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Since its inception in the mid 1970’s, public-key cryptography has flourished as a research 

activity, and significant theoretical advances have been made. In more recent years, many 
public-key concepts have gained acceptance in the commercial world. Without question, 
the best-known public-key cryptosystem is the RSA system of Rivest, Shamir and 

Adleman [28]. Although not as well-known, another public-key cryptosystem of practical 

interest is that due to ElGamal [ll]. The latter system and its variations use a basic 

extension of Diffie-Hellman key exchange [9] for encryption, together with an 
accompanying signature scheme. Elliptic curve cryptosystems, introduced by Miller [241 
and Koblitz [ 121, have also recently received much attention as cryptographic alternatives. 

The security of the RSA and E1Gama.l cryptosystems is generally equated to the difficulty 
of integer factorization and that of the computation of discrete logarithms in finite fields, 
respectively. Based on the current literature, this survey considers a detailed analysis of a 

version of the multiple polynomial quadratic sieve integer factorization algorithm [261, and 

a variation of the Coppersmith algorithm for computing discrete logarithms in GF(2”) [6]. 

The analysis is used for a practical security comparison between the RSA cryptosystem and 
the ElGamal cryptosystem in fields of characteristic two, By “practical” we mean a 
comparison suitable for dealing with particular problem instances of practical interest, 
rather than dwelling exclusively on asymptotic complexities. The algorithms analyzed arc 
the best general practical algorithms currently known for the respective problems, for 

problem sizes of cryptographic interest. Other aspects of the cryptosystems are considered 
in addition to relative security, including practical efficiency. The security of elliptic curve 

cryptosystems, which is generally equated to the difficulty of extracting elliptic curve 
logarithms (the elliptic curve analogue of the discrete logarithm problem), is also discussed 
and related to that of the previously mentioned cryptosystems. The recent reduction [23] of 
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prove to be a competitive factoring technique for general integers of sizes of cryptographic 
interest. Elliptic curve factorization allows extraction of smaller factors (up to 30 or 40 
digits) from relatively large numbers (up to 200 digits). The number field sieve applies to a 
small class of numbers including those of the form N = re+s for small integers r and s, and 
runs in heuristic expected time e~p((c+o(l))(lnN)1fi(lnlnN)~/3), where c = 1.526; it has 
been used to factorize the 155-digit ninth Fermat number, 2512+l. The generalized number 
field sieve applies to general integers, and has a running time constant of c = 32/3 = 2.08; 
further research is underway to improve upon this constant. While asymptotically 
significantly faster than all previous general factoring algorithms, the generalized number 
field sieve is not currently practical for integers of cryptographic interest. 

While the elliptic curve method and the number field sieve have been used to factor 
numbers of special form much larger than can be factored at present using the quadratic 
sieve, such numbers can be easily avoided in cryptographic applications. The quadratic 
sieve (in particular, the multiple polynomial version, suggested by Davis and independently 
by Montgomery) remains the most efficient general purpose factoring algorithm in 1990. 
TWO important new ideas that apply to the quadratic sieve have been demonstrated by A.K. 
Lenstra and Manasse. The first is the use of electronic mail to coordinate the activities of 
large networks of “anonymous” workstations [ 181; this has changed the rules somewhat 
regarding what should generally be considered as computationally feasible. The second is 
the “two large prime” version used for collecting sparse equations [19]. 

The discrete logarithm problem has also been the subject of much study in recent years. 
The computation of discrete logarithms in odd prime fields GF(p) is discussed by 
Coppersmith et al. [7] and by LaMacchia and Odlyzko [15]. The latter paper indicates that 
in practice the computation of discrete logarithms in GF(p), using the best currently known 
techniques, is slightly harder than factorization of integers N (where N = p) via the multiple 
polynomial quadratic sieve. We restrict attention primarily to fields of characteristic two - 
these traditionally being of practical interest, as arithmetic in such fields is particularly 
amenable to efficient hardware implementation. Early work by Blake et al. [3] rendered the 
field GF(212’) totally inadequate for cryptographic security; a key size of 127 bits, which 
corresponds to 38 digits, is simply insufficient. Subsequent work by Coppersmith [6] and 
Odlyzko [25] led to further improvements in the index-calculus techniques for computing 
logarithms in larger fields GF(2”). There has been a lack of further practical work in fields 
of characteristic two, although it appears there is renewed interest of late. Recent surveys 
discussing discrete logarithms include [16], [l], and [21]. 
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Efficient techniques for the solution of large sparse linear systems over finite fields are 
important in both factoring and extracting discrete logarithms. Progress on this front has 
been made by Wiedemann [341, and LaMacchia and Odlyzko [ 141. 

The Diffie-Hellman key exchange technique and the related ElGamal cryptosystem can be 
carried out using the group of points of an elliptic curve over a finite field, resulting in 
elliptic curve cryptosystems as noted above. The apparent absence of efficient attacks on 
elliptic curve systems (and efficient general algorithms for computing elliptic curve 
logarithms) has resulted in the belief that these systems with relatively short keylengths 
may afford greater security than alternative cryptosystems with larger keylengths. Shorter 
keylengths imply simpler implementations of arithmetic, and smaller bandwidth and 
memory requirements - important in smart card applications, among others. 

Menezes, Okamoto and Vanstone [23] have recently shown that for certain classes of 
curves over fields GF(q), the elliptic curve logarithm problem can be reduced to the discrete 
logarithm problem in an extension field GF(qk). In general k is exponentially large and the 
reduction takes exponential time, but for supersingular curves, k is small and the reduction 
is probabilistic polynomial time - yielding a subexponential-time elliptic curve logarithm 
algorithm. The cryptographic impact of this is that special care must now be taken in the 
particular choice of elliptic curve, either avoiding the supersingular curves or compensating 
for the new algorithm by using appropriately larger fields to preserve security. These 
larger fields in the latter case may still be smaller than those required for equivalent security 
in other types of cryptosystems, in which case even these elliptic curve systems remain 
attractive in practice. Ironically, the classes of curves susceptible to the new attack include 
many of those which have previously been recommended for use, including curves 
originally suggested by Miller [24], Koblitz [12], Bender and Castagnoli [2], and Menezes 
and Vanstone [22]. 

Significant advances have also been made in recent years, in theory and in practice, on 
techniques for efficient implementation of the cryptosystems in question. For RSA 
modular exponentiation, these include custom VLSI chips (see Brickell’s survey [41), 
efficient digital signal processor software implementations (e.g. Dusse and Kaliski [lo]), 
and a Programmable Active Memory implementation by Shand et al. [31]. Custom VLSI 
chips for arithmetic operations in GF(2“) are now also available (see Rosati [29]). Schnorr 
has recently proposed a signature scheme for ElGamal-like cryptosystems resulting in 
shorter signatures that can be both constructed and verified more efficiently than in 
EIGamal’s original proposal [30]. Implementation of elliptic curve cryptosystems over 



fields of characteristic two has recently been studied by Menezes and Vanstone (221 and 
Koblitz 1131. 
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