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Abstract

In zero-knowledge interactive proofs, a lot of randomized information is ex-
changed between the prover and the verifier, and the randomness of the prover
is used in satisfying the zero-knowledge condition. In this paper, we show a new
methodology that utilizes the randomness of the prover in a zero-knowledge proof
for some positive objectives as well as for zero-knowledge condition. Based on this
idea, we propose two types of applications; key distribution, and digital signature.
We propose identity-based key distribution schemes that are provably secure against
strong active attacks (chosen-message-known-key active attacks) assuming the dif-
ficulty of factoring a composite number. In addition, we show that non-transitive
digital signature schemes can be constructed if and only if a one-way function ex-
ists. We also show some practical non-transitive digital signature schemes. A new
general method of constructing identity-based cryptographic schemes is presented
as an application of the identity-based non-transitive digital signature schemes. We
also propose a new digital signature scheme based on the (extended) Fiat-Shamir
identification scheme.

1. Introduction

In zero-knowledge proofs [GMRa], a lot of randomized information is exchanged
between the prover and the verifier. To date, this information has been used just
for the zero-knowledge interactive proof. However, many new security applications
would become possible if the randomized information could be more effectively
utilized.

This was first realized by Desmedt, Goutier and Bengio [DGB] who used the
randomized information of the Fiat-Shamir scheme to create a subliminal channel
while retaining the zero-knowledge interactive proof property. In another devel-
opment, Okamoto and Ohta [OkOl] introduced the disposable zero-knowledge au-
thentication protocol in which the provers' randomness (the number of coin flips)
is restricted. The most important application of this protocol is an electronic cash
system. The subliminal channel of [DGB] is used for negative purposes (i.e. abuse),
while the protocol of [OkOl] uses randomness in a negative manner (i.e. restriction).

This paper propose a new methodology for utilizing randomness in a positive
manner to achieve several positive purposes. Based on this methodology, we create
four new cryptographic techniques: identity-based key distribution, non-transitive
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digital signatures, new digital signature construction using the Fiat-Shamir scheme, 
and a general technique for constructing identity-based schemes. 

The  key point of the proposed methodology is that f ( 7 , a )  is used instead of 
the true random number R ,  where the distributions of g ( f ( 7 , a ) )  and g(R) are 
indistinguishable when r is a true random number, a is a fixed parameter, and 
g ( R )  is a message from a prover to a verifier using a zero-knowledge proof. Zero- 
knowledge proofs are still possible if the distributions of g ( f ( 7 , u ) )  and g ( R )  are 
indistinguishable. The  advantage of using f ( 7 , a )  is that it leads to several useful 
functions. We show that one such function, a’ mod n, can be used to  construct 
identity-based key distribution schemes, while other functions, mod n, and bit- 
commitment functions [N] are appropriate for digital signature schemes. 

First, we propose key distribution schemes provably secure against strong active 
attacks assuming the intractability of factoring. Although the recently advanced 
key distribution scheme of (YS] is also provably secure against active attacks under 
the same assumption, and is very simple, the proposed schemes are practically 
superior because they are identity-based schemes (or they do not need any public- 
key file), and,  moreover, ours are provably secure against stronger active attacks 
(chosen-message-kno.wn-~ey  acdive attacks) than theirs (plain active at tacks) .  (Our 
considered active attacks, chosen-meJsage-known-key aciive attacks, seem t o  be 
stronger than any attacks so far considered against key distribution schemes. For 
example, although Yacobi[Y] has also proposed a key distribution scheme provably 
secure against stronger passive attacks (known-key passive attacks) than primitive 
passive attacks (p la in  passive attacks), their attacks are still weaker than ours). On 
the other hand, although some identity-based key distribution schemes have been 
proposed [Ok, TI, KO, GP], after Shamir explicitly proposed identity-based schemes 
in 1984 [Sha], no previously published identity-based key distribution scheme has 
been proven secure against even weaker passive attacks. (Note that  our identity- 
based key distribution schemes can be easily converted to regular (public-key file 
based) key distribution schemes with the same properties.) 

Next, new non-transitive digital signature schemes are proposed that utilize 
the randomness of zero-knowledge proofs. Th-e proposed schemes have the following 
properties: (we assume that user A sends a message M to user B.) 
(1) Only user A can prove the validity of A’s message M to any user B by using 

A’s public key or A’s identity (validity). 
(2)  User B cannot prove the origin of message M to another user C (non- transi- 

tivity). 
With this digital signature scheme, A can validate his message to anyone, while 

leaving no proof of i ts  origin. That  is, the receiver cannot validate the origin of the 
message to  anyone else. The  scheme will be useful in many business and political 
discussions, because messages can be authenticated but they are unattributable. 
The concept of non-transitive digital signature scheme itself is not new, and the 
approach of using zero-knowledge proofs has been implied by Desmedt [D]. Note 
that the undeniable digital signature scheme has a similar property, but is distinctly 
different from the non-transitive signature scheme (see Section 3 in more detail). In 
this paper, we show that non-transitive digital signature scheme can be constructed 
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if and  only if a one-way function exists. We also show some practical (identity- 
based) non-transitive digital signature schemes. 

Using the  same technique used in constructing the  practical nori-transitive dig- 
ital signature, we construct a digital signature scheme that utilizes the randomness 
of the (extended) Fiat-Shamir identification scheme. Although Fiat  and Shamir 
[FiS] have already proposed a digital signature scheme based on their identification 
scheme, we show another construction, T h e  performance (data  size, and  processing 
speed) of our scheme is roughly comparable to tha t  of Fiat  and Shamir’s. 

Finally, we show a new general methodology for constructing identity-based 
cryptographic schemes, using the  above-mentioned identity-based non-transitive 
digital signature scheme. 

2. Identity-based key distribution schemes 

In this section, we will show a new methodology of constructing provably secure 
identity-based key distribution schemes utilizing the randomness of zero-knowledge- 
based identification protocols such as the  (extended) Fiat-Shamir scheme [FiS, FFS,  
GQ, O h l ,  OhO]. 

2.1 Zero-knowledge identification protocols 

Here, we introduce some of the typical zero-knowledge-based identification pro- 
tocols that  can be  utilized t o  construct identity-based key distribution schemes. 
(1) the  Fiat-Shamir scheme [FiS, FFS] 
(2)  the  extended Fiat-Shamir scheme 1 (higher degree version of (1)) [GQ, Oh01 
( 3 )  the  extended Fiat-Shamir scheme 2 (symmetric version of (2))  [Ohl] 
(4) t he  Beth scheme (discrete log version of (1)) [Be] 

Each of the  above schemes have three variations: 
(a) Sequential version 
(b )  Parallel version (one round or three moves version) 
(c) Non-interactive version 

Among these variations, only sequential version (a) is zerc-knowledge identifi- 
cation with schemes (1)-(4). T h e  parallel version (b)  of scheme (1) has been proven 
to be secure using no-transferable information [FFS], and the  parallel versions (b) 
of schemes (2)-(3) have been partially proven to  be secure by using no-transferable 
information [OhO, Oh21. 

T h e  non-interactive version (c) is constructed based on the  parallel version (b) 
and  a one-way function h as follows: Here, we assume that in the  parallel version, 
the prover sends X to t he  verifier at first, then the  verifier sends E t o  t h e  prover, 
finally the  prover sends Y to the verifier, then the verifier checks the  validity of 
X , Y .  In the  non-constructive version, t he  prover generates E = h ( X )  by himself, 
then, he generates Y .  After generating X, El Y ,  he sends them to  the  verifier. T h e  
check by the verifier is the  same as in the parallel version. The  security of this non- 
interactive version depends on both the  property of the one-way function and  the  
security of the  parallel version. The  Fiat-Shamir digital signature scheme has the  
same security as this non-interactive version. If we assume the  function is a n  ideal 
random function [MS], the  non-interactive versions (c) are provably secure when the 
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basic parallel versions are provably secure. Note that these non-interactive versions 
are different from the  framework of non-interactive zero-knowledge proofs [BFM, 
DMP]. 

2.2 Identity-based key distribution s c h e m e s  

I n  this subsection, we will introduce identity-based key distribution schemes 
that utilize the randomized information from the  identification protocols shown in 
2.1. Subsection 2.1 introduced a total  of 4 ’i( 3 = 12 identification protocols. Because 
it is tedious to  write up  12 key distribution schemes (i.e. for all identification 
protocols), we will show 4 typical cases here; ( I ) ( a ) ,  (2)(b),  (2)(c), and  (3)(c) (Here, 
( l)(a) means the  sequential version (a) of the  Fiat-Shamir scheme (1)). 

2.2.1 C o n s t r u c t i o n  using the s e q u e n t i a l  ve r s ion  of the F i a t - S h a m i r  s c h e m e  
provably s e c u r e  against a c t i v e  a d v e r s a r y  

Key distribution s c h e m e  2.2.1 

(1) Preprocessing stage 

T h e  unique trusted center in the system generates the  Fiat-Shamir scheme se- 
cret keys s1,j and s 2 , j  ( j  = l l  2 , .  . . , k) for user 1 and  user 2, respectively. T h e  cen- 
ter’s secret key is ( p , q ) ,  center’s public key is ( n , g ) ,  and l/si,, = (f(Ii , j))”’ mod n 
( i  = 1 , 2 ,  j = 1 , 2 , .  .. , k), where p , q  are primes for which p’ = ( p  - 1 ) / 2  and 
q’ = ( q  - 1) /2  a re  also primes, n = p q ,  the order of g E Z: is p’q‘ ,  lpl = c I / n I ,  
jqI = c 2 / n l  (c1,  c2: constant). Ii is the identity of user i. 
( 2 )  Key distribution stage 

Repeat steps (i) to  ( v )  t times (for I = 1 , 2 , .  . . , t ) .  
(i) User 1 picks a random number T~ c 2, and sends z1 = g2’l mod n t o  user 2. 

(ii) User 2 sends a random binary vector ( e l , l , ,  . . , e l , h )  to user 1. User 2 also picks 
a random number r2 E 2, and sends x2 = g Z r a  mod n to user 1. 

(iii) User 1 sends to  user 2 y1 such tha t  y1 = 9’1 nj 8;:; mod n. User 1 also sends 
a random binary vector (e2.1,. . . , e 2 , k )  to user 2. 

(iv) User 2 checks tha t  x1 = y; nj f(I1,j)‘1,~ (mod n) .  If the  check is valid, he 
generates Ki such tha t  Kl = zi2 mod n. User 2 also sends to  user 1 9 2  such 
tha t  yz = g r 3  nj siy;’ mod n. 

(mod n) .  If the  check is valid, he 
generates Kl such that Kl = z;’ mod n. 
After all t procedure cycles are passed, users 1 and 2 calculate the common key 

(v)  User 1 checks tha t  x2 = y i  nj f ( I z , j ) e a 8 ~  

K such tha t  K = K1 + Kz + . . . + Kt mod n. 

Def in i t i on  1 Let (m: ,mf , .  . . , m i l )  and ( m f ,  m:, . . . , m i 2 )  be the  ordered set of 
messages sent by honest user 1 and  user 2 ,  respectively, who follow a key distribution 
protocol, and finally share a common key K = h l ( p ,  s l r m l ,  . . . , m i 2 , r l l  .. . , r i l )  

= hz(p,  szI mi, . . .  , m i l ,  r : ,  . . . ,  T,”,), where hi (i = 1 , 2 )  is the  key generation 
function for user i ,  p is public information, s; is a secret key for user i, T:  is a 
random value employed by user i to generate a message. A p h i n  active adversary 
A interferes with the key distribution protocols between the two honest parties user 

2 1 1 
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1 and user 2 in such a way tha t  A sends a message 6; t o  user 2 after receiving 
rn; from user 1, and sends 6; to user 1. Accordingly, honest user 1 computes 

1 h l ( p ,  81, m f , .  . . , m t 2 , r : ,  . . ., r i l )  instead of K .  The p l a i n  act ive  at tack is 
s u c c e s s f i ~  if A can finally compute El. 
Remark: Note that A utilizes user 2 to share a key with user 1. A may get two 
keys, each of which is shared with each honest user. However, this two directional 
attack is a specific case of t he  one-directional case in Definition 1. 

Definition 2 A chosen-message -known-key  active adversary A is allowed t o  play a 
role of user 2 (i.e., A knows s2), and to  know the  value K = h l ( p ,  s l ,m; ,  . . . , m i 2 ,  
r ; ,  . . ., r i l )  after generating and  sending (rnl,mi,. . . , m i 2 )  t o  user 1. After A is 
allowed to perform the above attack polynomially many times, A tries t he  plain 
active attack shown in Definition 1. The  c h o ~ e n - m e s s a g e - k n o w n - k e y  act ive  at tack 
is success f i l  if A can finally compute K 1 .  

Remark: Definitions 1 and  2 correspond to  malicious adversary  and amor t i zed  
securi ty  in [YS], respectively. We can also define two kinds of passive attacks; p l a i n  
passive at tack and known-key  passive at tack,  which correspond to czphertezt-only  
attack by a passive adversary and known-key  attack by a passive adversary  in [Y], 
respectively. Chosen-message -known-key  active attack is stronger than the  other 
attacks including the plain active attack, and the  two types of passive attacks. 

Lemma 1 Let p , q  be primes for which p' = ( p  - 1 ) / 2  and  q' = (q  - 1) /2  are 
also primes, n be p q ,  and the  order of g E 2; be p'q'.  If T E Zptq,  and R E 2: are 
randomly and  uniformly selected, then {g2' mod n} and { R 2  mod n )  are perfectly 
indistinguishable. 

Proof: In  order to prove that g2' mod n and R 2  mod n are perfectly indistin- 
guishable, we will prove tha t  {g2' mod n} is the set of quadratic residue numbers 
which are uniformly distributed, if r E ZPtq, are randomly and  uniformly selected. 
First, we introduce some notations. Any z in Zf: can be uniquely expressed as 
( z p ,  z q ) ,  where z p  = z mod p and z q  = z mod q. (2; is equivalent to  2, - 0.) Any 
g' mod n can be uniquely expressed as ( S i p  mod p ,  g i g  mod q ) ,  where g = ( g p r g q ) ,  
and rP = r mod p' ,  and rq = T mod q', because the order of g is p'q'. We simply 
write < r p ,  rq > for g' mod n = (g;' mod p ,  g;' mod q) .  
Then we show tha t  there exist many g's whose orders are p'q'. Let 3 be ( g p , g q )  
such tha t  t he  order of gp  in Z,* is 2p', and  the order of gq in Zf is 2q'. Then,  the  
order of 9 is 2p'q'. Any g whose order is p'q' can be  expressed as mod R, where 
gcd(a, 2p'q') = 2. Therefore, the number of g whose order is p'q' is ( p ' q ' - p ' - q ' + l ) .  
Hence, roughly speaking, about 1/4 of the elements in Z, are g with the order of 
p'q'. Here note tha t  g is quadratic residue. Next, any g7 mod n can be represented 
as < i , j  > ( i  = 0 , 1 ,  ..., p' - 1; j = 0 , 1 ,  .., q' - l),  because ?(r  = 0,1, ..,p'q' - 1) 
has a unique solution satisfying r = i j (mod q')  by the  
Chinese remainder theorem. Similarly, gz' mod n can be  represented as < h, k > 
( h  = 0 , 1 ,  ..., p' - 1; k = 0 ,1 ,  .., q' - l), because r ( r  = 0 , 1 ,  . . ,p'q'  - 1) has a unique 
solution satisfying 21. (mod q') (since gcd(2,p', 4') = 1) .  
Therefore, t he  numbers of both {g' mod n}  and {g2' mod n )  are  p'q'. T h e  number 

- 

- 

(mod p ' )  and 7 

h (mod p ' )  and 2 r  z k 
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of quadratic residue numbers in 2; is p'q ' .  Hence, any quadratic residue number 
(or R2 mod n )  can be expressed by g2' mod n. Clearly, if 7 E Zpdq4 is randomly and 
uniformly selected, then {g2' mod n} is uniformly distributed. Thus, (9'' mod n} 
is the set of quadratic residue numbers which are uniformly distributed, if 7 E Zp*Qt 
are randomly and uniformly selected. 

Lemma 2 Let p , q  be primes for which p' = ( p  - 1 ) / 2  and q' = ( q  - 1)/2 are 
also primes, n be p q ,  the order of g E 2; be p'q', and Ipl = ~ 1 1 7 ~ 1 ,  141 = c2lnl 
(c1, c2: constant). I€ 7 E 2, and R E Z, are randomly and uniformly selected, then 
(9'' mod n}  and { R 2  mod n} are statistically indistinguishable. 
Proof: Here, we will prove that (9'' mod n}  with 7 E~ 2, is statistically in- 
distinguishable from (9''' mod n}  with 7' ER Z P d q J ,  and that { R Z  mod n} with 
R ER Z, is statistically indistinguishable from {af2 mod n} with R' ER Z;. Here, 
7 E R  2, means that T is randomly and uniformly selected from 2,. By combining 
the above result and Lemma 1, we can immediately obtain Lemma 2 .  
Because the order of g is p'q', g2' mod n = g2" mod n,  where 7' = 7 mod p'q'. The 
number of the elements of Z, is n = (2p '  + 1)(2q'  + 1 )  = 4p'q' + 2p' + 2q' + 1. 
Then, n/ (p 'q ' )  = 4 + (2p' + 2q' + l ) / p ' q ' .  Therefore, when 7' is a value such that 
(0  5 7' 5 2p' + 2q ' ) ;  and 7 E Z, is randomly and uniformly selected, then 

QED 

PT(g2' mod n = g2" mod n) = 5/72. 

When 7' is a value such that 2p' + 2q' + 1 5 7' 5 p'q' - 1, and 7 E 2, is randomly 
and uniformly selected, then 

P7(gZ' mod n = 9''' mod n) = 4/n. 

On the other hand, from Lemma 1,  (9"' mod n} is uniformly distributed on the 
quadratic residue set modulo n, therefore for a value a E {R2 mod n}, if T' is 
randomly and uniformly selected, then 

Pr(g2" mod n = a) = 1 / ( p ' q ' )  

Therefore, from the definition of statistical distinguishability [GMRa], 

1 Pr(g2' mod n = a) - Pr(gZ'' mod n = a) \  
a €  {0,1}. 

= I Pr(g2' mod n = a )  - Pr(g2" mod n = a)l 
aE{Ramodn} 

= ( 2 ~ '  + 2q' + 1)(5/n - I / ( p ' q ' ) )  + (p'q' - 2p' - 2q' - I)(I/(p'q') - 4/n) 

< 2(2p' + 2q' + l ) / n  

2(2p' + 2q' + l ) / n  < l/lnlC. 

Because lp'l = ciln), Iq'( = c2lnl (q , cZ :  constant), for any constant c,  
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Thus, g2’ mod n is statistically indistinguishable from 9’’‘ mod n. Similarily, we 
can prove that R2 mod n is statistically indistinguishable from R” mod R .  QED 
Theorem 1 If the  factoring assumption is true,  then there is no probabilistic 
polynomial-time plain active attack (Definition 1) which is successful with nonneg- 
ligible probability against the  key distribution scheme 2.2.1. 
(Factoring assumption) There exists no probabilistic polynomial-time algorithm 
F such tha t ,  given n, F computes p with non-negligible probability, where n = p q  
( p  and q are randomly and uniformly selected prime numbers). 
Proof sketch: For simplicity, we assume that the Fiat-Shamir scheme’s param- 
eter Ic is 1. By using the technique similar to tha t  in [FFS], we can easily extend 
our result t o  the  general case that Ic # 1. 
First, we assume tha t  there exists a probabilistic polynomial-time plain active adver- 
sary A (Definition I )  that  succeeds in sharing key K with user 1 with non-negligible 
probability. Here, A utilizes user 2 as a kind of oracle under the  protocol condition 
in order to share key K with user 1. Au2 denotes A who utilizes user 2 under the  
lirotocol condition. Au2 must be verified as user 2 through the Fiat-Shamir Scheme 
identification t times to obtain final shared key K = K1 + .. + Kt mod n. Since each 
Ki is independently determined, A and user 1 must share each K; to share K .  
First, we assume tha t  A generates and sends a message Z2 instead of user 2’s valid 
message 2 2  afler receiving user 1’s message zl. (This assumption is no problem 
because it is more advantageous than  the  other assumption such tha t  A generates 
and sends 22 before receiving z1.) Because user 1 is a honest party, each K; must 
be Z i ’  mod n a t  each round. Therefore, Auz must have a n  algorithm H such that 
H : (g ,  n,g2’l mod n)  + (22, 2;’ mod n) .  In  addition, Au2 must have a n  algorithm 
of passing t h e  Fiat-Shamir scheme identification as user 2 with using 22 instead of 
2 2 .  Here, we can assume tha t  A succeeds with nonnegligible probability. Therefore, 
H must output  a correct answer with nonnegligible probability. 
Then, we will show tha t  A can construct a n  algorithm of calculating user 2’s secret 
key by using H .  First, A generates a random odd number t E Z,, and calculates 
H : (g ,  n, gf mod n)  4 (Z2, 5;” mod n) with nonnegligible probability, because 
{ g t  mod n} is statistically indistinguishable from {g2’1 mod n )  (when t is odd  and  
1 5 t 5 2p’q’ - 1, then t mod p’q’ has all values from 0 thfough p‘q’ - 1). Then, Auz 
follows the  protocol with user 1. As mentioned above, Auz has a n  algorithm to  pass 
the  identification protocol as user 2 with using Z 2 .  Here, A can calculate Zf’2 mod n 
from Z, and z 2  mod n,  because t is odd. (When we set X = 2:12 mod n, then 2 2  

= X z  mod n,  and zi” mod n = Xt mod n. Because gcd(t ,2) = 1, A can calculate 
X from X z  mod n and X‘ mod n.) Therefore, A can calculate one of the solutions 
S = l / f ( 1 2 ) ’ / 2  mod n by &/2:” mod n with nonnegligible probability. 
On the  other hand ,  A interacts with two protocols with user 1 and  2. T h e  interfaces 
of two protocols are the Fiat-Shamir scheme except t ha t  2;  = {g2r; mod n}  (i = 1 , 2 )  
is used instead of {RZ mod n}. As shown in Lemma 2 ,  z; = {gZri mod n}  (i = 
1 , 2 )  is statistically indistinguishable from { R 2  mod n}. Therefore, the  protocols 
with user 1 and  2 are statistical zero-knowledge proofs, while t he  original Fiat- 
Shamir scheme is a perfect zero-knowledge proof. In addition, A interacts with 

- t / 2  
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these two protocols in a parallel manner. We can easily prove tha t  any parallel 
composition of two Fiat-Shamir scheme protocols holds t h e  zero-knowledge property 
by constructing a simulator for any parallel composition of two protocols (here, note 
that this property is not guaranteed for general zero-knowledge protocols as shown 
in Theorem 3.2 in [FeS] and Theorem 7 in [GK]). Therefore! if factoring assumption 
is true, then A has no chance of obtaining 5’ = l / f ( I Z ) l / ’  mod n with nonnegligible 
probability from the  zero-knowledge property unless A is user 2, because factoring 
is probabilistically polynomial-time reducible to  computing S from f (  I )  [Ra]. 
However, as above mentioned, if we assume that plain active adversary A succeeds 
in sharing key K with user 1 with nonnegligible probability, then we can show 
that A can obtain S = f ( 1 z ) 1 / 2  mod n with nonnegligible probability. This is a 
contradiction. QED 
Remarks: We can obtain the same result even if we replace the  factoring as- 
sumption by assumption A used in [YS]. 
(Assumption A) Factorization of n is a one-way function [GL] with super-polynomial 
security. 

2.2.2 Construction using the sequential version of the Fiat-Shamir scheme 
provably secure against stronger active adversary 

In  subsection 2.2.1, we have shown that key distribution scheme 2.2.1 is secure 
against plain active attack. However, it is not clear whether the  scheme is secure 
against chosen-message-known-key active attack or not.  In this subsection, we will 
propose a modified scheme which is provably secure against chosen-message-known- 
key a c h e  attack. 

Key distribution scheme 2.2.2 

(1) Preprocessing stage 

Same as 2.2 .141) .  
(2)  Key distribution stage 

Repeat steps (i) t o  ( v )  t times (for I = 1 , 2 , .  . . , t ) .  
(i) User 1 picks a random number ‘1 E 2, and sends z1 = gZr1 mod n t o  user 2. 

User 1 proves that s /he knows the value T~ satisfying z1 = gzrl mod n using a 
zero-knowledge proof (see Subprotocol 2 .2 .2) .  If this zero-knowledge proof f a d s ,  
user 2 halts. 

(ii) User 2 sends a random binary vector ( e l , l , .  . . , el,k) to user 1. User 2 also picks 
a random number t 2  E Z, and sends 2 2  = g2ra mod n t o  user 1. User 2 proves 
that s /he knows the value 7 2  satisfying zz = gars mod n using a zero-knowledge 
proof. If  this zero-knowledge proof fails, user I halts. 

(iii) User 1 sends t o  user 2 y1 such that y1 = grl ITj s::,’ mod n. User 1 also sends 
a random binary vector (e2,1,. . . , e 2 , k )  to user 2. 

(iv) User 2 checks tha t  2 1  = y: nj f(IIjj)‘l~~ (mod n). If the check is valid, he  
generates Kl such that Kl = 2;’ mod n .  User 2 also sends to  user 1 YZ such 
tha t  y~ = gr2 nj 8;;;’ mod n. 

(mod n). If the check is valid, he  (v) User 1 checks tha t  z2 = y; nj f ( 1 2 , j ) ‘ ~ ~ ~  
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generates KI such that Kl = zi’ mod n. 
After all t procedure cycles are passed, users 1 and 2 calculate the common key 

K such that K = K1 + K 2  + . . . + Ki mod n. 

Subprotocol 2.2.2 (Zero-knowledge proof of proving that the prover has r satis- 
fying z = g2’ mod n)  

(0)  First, set G = g2 mod n. 
(1) Prover ( P )  selects a random number t in [O,2n - 11, and sends X = G‘ mod 72 

( 2 )  V sends a random bit e in {al l} .  
(3)  If e = 0, P sends Y = 1 .  Otherwise, P calculates 

to verifier (V).  

= r + t .  Then, if u is in the 
interval [n,  2n - 11, then P sends Y = u to V .  If u is out of [n, 2n - I], then P 
sends Y = -1. 

(4) V checks the validity of P’s message, if Y is not -1. Then, Y is not valid, P 
halts. If Y is valid or -1, P continues the procedure. 
After repeating the above procedure k times, V accepts P’s proof if the proce  
dure does not halt and the number of the rounds in which Y = -1 is less than 
[ ( 2 / 3 ) l ] ,  where the number of the rounds in which e = 1 is 1 ,  and = cllnl, 
IZI = c2/nl (el, c2: constant). 

Next we show that this protocol is the zero-knowledge proof of proving that 

0 (Completeness) The probability that valid P selects bad t such that ZL is not 
in [ n , 2 n  - 11 is 1/2. Therefore the probability that P selects bad t more 
than [ ( 2 /3 )1 ]  times through I rounds in which e = 1 is 1 is less than l/lnlc 
for any constant c for sufficient large n. Therefore, valid P is accepted with 
overwhelming probability. 

0 (Soundness) If invalid P’ has an algorithm A that  passes the protocol, then P’ 
can construct an algorithm M of computing T in a manner similar to  Feige- 
Fiat-Shamir’s algorithm [FFS]. 

0 (Zero-knowledgeness) When M guesses e = 0, M generates (Gy mod n, 0, Y), 
where Y is in [0,2n - 11. When M guesses e = 1, M fips a coin. If it is 
0,  M generates (X = Gf mod n, e = 1,Y = -1). Otherwise, M generates 
( G Y / z  mod n, 1, Y ) ,  where Y is in [n, 2n - 11. Then, M uses V as a black-box 
by checking which value of e is selected after sending X (or checking whether 
the guess is correct or not), and repeats the procedure. 

the prover has 7 satisfying z = G‘ mod n. 

Theorem 2 If the factoring assumption is true, then there is no probabilistic 
polynomial-time chosen-message-lnourn-key active attack (Definition 2 )  which is 
successful with nonnegligible probability against key distribution scheme 2 . 2 . 2 .  
Proof sketch: Let A be a chosen-message-known-key active adversary. Suppose 
that A is allowed to play the role of user 2 and that A sends G2 instead of 2 2 .  From 
the soundness condition of the zero-knowledge proof of proving that A knows the 
value 7 2  satisfying 22 = gZr3 mod n, A can construct a probabilistic polynomial time 
algorithm of calculating K = q1 mod n by calculating z Ia  mod n with overwhelm- 
ing probability. On the other hand, we can construct a probabilistic polynomial 
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time algorithm of simulating the total interactive protocol between User 1 (prover) 
and A (verifier) through (i) to (iv) (This simulation is statistically indistinguishable 
from the true history of the interaction). 
Therefore, in key distribution scheme 2.2.2, A can calculate any knowledge that is 
given through a chosen-message-known-key attack with overwhelming probability. 
In other words, in key distribution scheme 2.2.2, any chosen-message-known-key 
active adversary has the same power as a plain active adversary with overwhelming 
probability. Thus, because key distribution scheme 2.2.2 is secure against plain 
active attacks (Theorem l), this protocol is also secure against chosen-message- 
known-key active attacks. QED 

2.2.3 Construction using the parallel version of the extended Fiat-Shamir 
scheme 1 

Key distribution scheme 2.2.3 

(1) Preprocessing stage 

The unique trusted center in the system generates the extended Fiat-Shamir 
scheme secret keys .s1 and 8 2  for user 1 and user 2, respectively. Here, the cen- 
ter’s secret key is p , q  (primes), center’s public key is (n = pq, L ,  g), and l/s; = 
f ( 1 i ) ’ j L  mod n (i = 1 ,2 ) ,  where p - 1 = L p ’ ,  q - 1 = Lq’, (p ’ ,q ’ :  prime), the order 
of g is p‘q‘,  and I; is an identity of user i. 
(2) Key distribution stage 

(i) User 1 picks a random number 71 E Z, and sends z1 = $1’1 mod n to  user 2. 
(ii) User 2 sends a random number el E Z i  to  user 1. User 2 also picks a random 

number 7 2  E 2, and sends z2 = g L r 1  mod n to user 1. 
(iii) User 1 sends to  user 2 y1 such that y1 = grl . B E ’  mod n.  User 1 also sends a 

random number ez E 2; to user 2.  
(iv) User 2 checks that zl = yf-f(Il)cl (mod n). If the check is valid, he generates 

the common key K such that K = z;a mod n. User 2 also sends to user 1 y2 
such that y2 = gra 

(mod n). If the check is valid, he generates 
the common key K such that K = 2;’ mod n. 

mod n. 
(v) User 1 checks that 2 2  = d.f(lz)cl 

Remark: The security of the parallel version of the extended Fiat-Shamir scheme 
where gcd( L ,  p - 1) # 1 can be guaranteed by the no-transferable information tech- 
nique [OhO]. Therefore, the security of this identity-based key distribution schemes 
can be proven in a manner similar to  that used in  theorem 1. Here, however, note 
that it is not easy to find f ( I i )  that  is the L-th residue modn. (If we do not use 
the identity-based system, we do not have this problem, because we can gener- 
a te  si randomly and publish l/sf mod n instead of f ( I i ) . )  On the other hand, if 
gcd(L,p - 1) = gcd(L,q - 1) = 1, we can always calculate 1/8; = f ( I i ) ’ ’L  mod n. 
However, in this case, the security cannot be guaranteed by the no-transferable 
information technique [OhO]. A compromise selection for the value L may be 
gcd(L,p - I) = gcd(L, q - 1) = 2. Although, in this case, the security level for 
the scheme is 2 (ie., not so secure)[OhO], the security may be proven by the ‘‘wit- 
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ness indistinguishable" technique [FeS] . 
The modification of scheme 2.2.3 which is secure against chosen-message-known- 
key active attacks can be constructed in a manner similar to  scheme 2.2.2.  Here, 
parallel version of subprotocol 2.2.2 can be used. 

2.2.4 Construction using the non-interactive version of the extended Fiat- 
Shamir scheme 1 

Key distribution scheme 2.2.4 

( I )  Preprocessing stage 

This stage is the same as the preprocessing stage of 2.2.3. 
(2)  Key distribution stage 

(i) User 1 picks a random number 71 E 2, and generates 21 = $." mod n,  e l  = 
h(z1) E ZL, y1 = g r l  .s;' mod n. User 1 sends e l ,yl  to  user 2. 

(ii) User 2 picks a random number '2 E 2, and generates = gLT2 mod n,  ez = 
h(z2)  E ZL, y2 = g'2 . s ;J  mod n. User 2 sends e2, y2 to user 1. 
User 2 calculates z1 = yf . f(Il)el (mod n) ,  and checks that el = h(z1). If 
the check is valid, he generates the common key K such that  K = 2;' mod 72. 

(Gi)  User 1 calculates 2 2  = yi" . f ( I z ) e ,  (mod n ) ,  and checks that e2 = h(z2).  If 
the check is valid, he generates the common key K such that K = 2;' mod n. 

Remark: If we assume the non-interactive version of the extended Fiat-Shamir 
scheme 1 is secure, then we can prove the security of this key distribution scheme. 
The modification of scheme 2.2.4 which may be secure against chosen-message- 
known-key active attacks can be constructed in a manner similar to scheme 2.2.2. 
Here, non-interactive version of subprotocol 2.2.2 can be used. 

2.2.5 Construction using the non-interactive version of the extended Fiat- 
Shamir scheme 2 

Key distribution scheme 2.2.5 

(1) Preprocessing stage 

This stage is the same as the preprocessing stage of 2.2.3. 
( 2 )  Key distribution stage 

(i) User 1 picks a random number 71 E 2, and generates z1 = 8'' mod n, e l  = 

h(z1) f Z;, y1 = g"" * sl mod n. User 1 sends z1,y1 to user 2.  
(ii) User 2 picks a random number rZ E Z, and generates z2 = g L r 2  mod n,  e2 = 

~ ( z z )  f Z,, yz = g"" sz mod n. User 2 sends 2 2 ,  yz to user 1. 
User 2 calculates e l  = h(z,), and checks that  2;' = yf . f(Il) (mod n) .  If 
the check is valid, he generates the common key K such that K = xi' mod n. 

(iii) User 1 calculates e2 = h ( z z ) ,  and checks that zi l  = Yf. . f(lz) (mod n). If 
the check is valid, he generates the common key K such that K = 2;' mod n. 

Remarks : 
1. AS in the remark given in 2.2.4, if we assume the non-interactive version of 

the extended Fiat-Shamir scheme 2 is secure, then we can prove the security of 
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this key distribution scheme. We can also construct the modification of scheme 
2.2.4 which may be secure against chosen-message-known-key active attacks 
can be constructed in a manner similar to  scheme 2.2.2.  

Note that this scheme correponds to the second key distribution scheme 
proposed by Okamoto [Ok] (although, in his original scheme, ei was a constant 
value, he later changed e; into h( zi) thus duplicating the above-mentioned 
scheme). In practice, the scheme given in 2.2.4 is superior to that of 2.2.5 (the 
Okamoto scheme), because the transmission amount in 2.2.4 is almost half of 
that  required in 2.2.5.  That is, in 2.2.4,  each user sends e; and y;, while in 
2.2.5 each user sends z; and y;. The sizes of 2 ;  and y; are almost the size of 
n, while ei is much shorter than n. For example, when the size of n is 512 bits 
and the size of e; is 20 bits, in 2.2.4 each user sends 532 bits, while in 2.2.5 
each user must send 1024 bits. 

2.  

3. Non-transitive digital signature scheme 

3.1 Definition 

In this section, we propose new non-transitive digital signature schemes through 
the utilization of the randomness of zero-knowledge proofs. This non-transitive 
digital signature scheme has the following properties: (we assume that user A sends 
a message M to user B.) 
(1) Only user A can prove the validity of A’s message M to any user B (validity). 
(2)  User B cannot prove the origin of the messgage M to another user C (non- 

transitivity). 

We will compare this non-transitive digital signature with a regular digital sig- 
nature scheme, a message authentication scheme [I]. We will also show the difference 
from a undeniable digital signature scheme [CA, C] after explaining the application 
of a non-transitive digital signature. 

(1) (Same as non-transitive digital signature scheme)(validity) 
( 2 )  User B can also prove the origin of the message M to any user C (transitivity). 

On the other hand, in a message authentication scheme, 
(1) User B can prove the validity of message M to C while pretending to be A. 

(non-validity). 
(2)  (Same as non-transitive digital signature scheme) (this is from (1)) (non- tran- 

sitivity). 

Note that message authentication is aimed to prevent message interception and 
alternation between A and B, not to  protect against user B. 

We can consider the same security criterion for a non-transitive digital signature 
as that  for a regular digital signature. Therefore, the most hopeful security criterion 
for a non-transitive digital signature is security against existential forgery under 
adaptive chosen message attack [GMRi, NY, Ro]. 

Many very sensitive negotiations, both political and business, are held every day. 

In a digital signature scheme, 

What are some of the applications of this non-transitive digital signature scheme? 
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The scheme allows the negotiations to proceed while protecting the  privacy (irre- 
sponsibility) of all parties. Consider a government officer who is privy to  information 
of public interest but who will unduly suffer if he is identified as the  source of the  
information. T h e  officer can pass the  information on to the  press unattributively 
through this non-transitive digital signature. The  press can have confidence in 
the  accuracy of the  information and  i t s  source (from the validity) but the  source 
retains his anonymity (from the  non-transitivity). I n  addition, when we conduct 
sensitive negotiations for a contract , this kind of privacy (irresponsibility) is often 
required before concluding the contract. We will also show another application of 
the non-transitive digital signature in Section 5 .  

Then,  can we use an  undeniable digital signature scheme [C, CAI as a non- 
transitive digital signature? Although it seems that an  undeniable digital signature 
scheme has the property of the  non-transitive digital signature scheme, here, we 
will show tha t  the answer to this question is negative. 

In  an undeniable signature scheme, the signer issues a signature t (e.g., t = 
m” mod n, where z is his secret key), then h e  proves the validity of z interactively. 
Therefore, in this scheme, z can be used as evidence in some situations. The  
property tha t  z is left with t h e  related message m is an  advantage of this scheme in 
some applications; for example, when a receiver of the undeniable signature wants 
to be able to confirm the  signer’s responsibility. 

However, suppose that t he  undeniable digital signature [C ,  CAI is used for 
t he  above-mentioned example, where an officer sends confidential information to  
the  press. After t he  information is published, the  officer may be  suspected a s  the  
source. In  this case, the officer leaves z as well as m. If the  goverment obtains z 
along with m, the  goverment can force the  officer t o  reveal his secret key z. in order 
to clear his suspicion. Of course, the  officer can refuse t o  reveal his secret key, but 
his refusal itself will become an  implicit evidence tha t  he is the  source. Instead, if 
the  officer uses a disavowal protocol [C], he  can prevent his suspicion from falling on 
him without revealing his secret key. Therefore, the  officer has no other reason for 
refusing a disavowal protocol except that  he is the  source. Thus ,  in t he  undeniable 
signature scheme, anyone with ( m , ~ )  can check whether a suspected signer is the 
t rue  signer or not.  Tha t  is, t he  undeniable signature is not non-transitive. 

O n  the  other hand, we can construct a non-transitive digital signature scheme 
by using t h e  “symmetric public-key encryption” [GHY]. T h a t  is, a non-transitive 
signature signer sends a message encrypted by a symmetric public-key encryption. 
For the  receiver to check the  validity of the message, the  signer must embed redun- 
dant information in the message such as a n  error correcting code. Howeverl this 
scheme is a n  indirect solution of constructing a non-transitive signature scheme, 
because the security essentially depends on the  property of the  redundant informa- 
tion. (This scheme corresponds to  a message authentication scheme based on the  
combination of a conventional encryption and  redundant information.) 

Here we will propose several implementations of the  non-transitive digital sig- 
nature scheme, utilizing the  randomness of zero-knowledge proofs. First ,  we will 
show a general result about the  non-transitive digital signature scheme. T h a t  is, we 
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will show that a non-transitive digital signature scheme secure against existential 
forgery under adaptive chosen message attack can be constructed if and  only if a 
one-way function exists. Next, we will show some practical constructions of non- 
transitive signature schemes based on the zero-knowledge identification schemes 
shown in Subsection 2.1, although they have not been proven to be  secure. For the  
same reason as described in Subsection 2.2,  we will jus t  show 2 typical cases here; 
(l)(a) and (2)(b).  Here, note that t he  construction using the  non-interactive version 
of these protocols ((1)-(4)(c)) cannot constitute a non-transitive digital signature; 
in fact, they are regular (transitive) digital signatures. We will discuss these digital 
signature protocols in Section 4. 

3.2 Construction using one-way function 

I n  this subsection, we show a general result about the  existence o€ a non- 
The  key techniques for this result are zero- transitive digital signature scheme. 

knowledge proof and  bit-commitment . 
Theorem 3 A non-transitive digital signature scheme tha t  is secure against 
existential forgery under adaptive chosen message attack can be constructed if and  
only if a one-way function exists. 

Proof sketch: 
T h e  proof of t h e  “only if’ part is almost trivial, and can be proven in the  same way 
as shown in [Ro]. Then, we will prove the “if” part. We assume that a one-way 
function exists. Let signer’s secret key be 8 and its  public key be p = f(s), f is a 
one-way function. Then, we can construct a zero-knowledge proof of proving tha t  
the  signer has 8 satisfying p = f(8) because we assume the existence of a one-way 
function [BCC, Blu, GMW,  FFS, ILL, H, N]. In this zero-knowledge proof, we use 
Naor’s construction of bit-commitment using a one-way function (pseudo-random 
generator) [N]. Here, we use g ( m i ,  W )  instead of S ,  where S is a random value used 
for the  bit-commitment, g is the bit-commitment function, and  W is a random value. 
If g ( m i ,  W )  is indistinguishable from S ,  we can use g ( m ; ,  W )  instead of 5’ without 
losing the  property of the  bit-commitment. Next, we will show the  algorithm of 
the bit-commitment part in more detail. Let g : bc1> , S<n>, R<3,,> + d<sn> be 
Naor’s bit-commitment function (Section 3 in [N]), where the  verifier (Bob) sends 3n 
random bits, R<3,>, and the commiter (Alice) generates n random bits, S<,,>, and  
sends the  bit-commit d<3n> = g(b,l>, S<n>,  R,3n>) of a bit b<l> t o  the  verifier, 
and  at the  reveal stage the  commiter opens S<n> to the  verifier. Here, the  suffix of 
each parameter means the bit size of the  parameter, and a parameter written by a 
capital letter is t rue  random bits. R is the size of the  key. 

Let m,,, be the  1-th bit of a message to  be signed. Hereafter, we simply write 

First, the  verifier sends 9n random bits Rien> and 3n random bits T<snl to the  
signer. Then  the signer calculates 

sends d<sn> regarding a bit bc1> and m<l> t o  the  verifier. At the  reveal stage, 
the signer opens U<n> to the  verifier. 

( 1 )  

m(‘) by m<l>. In  our signature scheme, bit commitment is executed as follows: 

~ < 3 n >  = g((m<I>,  U<n> t T<3n> )I and d<gn> = g ( b < l > ,  n < ~ n >  i Rig,> ). T h e  signer 
T h e  signer generates n random bits, U<n>.  
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In the zero-knowledge proof [BCC, Blu, GMW, FFS], the revealed messages are 
determined by the verifier’s message (coin flips). Therefore, the signer embeds his 
messages in the bit-comitmment dupulicatedly. That  is, first the prover sends com- 
mitted messages X I  and X z .  Then, the prover reveals either X I  or X z  depending 
on the verifier’s message (0 or 1). Here, the prover embeds a message to be signed 
M into both X1 and X2. 
This bit-commitment clearly satisfies the criterion of the bit-commitment, because 
if the verifier can distinguish between g(b<l,, v < ~ ~ > ,  RcBn,) and g ( b ; l , ,  V<sn>, 
R<g,>) (V;3n> is true random bits) with nonnegligible probability, he must be 
able to  distinguish between true random bits and Naor’s bit-commitment sequence. 
Moreover, from the property of the bit-commitment, message bit m < l >  cannot be 
changed by anyone after sending d<gn>. 
By this protocol, the signer can sign a message whose size is almost half of the size 
of committed bits that are necessary for the zero-knowledge proof of proving that 
the signer has a satisfying p = f(8). Therefore, when the key size is R ,  O ( n C )  bits 
can be signed as a message, where c is a constant. 
From the property of zero-knowldge proof, the above scheme clearly satisfies the 
non-transitivity, because anyone can make the history of the non-transtive signature 
(or the interaction between the signer and the verifier). The above scheme also 
satisfies the security condition from the zero-knowledge property and Naor’s bit- 
commitment’s property. QED 
Remark: More efficient bit-commitment scheme (Section 4 in [N]) can be also 
used instead of the bit-commitment scheme used in the proof. There are various 
alternative ways to embed a message to be signed in the bit-commitment scheme. 

3.3 Construction using the sequential version of the Fiat-Shamir scheme 

Non-transitive digital signature scheme 3.3 

(1) Preprocessing stage 

The unique trusted center in the system generates Fiat-Shamir scheme’s secret key 
8 ,  ( j  = 1 , .  . . , le) for user A. Here, the center’s secret key is p ,  q (primes), center’s 
public key is R = p q ,  l / s j  = (f(I~,j))’/~ mod n ( j  = 1 , 2 , .  , . ,k), and I A  is the 
identity of user A. 

(2)  Authentication stage 

(0)  User A sends A’s identity la and A’s message M to user B. 
Repeat steps (i) to  (iv) t times. 

(i) User A picks a random number r E 2, and sends z = r 2 g ( M )  mod R to user 
B. Here, function g is a one-way hash function such that g(m) distributes 
uniformly over 2, when m E d o m ( h )  is selected randomly. 

(ii) User B sends a random binary vector (el . . . , e k )  to user A. 
(iii) User A sends to user B y such that y = ?nj 8 . ’  ;’ mod n. 
(iv) User B checks that  E = y2g(M) nj f ( I A , j ) e j g ( M )  (mod n). If the check is not 

After all t rounds procedures are passed, user B recognizes that  M is A’s valid 
valid, user B quits the procedure. 
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message. 
Remarks: 

1. In the above protocol, we showed the ident i ty-based version of non-transitive 
digital signature scheme, because it is well compatible with the original Fiat- 
Shamir schemes. If each user generates p , q  in place of the trusted center, 
and publishes n,  I,, then the scheme becomes a regular (not identity-based) 
non-transitive digital signature. 

In this protocol, ~ g ( ~ )  mod n is used in place of a true random number 
fl E 2, in the Fiat-Shamir scheme, where 7 E 2, is a true random number. 
If gcd(g(M),p - 1 )  = gcd(g(M),q - 1) = 1, @(IM) mod n and R are perfectly 
indistinguishable. If g( M )  distributes uniformly, g(  M) satisfies the above con- 
dition with overwhelming probability. 

2.  

3.4 Construction using the parallel version of the extended Fiat-Shamir 
scheme 

Non-transitive digital signature scheme 3.4 

(I) Preprocessing stage 

The unique trusted center in the system generates a secret key s of the extended 
Fiat-Shamir scheme for user A. Here, the center’s secret key is p , q  (primes), center’s 
public key is R = p q  and L (gcd(L,p-1) = gcd(l ,q-1)  = l) ,  1/s = (f(I~))l/~ mod 
n, and la is the identity of user A. 
(2) Authentication stage 

(0 )  User A sends la and message M to user B. 
(i) User A picks a random number r E 2, and sends z = ~ ~ g ( ~ )  mod n to user 

B. Here, function g is a one-way hash function such that g(m) distributes 
uniformly over 2, when m E dom(h)  is selected randomly. 

(ii) User B sends a random number e E ZL to user A .  
(iii) User A sends to  user B y such that y = z f  mod n. 
(iv) User B checks that 2 = y L g ( M ) f ( I A ) ‘ g ( M )  

B recognizes that M is A’s valid message. 

Remark: Same as the remarks in Subsection 3.3.  

(mod n) .  If the check is valid, user 

4. New construction of digital signature schemes using the (extended) 
Fiat-Shamir scheme 

In this section, we will show a construction of the digital signature based on the 
Fiat-Shamir identification scheme, which is different from the Fiat-Shamir digital 
signature scheme. This construction uses the technique similar t o  that used in Sec- 
tion 3.  Although we can construct 4 digital signature schemes using non-interactive 
versions of identification schemes, (1)-(4)(c), shown in Subsection 2.1,  we will just  
one typical case here; (2)(c). 

Digital signature scheme 4. 

(1) Preprocessing stage 
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Same as the  preprocessing stage in Subsection 3.4. 
(2 )  Authentication stage 

(i) User A picks a random number t E 2, and calculates z = v L g ( M )  mod n, e = 
h ( z )  E Z L ,  y = t s e  mod n. Here, M is a message, and ( e ,  y) is A’s signature of 
M .  Function g is a one-way hash function such that g ( M )  distributes uniformly 
over Z,, when M E dom(h) is selected randomly. User A sends la, M ,  and 
(e,y) to user B. 

(mod n ) ,  and checks that e = h ( z ) .  
If the  check is valid, user B recognizes that M is A’s valid message. 

(ii) User B calculates z = y L g ( M ) f ( l ~ ) ) e g ( M )  

5. New general method for constructing identity-based schemes 

Identity-based cryptographic schemes were explicitly proposed by Shamir [Sha] 
in 1984 as variants of public-key cryptographic schemes (Okamoto and Shiraishi 
[OS] also proposed the  same idea independently). I n  the new scheme, we use each 
user’s identity in place of his/her public-key, therefore, we need no public-key file, 
instead we need a trusted center tha t  generates and  distributes each user’s secret- 
key which is based on his/her identity. Preceding Shamir’s proposal, Kohnfelder 
implicitly proposed the  identity-based scheme in 1979 [Kohl, bu t  his construction 
is quite different from Shamir’s. Thus,  there are two types of methods for con- 
structing identity-based cryptographic schemes; one is the  general  m e t h o d  [Kohl, 
and  the  other is the  i nd iv idua l  m e t h o d  [Sha, OS]. In  a general method, we can cre- 
a t e  an  identity-based scheme from any traditional public-key cryptographic scheme, 
however, t h e  overhead of key length and  message length is relatively larger than  a 
well-implemented individual method. On the  other hand, in the  individual method, 
each identity-based scheme must be  constructed individually. Although only one 
general method [Kohl has been proposed, many individual identity-based schemes 
have been proposed such as key distribution schemes [Blo, Ok, MI, KO,  TI], and  
identification and signature schemes [Sha, OS, FiS, GQ, OhO]. (The  key distribution 
schemes shown in  Section 2 are also individual identity-based schemes.) 

In  this section, we will show a new general method that is a n  application of 
the  identity-based non-transitive digital signature scheme, although this method 
is similar t o  that of [Kohl. Tha t  is, in our scheme, we use the  identity-based 
non-transitive digital signature scheme shown in Section 3 in place of the  digital 
signature scheme in [Kohl. 

First ,  we will introduce the previous general method [Kohl. Trusted center T 
publishes its public key, PT,  of a public-key digital signature scheme, and holds 
the corresponding secret key ST in secret. User U creates his public key Eu and 
secret key Du of an  arbitrary public-key cryptographic scheme. User U sends his 
public key E u  t o  center T with his identity Iu.  After checking the validity of user 
U, T issues the digital signature CT of U’s public key EU along with U’s identity 
Iu as T’s certificate t o  U’s public key and  identity. After tha t ,  U always uses T’s 
certificate Cr with his public-key EU and  identity Iu.  Because anyone can check 
the  validity of T’s certificate with T’s public key PT, in this system, without any 
public key file, anyone can match U’s identity Iu with his public key Eu. 
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Our method, as mentioned above, uses the non-transitive digital signature 
scheme. The  major difference between our method and that of [Kohl is that  the 
certificate is not issued by the trusted center (7’) but by each user ( U ) .  Our method 
proceeds as follows. First, the user’ secret key Su is generated as described in 3.3 or 
3.4 in a preprocessing operation. The user can select any public key cryptographic 
scheme that best suits his purpose and create his own private and public keys, Du 
and Eu. He can (interactively) generate certificates of his public key EU a t  any 
time using the identity-based non-transitive digital signature scheme described in 
3.3 or 3.4. The  receiver can cofirm the combination of user’s identity Iu and public 
key EU by verifying the certificate with the trusted center’s public key PT. 

Our method is practically superior to the previous one [Kohl, because in our 
method the user can change or create his own private and public keys, Du and E u ,  
without access to  the trusted center T ,  while in the previous method [Kohl the user 
must always ask the trusted center to  issue truted center’s certificate CT when the 
user change or create his own private and public keys. This property of our method 
stems from the identity-based property of the schemes in 3.3 and 3.4. 

Another merit of our method is that the user can often change his own keys, 
Du, Eu,  and dispose the used keys, in order to prevent abuse of these used keys, 
while in [Kohl the used keys may be abused by an adversary since the used keys 
with the certificate can be used by anyone and at  any time. This property of our 
method stems from the non-transitive property of the schemes in 3.3 and 3.4. 

6. Concluding remarks 

In this paper, we have presented a new methodology that utilizes the random- 
ness of the zero-knowledge proof, and have proposed two types of applications: key 
distribution, and digital signature. It remains a further study to  prove the security 
of the practical schemes shown in Subsections 2.2.3, 2.2.4, 2.2.5, 3 .3 ,  3.4, and 4. 
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