
Fast Checkers for Cryptography 

Kireeti Kompella * Leonard Adleman * 
Department of Computer Science 

University of Southern California 

Los Angeles, CA 90089-0782 

1 Introduction 

Fast Checkers . . . 

Program correctness is a serious concern, and has consequently received considerable atten- 
tion. This attention has taken three appioaches: 

l mathematical: prove programs correct; 

b empirical: test programs for bugs; and 

. engineering: design programs well. 

While considerable progress has been made, the question of whether a given computation was 
performed correctly still has no practical solution. However, a new approach, proposed by 
Manuel Blum, promises to be both practical and of theoretical significance, and is intrinsic& 
closer to a computer scientist’s heart, since the approach is 

l algorithmic: check every computation 

using a progmm checker. Program checkers are designed for specific computational problems; 
a checker is then an algorithm such that, given a program that is supposed to solve that 
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problem, and an input value, if the program computes correctly a t  that input, the checker 
says “CORRECT” (with a small probability of error); alternately, if the program has a bug, 
it says “BUGGY” (again, with a small chance of error). 

Program checkers have the advantages that I )  they check entire computations (software + 
hardware + operating system); 2) they provide certificates on individual computations; and 
3) the effort need not be duplicated if a different program for the same problem is to be 
checked. On the other hand, the price for increased confidence is increased computation, 
making f a s t  checkers especially attractive. 

. . . for Cryptography 

If the average user is concerned about program correctness, how much more SO the crypto- 
grapher, who, by the nature of his profession, deals with information of critical importance, 
making the correct manipulation of this information vital? How often is he willing to pay 
the price of slower speed for the sake of increased confidence? Program checkers make this 
choice available. 

This paper describes a fast checker for modular exponentiation, the computational problem 
underlying RSA, one that, for modulus n, requires O(log1ogn) queries and modular multi- 
plications for a given confidence level. This paper also presents a hypothesis that implies 
the existence of a “constant-query” checker, requiring only a constant number of queries and 
modular multiplications, independent of the input. Finally, it is shown without hypothesis 
that in many practical cases, constant-query checkers can be obtained. Independently, Ronitt 
Rubinfeld [R] has devised a checker for a restricted version of modular exponentiation’ that 
requires O((1oglog TL)~)  queries and O((log1og ~ t ) ~ )  modular multiplications for modulus ~ t .  

In passing, it is noted that this checker can be used in a number of cryptographic contexts, 
e.g., the Diffie-Hellrnan key exchange and discrete logarithm based systems. Furthermore, 
an entirely analogous checker can be used to check elliptic curve discrete logarithm systems, 
where exponentiation corresponds to multiplying points on the curve. 

1.1 Definition of Program Checkers 

For completeness, Blum’s original definition of a program checker is given: 

Definition 1 (Blum) Le t  x be a computational problem. For E a n  inpu t  t o  x ,  let ~ ( z )  
denote the output of x .  Call C, a program checker for problem 7, if for all programs P 
that halt o n  all inputs,  for all ins tances  I of T ,  and fo r  all positive integers k (presented in 
unary) ,  C,‘ i s  a probabilistic oracle Turing machine  (with oracle P )  such  that:  

‘This version requires that the number being exponentiated be relatively prime t o  the modulus. 
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1. IfP(z) = x(z) for all instances x of A,  then with probability >_ 1 - 1/2k, CIp(I;k) = 
C O R R E C T  (i.e., P ( I )  is correct); 

2. I f P ( I )  # x ( I )  then with probability 2 1 - l/Zk, C:(I; k )  = BUGGY (i .e.,  P h a  a 
I% ug ”) . 

Clearly, every computable problem A has a trivial checker: run a correct program for x )  
and check whether the given program produced the same answer. Thus, to obtain useful 
checkers, it will be required that the time for checking, apart from queries to the program, 
be o(T,,), where T,, is the time complexity of solving T ,  i.e., that the checker run much faster 
than any program for x ;  such a checker will be called fast. If T, is not known (as is often 
the case), one can aim for checkers that run in o(Ux) ,  where U, is the best known upper 
bound for x ;  such checkers will be called “fast”. A constant-query checker is a fast (or “fast”) 
checker that, for each value of the confidence parameter k, requires only a constant number 
of calls to the program being checked, and the arguments of each such call have size at most 
that of the original input. In such a case, one can transform any “reasonable” program for 
T to a “self-checking” program that has a running time of the same order of complexity. 

2 Checking Modular Exponentiation 

2.1 Problem Statement 

Both RSA encryption/decryption and the Diffie-Hellman key exchange protocol have the 
same underlying computational problem, namely, modular exponentiation ( M E ) ,  which can 
be described as follows: 

Input: 
Output: c ab mod m. 

a,  b,m: positive integers, with a < m. 

The main result: 

Theorem 1 (Fast Checkers for Modular Exponentiation Exist.) There esists a pro- 
gram checker CME for modular exponentiation such that for all programs P which halt ev- 
erywhere, and all inputa a ,  b, m E i!,o with a < m, 

I .  CLE makes U(log1ogb) queries of the program P ;  

2. C g E  requires U(1og log b + log log m) multiplications modulo m. 
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2.2 Remarks 

The checker CME is based on the tester-checker paradigm, introduced in [AK]. That  is, it 
follows a two-stage protocol, where, in the first stage, the checker tests that the program 
satisfies some statistical property (e.g., correctness on a certain fraction of the inputs); and 
in the second, it checks t he  program on the given input, making use of the property just 
verified. 

To see whether C M E  is a fad checker, one has to  compare the time to check against the time 
to compute. The fastest known algorithm for modular exponentiation takes U(1og b )  modular 
multiplications for exponent b. Thus, until an algorithm that takes U(1og log b )  multiplica- 
tions is invented, the  given checker can be deemed fast. Independently, Ronitt Rubinfeld 
[R] discovered a checker tha t  requires O(log1og b . logl0g3 rn) modular multiplications and 
O(log log b log log2 m) calls to  the  program. 

The checker CME can easily be modified to check exponentiation on any group, and in 
many semi-groups, again with O(1og log n) queries and group multiplications, where n is the 
exponent. Thus, for example, one can obtain fast checkers for exponentiation in polynomial 
rings and on elliptic curve groups. 

2.3 Informal Description 

(To simplify this description, the modulus m is assumed to be prime. This restriction is not 
required for the actual checker.) 

At the heart of the checker for modular exponentiation lies the familiar algebraic identity: 

uc . uf G ae+’ mod m; (1) 

Let P be a program tha t  purports to perform modular exponentiation, and let ( a ,  b,m) be 
the given input. Suppose that, for base a and modulus rn? P exponentiates correctly at 
sufficiently many exponents f, i.e., 

P(cz,f,m) E a’ mod m for at  least 5/6 o f f  E (0,. . . , B}  

P ( a ,  b, m) f ab mod m. 

(2) 

(3)  

(where B is appropriately chosen), but, at  the given input, 

Then identity (1) suggests the following check: pick f randomly from (0,. . . , E l ,  and check 
whetherP(u,b,rn).P(a,f,rn) P ( u , b + f , m )  modm. I f f i s s u c h t h a t P ( a , f , m )  = .’mod 
rn and P ( a ,  b + f ,  m) abef mod m, then ( 3 )  implies that the check will fail. Moreover, (2) 
implies that  picking such an f is reasonably likely (provided that b + f 5 B) .  Thus, the 
tester-checker paradigm suggests itself: first, obtain confidence that the program P satisfies 
(2), then use identity (1) as outlined to obtain confidence that P(u ,b ,m)  G ub mod m. 
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However, the “tester” phase of verifying that (2) holds needs to  be performed carefully. 
Direct computation is clearly too slow, taking O(1ogb) multiplications, as opposed to the 
desired O(l0glog b )  multiplications. Thus, a more subtle approach is required: establish (2) 
for a much smaller interval, then inductively extend to larger intervals, using P itself to 
perform the checks. 

For the inductive step, the  identity used is the following: 

uh.2’’+I - = (ah)27J ar mod m 

Thus, checking on exponents 2j+I bits long (namely, h . 22’ + I ,  with h and I of size 2’) is 
reduced to checking on exponents of half this size (namely, h and I).  However, one more 
check is needed: that  z”’ mod rn is computed correctly for arbitrary z. Again, the  tester- 
checker paradigm is brought into play: first test that P ( ~ , 2 ~ ’ , r n )  E yz mod m, for most 
y E {I, .  . . ,m - l}, then use the identity 

z j  

(zy)‘ = ze - ye mod m 

to check that z2” mod rn is computed correctly. Once again, the testing is done inductively: 
if P is tested for 22’, then it can be tested for 22j” using: 

( y 2 ’ J  122’  mod m. 

Now consider the case when m is not prime. Then cancellation is no longer valid in general, 
and this introduces two problems: first, even if a “nice” f is picked, the check suggested by 
(1) may not work; and second, the check for P ( ~ , 2 ~ ’ , m )  also may not work. The  former 
problem is circumvented by working modulo the largest factor of m relatively prime to a 
(without explicitly computing it),  so that cancellation is reinstated; and the latter is solved 
by using a “generalized” cancellation Iaw modulo m: 

2.4 The Checker CME 

The checker is presented below in detail. Note that the modulus m is no longer restricted 
t o  be prime. 

The following notation will be used: for any positive integers m and a, write m as a product 
u p ?  of distinct primes, and  denote by rn[u] the product np; I ap:i, and let mla] = m/m[a]. 
Note that ( m [ u ] , m [ a ] )  = ( a , m [ a ] )  = 1. Let ezp(rn) = mar;(e;}; observe that ezp(m) 5 
log m. 

- - 
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2 )  

For j E Z>o, let T,(P, j ,m)  be the property that t~y~0‘u‘m’P(y~22’~m’3y2 modmk 2 p, and 

2 g. The checker first attempts to verify T2(P,a,j,m) that 
that T,(P, j ,m) and T2(P,u , j ,m)  hold for 0 5 j 5 loglog b. It then checks the program on 
the given input. 

#{ulO<v<m} - 
# { f l O < f < Z ” k P ( a ,  f,m)folmodmloil 

# t flO<f <Z2’ } 

CGE(U,  b, m; k): 

Input :  P :  a program (supposedly for modular exponentiation) that halts on all inputs; 
a, b, m: positive integers such that 0 < a < m; 
k: confidence parameter (given in unary). 

Ou tpu t :  ‘CORRECT’ if P ( A ,  B, M )  G AB mod M for all A ,  B, M E Z>o with A < M ;  
‘BUGGY’ (with probability 2 1 - 1/2k) if P ( a , b , m )  $ ub mod m. 

begin 
Set c = erp(m) ,  if known; else set c = [log ml 
(* For small exponents b 5 c ,  check by direct computation. *) 
if b 5 ezp(m) ,  compute ub mod m directly; 

if P(u ,  6, m) $ ub mod m, output ‘BUGGY’ 
otherwise, output ‘CORRECT’; 
halt. 

set n = [log log bl . 
(* Tester stage *) 

testl(n,m,k) 
testZ(u,n,m,k) 

(* Checker stage: establish correctness at given input *) 
do k times 

(* Then, that P(a ,  b,m) G a* mod m[a] *) 
directly compute uc mod m 
if P(a,  b - c,  m) - a‘ f P(u, b, m) mod m then output ‘BUGGY’ 
else output ‘CORRECT’ 

v checkZ(u, b,  n, m) (* Check that P(a ,  b, m) = ab mod m[al *) 

end 

testl(n,m, k): 
(* Test whether T,(P, j ,m) holds for 0 5 j 5 n. *) 

begin 
(* The base case j = 0 is just squaring: test directly *) 

do 6 k  times 
pick z randomly from {I,. . . , m - 1) 
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if P ( z ,  2, m) $ z2 mod m then output ‘BUGGY’ and halt 

for j E {I,. . . , n} do 
do Ilk times: 

pick z randomly from (1,. . . , m - 1) 
c h e c k l ( z , j  - 1,m) ;  let y = P(z72*’-’,rn) 
check l (y , j  - 1,m); let z = P(y ,2” - ’ ,m)  
if P ( z , ~ ~ ’ ,  m) $ z mod m then output ‘BUGGY’ and halt 

end 

check l ( z , j ,  m): 
(* check that P ( ~ , 2 ~ ’ , m )  

I J  
z2 mod m, given that T,(P, j , m )  holds. *) 

begin 
pick y randomly from { 1,. . . , m - 1) 
if P ( z , 2 2 J , n ) . P ( y , 2 2 ’ , m )  f P ( z  . y  mod m,22’,m) m o d m  then 

if P ( z , 2 ” , m ) . P ( y +  1,2”,m) $ P ( z .  ( y +  1) modm,2*’,m) mod m then 
output ‘BUGGY’ and halt. 

output ‘BUGGY’ and halt. 
end 

t e s t Z ( a ,  n, m, k): 
(* Test whether Tz(P,  a, j, m) holds for 0 5 j 5 n. *) 

be gin 
(* The base case j = 0 is checked directly. *) 
if P(u,  0, m) f 1 mod m or P ( u ,  1, m) $ a mod m then 

output ‘BUGGY,’ and halt. 

for j E {I, . . . , n }  

do 8k times 
pick e randomly from (0,. . . ,2” - 1) 
write e = h .2”-’ + I ,  with 0 5 h , l  < 2”-’ 
check2(u, h, j - 1, m); let x = P(u,  h, rn) 
c h e c k l ( z , j  - 1,rn); 
check2(a , l , j  - 1,m); let z = P(u, l ,m) 
if y z f P(u,  e , m )  mod m then output ‘BUGGY’ and halt 

let y = P ( ~ , 2 ~ ’ - ’ , r n )  

e n d  

checkZ(a,e,j ,m): 
(* check that P ( a , e , m )  

- 
ue mod rn[a], given that  e < 22’ and T2(P7u ,  j, m) holds. *) 

begin 
pick f randomly from (0,. . . , 22’ - 1) 
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i f f  > e then 
if P ( a ,  e,  m) - P ( u ,  f - e,  m) $ P ( a ,  f, m) mod m then 

output ‘BUGGY’ and halt. 
else 

i f P ( a , f , m ) . P ( a , e - f , m )  $ P ( a , e , m ) m o d m  then 
output ‘BUGGY’ and halt. 

e n d  

2.5 Formal Proof of Theorem 1 

In this section, Theorem 1 is proved, The proof proceeds via several lemmas that assert that 
the tests and checks given perform as desired: 

L e m m a  1 (check1 works) For all j E z>o, - f o ~  all z , m  E z , ~  with z < m, 

aJ 1. If P ( ~ , 2 ~ ’ , m )  G y2 

2. If Tl (P , j ,m)  holds, but P ( z ,  j ,m)  

mod m for  all 0 < y < m, then checkl(x, j ,m)  does nothing. 

x2” mod m, then with probability 2 1 /2  
checkl tx ,  j , m )  outputs ‘BUGGY’ and halts. 

Proof: 1) Straightforward. 

2) Assume the antecedent. For 0 < y < m, let S, = {y,xy mod m,y + l , z ( y  + 1) mod m}; 
call y badif S, has a z such that P ( z ,  Z2’, m) $ z2” mod m. Now, each z with 0 < z < m can 
appear in a t  most 4 S,’s; and since #{.I0 < z < m & P ( ~ , 2 ~ ’ , m )  $ z2” mod m} < q, 
there are less than bad y’s. But if y is not bad, then checkl will output ‘BUGGY’ and 
halt, for otherwise, one must have 

2J - 
(since m[y]Im), so that P(x ,2” ,m)  
and similarly, P(z,Z*’,m) z2 
P ( ~ , 2 ~ ’ , m )  x 2  

z2 mod miy] (since (y,m[yl) = 1, one can cancel); 
mod m[y] (since m[y]lm, and (y  + l ,m[y]) = l) ,  whence 

mod m by the Chinese Remainder Theorem, a contradiction. Thus, with 
0 

11 

iJ  

probability a t  least 1/2, checkl (z , j ,m)  will output ‘BUGGY’ and halt. 

L e m m a  2 ( t e s t l  works) For all n E z>o, - for all m,k E z,o, 

y2” mod m for 0 < y < m, then t e s t l  (n, m, k) does nothing. 1. If P ( y ,  22J ,  m) 

2. If Tz(P,a ,  j , m )  fails to  hold for some 0 5 j 5 n, then with probability at least 1 - Z e k ,  
t e s t l (n ,m,  k )  will output ‘BUGGY’ and halt. 



Proof: 1) Straightforward. 

2) Let j o  be the smallest j such that T2(P,a ,  j ,m) fails to hold. If j o  = 0, then P squares 
incorrectly a t  least 1/8 of the time, and in 6 passes through the first loop, an  instance where 
P ( z , 2 , m )  f z2 mod m will be found with probability at least 1/2.  Therefore, at  the end of 
the loop, with probability 2 1 - 2-’, t e s t l  will output ‘BUGGY’ and halt. 

Now suppose j o  > 0. For random I, Prob[P(z, 22Jo, m) f z21Jo mod m]> 118. For such an z, 
, m) ( 223’0-1 )z2”-‘ =_ mod m, if P(Z,~~’~-’,~Z) xz mod m, and P(zzaJ0-1,22’o-1 

then t e s t l  will output ‘BUGGY’ and halt. If either of these values is computed incorrectly, 
then with probability a t  least 1/2, check1 will output ‘BUGGY’ and halt. So, every pass 
through the second loop will detect a bug with probability a t  least 1/16. Thus, at the end 

23’0 3 J O - l  

of the loop, with probability 2 1 - 2-k, t e s t l  will output ‘BUGGY’ and halt. 0 

L e m m a  3 (check2 works) For all e , j  E Z>o - with e < 2 2 J ,  for all a , m  E Z>o with u < m, 

1. If P(u,  f ,  m)  

2. IfTl(P, j ,  m) and T2(P, a ,  j ,  m) hold,  but P(a ,  e ,  m)  f ue mod m[al then with probability 

a f  mod m for all 0 5 f < 2”’ then check2 (a,  e, j, m) does nothing. 

2 112 checka(a,e, j , m )  outputs ‘BUGGY’ a n d  halts. 

Proof: 1) Straightforward. 

2) Assume the antecedent. Arguing as in lemma 1, one can show that the probability of 
picking f such that, modulo m [ a ] ,  

- 

P(u ,  f, m) 3 a f ,  P(u ,  e - f ,  m) G a‘-’ (if e 2 f), and P(u,  f - e ,  m)  = af-‘ (if f 2 e) 

is at  least 1/2.  But for such an f (say f 2 e ) ,  P ( a , e , m ) .  P(a,f  - e,m) f P ( a , f , m )  mod 
m[al, since P ( u ,  e ,  m) f a‘ mod mla] and (3,~) = 1); thus, u fortenori ,  the congruence 
cannot hold mod m. Therefore, with probability a t  least 1/2, check2 will output ‘BUGGY’ 
and halt. 0 

L e m m a  4 ( tes t2  works) For al l  n E Z>o, for all a ,  m, Ic E Z,o, - 

1. IfP(a,f ,  m) 

2. If Tl(P,j, m) holds for all 0 5 j 5 n, and T2( P, a,  j ,  m> fails to  hold for some 0 5 j 5 n, 
then with probability at least 1 - 2-‘, test2(a, n, m, k) will output ‘BUGGY’ a n d  halt. 

uf mod m for 0 5 f < 22”, then t e s t l fn ,  m , k )  does nothing. 

Proof: 1) Straightforward. 

2 )  Let j o  be the smallest j such that T2(P,a, j ,m)  fails to hold. WLOG, assume j o  > 0. 
Then, for random e < 2 * ’ O ,  Prob[P(a,e,m) $ a‘ mod m [ a ] ] >  1/6. If z := P(u ,h ,m)  EE 

- 
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p ’ o - ’  - 
ah mod nz[al, P ( ~ , 2 ~ ’ ~ - ’ , m )  z z mod m (and thus mod m[aj), and P(a, l ,m)  G .‘mod 
m[al, then tes t2  will output ‘BUGGY’ and halt. If any of the congruences fails, then the 
corresponding check will catch the bug with probability a t  least 1/2.  Therefore, for random 
e, Prob[test2 finds a bug]? 1/12. Thus, after Ilk choices of e, Prob[testZ says ‘BUGGY’] 
> 1 - 2 - h .  0 

Proof  of Theorem 1: 
TO show that CME is in fact a checker for modular exponentiation, observe first that for any 
correct program P, CLE answers ‘CORRECT’ on all valid inputs. On the other hand, if P 
and < a, b, m > are such that P(a ,  b, m) f ab mod m, then one of the following must hold 
(let n = [log log b l ,  and assume WLOG that b 2 c = ezp(m)):  

- 

1. T,(P, j ,m) fails to hold for some 0 5 j 5 n; 

2. Tl(P, j ,m) holds for all 0 5 j 5 n, but T 2 ( P ,  a, j ,m)  fails to  hold for some 0 5 j 5 n; 

3. Tl(P, j ,m) and T,(P,a, j ,m) hold for all 0 5 j 5 n, but P(u ,b ,m)  $ ub mod miaj; 

4. Tl(P, j ,m)  and T2(P,a, j ,m) hold for all 0 5 j 5 n, but P(a,b,m) $ ub mod m[a] .  

- 

Case 1: Lemma 2 applies; 
Case 2: Lemma 4 applies; 
Case 3: Lemma 3 applies; 
Case 4: For 6 2 c,  ub G 0 mod m[u] .  Thus, P(u ,  b - c,m) . uc z 0 mod m[a] .  Hence, if 
P ( u ,  b, m) $ ab mod m[a] ,  then P(u ,  b,m) -f P ( u ,  b - c, m) - uC mod m[a] ,  so the congruence 
fails mod m. Thus, in any case, CLE(a,b,m; Ic) will output ‘BUGGY’ with probability at 
least 1 - 2 4 .  

Verifying the running time is a straightforward task. 

Remark: when ezp(m) is bounded, CME requires only O(1og log b)  queries and modular mul- 
tiplications: checking for small exponents is done explicitly, and not by direct computation. 
This is the case when using the Diffie-Hellman key exchange protocol (ezp(m) = 1 since 
the modulus is prime), and for the RSA cryptosystem (the modulus is usually square- or 
cube-free.) 

2.6 Constant-Query Checkers for Modular Exponentiation 

While CME is a “fast” (with respect to the current best upper bounds) checker, one can 
ask whether there exists a constant-query checker for modular exponentiation, i.e., a checker 
that requires a constant number of queries and modular multiplications. In this section, it 
i s  shown that, under a hypothesis, such a checker does indeed exist for what one might call 
the RSA problem: on input positive integers z,y, z with L < z and (z, z )  = 1, compute 
z* mod z. 
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The hypothesis is now presented. Some definitions are required: 

Definition 2 For all n E Z>ol  for all f : z -+ z, for  a l l y  E R with 0 5 7 5 1, 

1. f is  7-homomorphic for n a8 

and 
T Y  #{z,y E z 10  I z,y < n & f ( Z + Y )  = f ( C ) . f ( Y )  mod n) 

#{., Y E ZIO I 2, Y < n )  

# { z ~ Z l O I z < n &  f ( z + l ) -  f ( z ) . f ( l ) m o d n }  
#{z E z/O 5 x < n} 

and 

? Y  

2. f i s  y-exponential for n iff 

#{z E z10 5 x < n & f(a) G f(1)" mod n} 
#{z E 210 5 z < n }  2 7  

Hypothesis 1 There t zzs ts  y E R with 0 5 y < 1 such that for all n E Z,o and for all 
f : Z + Z, iff  is 7-homomorphic for  n, then f is &-exponential for n. 

In support of the hypothesis, note the following lemma (proof omitted): 

Lemma 5 For all n E z > ~ ,  for all f : z/$(n)z -+ ZJnZ, f is I-homomorphic for  n i f f  i s  
I-exponential f o r  n. 

Further, Don Coppersmith has shown that a similar hypothesis holds when the order of the 
multiplicative group d(n)  is known. Using this, Blum, Luby and Rubinfeld have demon- 
strated constant-query checkers for modular exponentiation when n is prime, or of known 
factorization ([BLR]). 

Theorem 2 Hypothesis 1 implies that there exists a n  RSA checker Cma such that for all 
programs P that halt on all inputs, and all instances z,y,z E z>o with x ,  y < I and ( x ,  2) = 1 
and all k E Z>O, 

1. C P ( z ,  y, I ;  k )  requires at most  O ( k )  quer ies  to P ;  

2. C p ( z ,  y, z; k )  requires at most O(12) multiplications mod z .  

First the checker is presented: 

Given a program P that halts on all inputs (and supposedly computes RSA) ,  and given 
z,y,z E Z>o with t , ~  < z and ( x , z )  = 1; C~sA(~,y,~;k) runs as follows: 
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c&&, Y, 2; k): 
Let tl = [-klog, 21) and t2 = [-k/ log4,, 21, where y is as in Hypothesis 1. 
begin 

(Ensure that f(1) = z mod z.) 
if f(1) $ z mod z ,  output ‘BUGGY’ and halt. 

(Establish 7-homomorphism for f(s) = P ( z , s , z ) . )  
repeat tl times: 

choose random i E Z with 0 5 i < z. 
if P ( z , i ,  z) E 0 mod z, output ‘BUGGY’ and halt. 
choose random i, j E Z with 0 5 i,j < z .  
if P ( z , z , z ) - P ( z , j , z )  f P ( z , i  + j , z )  mod z ,  output ‘BUGGY’ and halt. 
choose random i E Z with 0 5 i < z. 
if P ( z , i , z ) .  P ( z , l , z )  $ P ( z , i +  1 , z )  mod 2, output ‘BUGGY’ and halt. 

(Establish correctness on given input.) 
repeat t2 times: 

choose random r E Z with 0 5 r < z .  
if P ( z ,  y, z )  . P ( z ,  r, z )  f P ( z ,  y + T, z )  mod z ,  output ‘BUGGY and halt. 

Output ‘CORRECT’ 
end 

Proof of Theorem 2: 

Clearly, if P ( z , y , z )  f zv mod z for all z,y,z E z , ~ ,  C R s A  outputs ‘CORRECT’. It re- 
mains to verify that if P ( z ,  y, z )  $ zv mod 2, then Cis,,(z, y, z ;  k) outputs ‘BUGGY’ with 
probability 2 1 - l J Z k .  

Well, i f f  (as defined in Step 2) is not 7-homomorphic for z ,  then with probability >_ 1 - 1/2‘ 
(by the choice of t l ) ,  CmA will find a bug. So, assume f is in fact -phomomorphic. BY 
Hypothesis 1, f is $-exponential. But then, for all w E z with 0 5 w < t ,  

# { T  E Z 1 0 5 T < z& f(r) = f(1)’ mod z & f ( w  + r )  e f(l)”+’ mod z) >_ t, 
# { r  E Z I 0 2 r < z }  5 

Thus, by the choice of tl, the probability that C R s A  picks an T such that f(7) f(l)r mod 2, 

and f(y + T )  E f(l)”+’ mod z )  is 2 1 - 1/2‘. If such an T is picked, then f ( r )  * f ( y )  $ 
f ( y  + 7) mod z ,  since f(1) = z mod z by Step 1, and ( z , z )  = 1. 0 

2.7 “Offline” Checking 

In many situations, one has the sytuation where the modulus is fixed. Such is the case when 
two parties use the RSA cryptosystem to  converse. In this case, checking can be done much 
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more efficiently, without hypothesis, by performing the tester phase offline, i.e., the program 
to be checked is tested to see that it works reasonably well for a given modulus. Then, 
whenever the program is run, the output is checked using a checker that only guarantees 
correctness when used with tested programs. 

A checker for tested programs is now presented. First, some definitions are needed: 

Definition 3 For all m E Zzo, for all programs P ,  P is m-tested i f f  

Definition 4 (after Blum) For all m E z,o, call TCRsA an RSA tester-checker for modu- 
lus m, iff f o r  all m-tested programs P that halt on all inputs, for all x, y E Z with 0 5 2, y < m 
and ( x , m )  = 1, and f o r  all positive integers k (presented in unary),  TCfsA is a probabilistic 
oracle Turing machine (with oracle P )  such that: 

1. I f P ( w , v )  G w" mod m f o r  alI w , v  E Z with 0 5 w,v < m and (w ,m)  = 1, then with 
probability 2 1 - 1/2', TCiSA(z ,  y ;  k) = CORRECT. 

2. I f P ( z ,  y )  f z Y  mod m then with probability 2 1 - l / Z k ,  TC~, , (z ,  y ;  k) = BUGGY. 

For all m E Z,o an RSA tester-checker for modulus m is now presented. Let R be a program 
(purported to have the property that for all w,v E Z with 0 <_ w , v  < m2 and (w,m) = 1, 
on input w, v i t  outputs wv mod n) to be checked. 

First, the algorithm RSA-Tester below is run to eliminate with high probability programs 
which are not m-tested. 

Algor i thm RSA-Tester: 

Input: R: a program (supposedly for RSA) that halts on all inputs; 
m: a positive integer; 
k: confidence parameter (given in unary). 

begin 
Set t = [(k + 1) log,w,es 21. 
repeat t times: 

Choose random z, y E Z with 0 5 z, y < n2. 
If R( r ,y )  $ zy mod m, output 'FAIL' and halt. 

Output 'PASS.' 
end 
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The checker phase follows only for ‘m-tested’ programs, for input z, y E Z, with 0 I 2, Y < 
and (2, m) = 1. Let fail(u, v ,  w, z, y, z) be  the predicate 

R ( w .  z , v ) .  R(u, y . V )  f R(u a z,y. u )  . R(w,v)  mod n 

Algorithm R S A  Tester-Checker 

Input: R: a m t e s t e d  program; 
2, y, m: positive integers as above; 
k: confidence parameter (given in unary). 
‘CORRECT’ if P ( X ,  Y,m) 
‘BUGGY’ (with probability 2 1 - l/Zk) if P (z ,y ,m)  $ ZY mod m. 

Output :  Xy mod m for all X , Y  E Z,o with X < m and (X,m) 

begin 
Set J = R(z ,  y). 
repeat t = [(k + 1) logz5,24 21 times: 

choose random u, v ,  w E Z, with 0 5 u, u, w < m. 
if fail(u, v ,  w, 2, y, z )  or f d ( u  + 1, V , W ,  z, y, 2) 

or fd(u,u + l , w , z , y , t )  or fail(a+ 1,u + 1,w,z,y,z) 
or fa i l (qv,w + ~ , z , y , z )  or faiI(u + 1 , v , w +  l , z , y , z )  
or f d ( y v  + ~ , w , z , y , z )  or fail(%+ 1 , v  + I , W +  I , z , y , z )  

Output ‘BUGGY’ and halt. 

Output ‘CORRECT.’ 
e n d  

2.8 Open Problems 

An important open problem is whether there exists a constant-query checker for modular 
exponentiation. Such a checker could prove useful in cryptography. One direction in which 
to pursue this question would b e  to prove that Hypothesis 1 holds. 

A question of greater g a d  interest is to  characterize problems with constant-query check- 
ers. Software practitioners could m e  this characterization for guidance in writing “checkable’’ 
programs. 
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