'3,=U(S,,p,L(%lX . . .  X%l) ) fo r j= l , .  . . ,1. 

Any change in the plaintext or key affects in some way the outputs of the S-boxes after 
the first round. The effects on the outputs of the S-boxes propagate in the second round, 
and result in certain effects on the outputs of the S-boxes after the second round. Con- 
tinuing in tlus way, the outputs of the S-boxes after each round are &ected. Informally 
speaking, DF describes, how the effects on the outputs of the S-boxes after some round 
propagate in the next round (the so-called errorpropugation in one round). Suppose that 
the spaces X I ,  . . . ,%I describe the effects on the outputs of S-boxes S 1, . . . , Si, respec- 
tively, after the i-th round, say. Due to the linear mapping L, the effect on the output of 
S-box Sj causes .some effect on the inputs of several S-boxes in the i f I-st round. The 
total effect on the input of S-box St, say, in round i + 1, caused by the effects on the out- 
puts of all S-boxes in round i ,  can be described by the space ptL(%l X . * ' X'Xi). Thus, 
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the effect on the output of St after the i + 1-st round is described by the space Qt. Intui- 
tively speakmg, if the spaces Q, are larger, then the error propagation in one round is 
stronger. D h  (DF iterated i times) describes the error propagation in i consecutive 
rounds. For F to be secure it is desirable that there is a number P G R  such that 

D!(%I,. . . ,%[) = (FYI,.  . .,IF?,) 
(21) 

for all subspaces XI ,  . . . ,?Q of IF Y' with at least one #[Om, ] .  

If P is the smallest integer for which (21) holds, then F is said to have optimal errorpropa- 
gation after P rounds. It seems, that a good design criterion for a DES-like cipher is to 
make the number of rounds after whch F has optimal error propagation as small as pos- 
sible. For instance, this can be achieved by choosing S-boxes without non-trivial linear 
structures and choosing L in a careful way. It is easy to see that (21) holds if and only if 
D ; ( % ~ ,  . . . = (IF:!, . . . ,IF?') for every tuple of spaces (%I, . . . , X i ) ,  for which 
exactly one space is generated by a single non-zero vector, while the other spaces are 
[Om, 1. Hence in order to fmd the smallest P for which (21) holds, one merely has to com- 
pute D; ( i  = 1,2, . - * ) for 1(2m' - 1) tuples (%I ,  . . . .%I). This is feasible if 1, m 1 and 
n 1 are small. 

It also seems, that another good design criterion for the DES-like cipher F given by 
(15) and (16) is to choose the mappings L and K1, . . . , KR such that truncations of the 
DES-like cipher after a few rounds have no larger complementation space than the DES- 
like cipher itself. We say that F has no extra complementation after Q rounds if Q is the 
smallest integer for which the space 

is equal to the complementation space t ? ~ .  Provided that m, k and n are not too large, 
computing Q is feasible. 

Below we give a sufficient condition for a DES-like cipher to have no non-trivial 
recursive linear structures other than that given in Lemma 5. 

THEOREM. Let F be the DES-like cipher given by (1 5 )  and (1 6) and suppose that the fol- 
lowing three conditions are satisfied: 

(i) 

(ii) 

U(S,,%)#[Om, ] for evely subspace ci2L of F;' with %f[Ofl,]; 

F has optimal error propagation after P rounds and no extra compIementation after Q 
rounds; 

(iii) 

Then for every linear structure (Y,W) that is recursive over F 1, . . , , FR and for which Y is 
not contained in C?F, we have *d =ff 5. 

R > P + Q. 
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PROOF. Let Yo, . ~ . , YR, (Uo, . . . , ' U R  be a sequence of linear spaces satisfying the 
conditions of (1 1) (cf. Lemma 3) such that YO is not contained in t ? ~ .  We have to prove 
that WR =FT. To this end, we need two lemmas. 

Lemma 6. Let 1 <i < R - 1 and suppose that (Ui 2 [ O I , ~ ~ ]  X %1 X . . . X %I, where 
%I,. . . ,%I are subspaces of F?'. Then (U) + I  z[Olh,]~.?i1 x - . . X Q ~ ,  where 

(311,. . . ,Q,)=DF(Gxl,. . . ,%I) .  

Proof. (1 1) implies that Wi + 1 3 U(F,  + 1 ,Wl X [O, ] ) .  Together with Lemma 4 this implies 
Lemma 6. 0 

Lemma 7. There is an i with 1 <i < Q such that %; 2 [O,] X % I X . . . X Gx,, where 
%I,. . . ,XI are subspaces of IF?' of which at least one is # [ O m , ] .  

Proof. Let i be the smallest integer for whch there is a @o,@,b)EVo such that either 
Lpo +Kjb#On and i even, or Lqo +Kib#On and i odd. Then 1 <i<Q. By arguments 
similar to those in the proof of Lemma 5, one can show that 

Yf>Vo for l < t < i  and t even, 
Yf 2 { ( q o , p o , ~ ) :  (m,qo,lq,)Ect'o} for l < t < i  and t odd. 

Hence Ji(Yj -])#[On]. Put %, = U(S,,p,Jl(Yi - 1)) for j = 1, . . . ,l. By condition (i) of 
the Theorem, at least one of the spaces Gx, is #[Om, 1, and by (1 1) and Lemma 4 we have 
GUri>U(~j ; . ,Y j - , )>[9im]X%1 X . . . XGx1. l b s  proves Lemma 7. 0 

We are now ready to complete the proof of the theorem. By Lemma 7 there is an i 
with l<i<Q and 

Wl>[O~,]X3c1 x . * .  X%/, 

where Gx 1, . . . , %, are subspaces of IF 
we have for t =1,2, . . . , 

of whxh  at least one is #[Om, 1. By Lemma 6 

so that in particular, 

% j  + p  2[O'hm]XFFm. 

Since F has optimal error propagation after some number of rounds, there are subspaces 
Z1, . . . ,%, of IF?' such that 

Lemma 6 ths  implies that 

. . . , % , ) = ( [ F Y I ,  . . . ,IF?'). Hence 
D F ( F Y i ,  . . . , [Fmi - . . . ,IF?'). Together with ( l l ) ,  Lemma 2 (or (20)) and 

%, = f fy  fors>i+P.  

But by condtion (iii) we have R > P  +Q>i  +P. We conclude that %~=lFy .  0 
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56. APPLICATION TO DES 

For convenience we modify DES a little bit: first, we do not use the tables IP and PC1 Ln 
the NBS-description (cf. [6]); and second, we combine the tables E and P, in the way 
described in [2], $3. Plaintexts and ciphertexts of DES are denoted by (p,q), where 
p,q 

p:F;* +F;2 : bit permutation; 
E:Fi2+Fi8: bit expansion; 
S,:F$+F; (I = 1, . . . ,8j: S-boxes; 

K,:IF:6+F;8 (i = 1, . . . ,16): key scheduhg; all K, are permuted choices of key bits, 
defined by PC2 and the shfting pattern. 

DES is composed of the following mappings (cf. [6]. [ 11): 

S:Ei8+Fi2: S(X1, . . . ,x8)=(slxl, . . . ,s8x8) for XI.. . . ,xg 

Let F, : Fy X F:6-+Fp be the i-th round of DES, defined by 

F;(p,q,k)=(q,p+S(EPq+K;k)) for i =1, . . . , 16 

and put 

D E S ~ T =  FT . . . Fs. 
D E S ~ T  is obviously a DES-like cipher with parameters m = 64, k = 56, n =48, rn 1 =4, 
n1=6,1=8 and R =T - S  + 1. The complementation space of DES1,16 is equal to 
[(164,156 11- 

It follows from the Theorem of 55 that product ciphers, consisting of seven or more 
consecutive rounds of DES, have no non-trivial recursive linear structures other than the 
complementation property. 

Corollary. L.et.S, T be integers with 1<S<T916 and T > S  + 6 .  If(Y,W) is a linear 
structure of D E S ~ T  such that (‘T,Wj is recursive over Fs. . . . , FT and Y is not equal to 

Proof. Put R =T - S  T 1, and let 
[(064,056)1 or [(164,156)1 then 

li EPpo+K,+~-1lq,=048 if i even 
= ( P a 7 q 0 7 b ) ~ ~ $ 4 x f f ~ 6 ~ F ~ :  E P q o + & + s - I ~ = 0 4 8  i f2  odd . i 

By examining EP and K 1 ,  . , . , K 16 (cf. [6 ] )  it can be shown that for all S and T with 
I<S<TB16 and T > S + 6  and all i>4  we have ef=[l64,l56]. Hence DESST has no 
extra complementation after Q rounds, for some integer Q <4. By investigating the S- 
boxes and EP (see also 111, 993,4j it can be shown that each blockcipher D E S ~ T  with 
T>S +6 has optimal error propagation after P: = 2  rounds. An investigation of the S- 
boxes implies that condition (i) of the Theorem holds. Finally, R 2 7 > P  + Q. NOW the 
Corollary follows at once from the Theorem. 0 
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Remark. The condition T > S  +6 cannot be replaced by T 2 S  + 5. For instance, one can 
verify that DES2,7 has a recursive linear structure (V,%) for whch Y is not contained in 
[(164,156)], whereas 0 $ + [ ~ $ ~ .  

$7. POSSIBLE EXTENSIONS 

In [4], BIV, Hellman et al. suggested the following way to break DES, which might also 
apply to an arbitrary DES-like cipher F modify the S-boxes of F such that the resulting 
DES-like cipher P‘, with the modified S-boxes, is easy to break. If the modification in 
each S-box S is such that the output S(x) is changed for only a few inputs x, then F and 
F’ give the same ciphertexts for a non-neghgible fraction of pairs of plaintexts and keys. 
For these plaintexts and keys, the key in F can be found by searching for the key in F’. 
Some of the potential possibilities of this attack were already discussed in [l], $2.1. 

From the investigations in 55 it follows that recursive linear structures in DES-like 
ciphers are built up from linear structures in the S-boxes. Therefore, Hellman et al.’s 
attack described above might work if some of the S-boxes of a DES-like cipher have small 
distances to certain linear structures. Here the distance of an S-box to a particular linear 
structure is the minimal number of outputs of that S-box that must be changed to obtain 
an S-box with that linear structure. 

There is a close relationship between the collection of distances of an S-box to all 
linear structures and the statistical properties of that S-box. Suppose that some S-box has 
an A-linear structure, that is a pair of subsets I ,  0 of input bits and output bits, respec- 
tively, with the following property: for exactly a fraction A of those pairs of inputs of the 
S-box of which only the bits in I differ, the exclusive-or sum of the bits in 0 of the first 
corresponding output is equal to the exclusive-or sum of the bits in 0 of the second 
corresponding output. If A =O or A = 1 then that S-box has a linear structure. If 
O<A <1 then that S-box can be transformed to one with a linear structure by appropri- 
ately changing a fraction of %min(A, 1 - A )  of its outputs. 

An S-box has maximal distance to each linear structure if each pair of subsets I ,  0 
of input bits and output bits, respectively, is a 50%-linear structure of that S-box. This is 
a strong requirement and it is not clear whether it is feasible to h d  S-boxes satisfying it. 
Not all linear structures in the S-boxes of some DES-like cipher will result in non-trivial 
recursive linear structures of that DES-like cipher. Therefore, it suffices to find out which 
linear structures in the S-boxes are dangerous, in the sense that they would cause recursive 
linear structures in the DES-like cipher, and then choose S-boxes with large distances to 
the dangerous linear structures. 

It is known that S-box 4 of DES has non-trivial hear  structures (cf. [4], §V and [ 11, 
54). Further, structures like the 50% and 25% exclusive-ors, found by Hellman et al. (cf. 
[4], §v), and the correlation in each S-box between one of the six input bits and the 
exclusive-or sum of all four output bits, discovered independently by Shamir [S] and 
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Franklin [3], show that each S-box of DES has small distances to certain linear structures. 
However, these structures have not been proved useful in the cryptanalysis of DES. It is 
yet unknown (from the open literature), whether the S-boxes in DES have distances to 
dangerous linear structures that are small enough to enable a known or chosen plaintext 
attack faster than exhaustive key search. 
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