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Abstract. Given an arbiter whose arbitrage is trusted, an authentication scheme
is presented which is unconditionally secure against impersonation and/or substitu-
tion attacks performed by the arbiter, whereas previous scheme did not protect against
such attacks. Furthermore, the scheme protects unconditionally against: imperson-
ation/substitution attacks done by an outsider, against disavowal of a message by the
sender, and against the receiver forging a message which was never sent. A practical
scheme based on finite geometry is presented. Adaptations of the scheme realize an
asymmetric conventional authentication scheme, and the set-up of an unconditionally
secure oblivious transfer system.

1 Introduction

When Sandy sends a message to Russ, Russ wants to be certain that the message
is authentic, i.e., it originates from Sandy and the message has not been substituted
(altered). Authentication codes protect against such attacks [16].

While authentication systems protect against attacks by outsiders, they do not
necessarily protect against disputes between sender and receiver. In such disputes,
Sandy could deny having sent an embarrassing message that Russ claims she did,
or Russ could modify, to his own advantage, a message that he received. The first
schemes protecting against disputes are signature schemes [6]. The most known one
is the RSA scheme [13]. Although RSA is somewhat unsuited for certain situations
[4,2,3], some provably secure signature systems (as secure as inverting hard functions)
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are around [8, 11, 141. 
Signatures schemes have unfortunately to rely on some unproven assumptions [9]. 

In contrast, no such reliance is required by unconditionally secure authentication codes 
“7, 19, 161. 

The first unconditionally secure authentication scheme dealing with disputes has 
been proposed by Simmons [15, 181. It is based on trust in the arbiter. Simmons’ 
scheme, however, sufers from a major disadvantage: Arby can impersonate Sandy, 
and Russ will not observe it. Simmons mentions the disadvantage of his scheme and a 
natural question to ask is whether it can be reduced. In (11 a system with multi arbiters 
was suggested by Brickell and Stinson in order to somewhat reduce the attacking power 
of arbitration agents, by adding assumptions and active participants. The purpose of 
this paper is to come up with a scheme which does not suffer from this disadvantage 
To compare with Brickell and Stinson’s work we only need one arbiter as in Simmons’ 
original scheme. 

We remark that an arbiter may be a trusted party as far as arbitration between 
the parties is concerned. However, even such a participant may have an interest in 
impersonating a party, thus influencing the course of events. An “imaginary” scenario 
of arbiter cheating is when a boss-of-an-agency is playing the role of an arbiter between 
two of his employees, an operation officer, and a field agent. The arbiter in this case 
may impersonate the officer to send illegal instructions for some covert operation. 
Because the field agent believes that the message is authentic (originates from the 
officer) it will be executed. In case the operation fails, it is the officer who will be 
blamed for it, as he was actually set up as a “fall-guy”! 

We note that such cases of cheating are especially very tempting when it is known 
that they will go undetected. A phvision of a scheme which deters the arbiter from 
attempting impersonation seems to be necessary in such delicate scenarios. 

In Simmons’ solution [15, 181 we distinguish three stages (the description of which 
can easily be formalized later on). Let us call S the sender, R the receiver, A the 
arbiter, and 0 the outside opponent. The three stages are: 

The  key initialization phase in which S, R and A interact to come up with the 
necessary keys. 

T h e  transmission phase in which R receives a message and wants to ascertain that 
the message is authentic. A does not interact in this stage. 

The  dispute phase in which A is requested to resolve a dispute between S and R, 
based on information gathered by A during the initialization phase. 

Our scheme contains these three stages as well. This allows a fair comparison of our so- 
lution with Simmons’. We observe that the arbiter is not involved in the transmission 
phase. This is contrary to the classical notion of arbitered signatures [lo, p. 4091. 

The threats that we are faced with can originate from the outside opponent 0, a 
dishonest 3, a dishonest 4, and a dishonest A. We follow Simmons’ description of 
such threats. For the first three threats see [18]. 
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The arbiter’s threat. A dishonest a can send a message to R which R will accept 
as authentic. As in the case of the opponent’s attack the arbiter can either 
choose an impersonation or a substitution attack. 
The attack is successful if and only if the message originating at A will be 
accepted by R. 

Let us now describe an observation which is the driving force behind our solution. 
It is estrernely important to observe that the scenario we now describe is not con- 

sidered to be a fraud! In this scenario, $ sends a message to a honest R who rejects 
it as being not authentic. However, when 3 hands over this message to A, A decides 
that the message is authentic. If 3 succeeds in sending such messages, we do not say 
that 3 has performed a (successful) attack. This makes perfect sense and one should 
not confuse on-line authentication and contract schemes which are binding in court 
(practically forever). We only consider this problem and its solution in Section 5.) 

In Section 2 we give an example of a scheme which achieves our goal. In Section 3 we 
formalize the requirements. Practical schema are presented in Section 4. Extensions 
and adaptations of these schemes are discussed in Section 5. One of the adaptations 
allows the set-up of asymmetric conventional authentication to allow unconditionally 
secure authentication in network environments. In Section 5 we discuss the relation 
between oblivious transfer and arbitrage and we then conclude in Section 6.  

2 An elementary example 

To keep the example simple we will momentarily only worry about impersonation 
attacks. It means that S wants to send one fized message at some beforehand unknown 
moment; so our message ppace M = { h}. We also do not yet intend to achieve schemes 
for which the cheating p$obabilities are very small. In these schemes, as well as in all 
our schemes, the key initialization phase contains three parts. First, R and S agree 
on some common information, X(,q, secret to A. Secondly, R will choose some key, 
X(R,A),  and communicate it to A. This X(R,A) identifies some subset of codewords. 
Thirdly, A selects out of this a subsubset and sends the key, X(S,A) to S to identify 
the selected subsubset. The scheme relies on random decisions by the parties: when b 
is chosen out of the set 8 with uniform probability distribution, we denote the event 
b ER B .  

In our first example let the set of all codewords (valid or non-valid) be C = 
{0,1,. . . ,7}. To simplify our discussion let us organize those codewords in the fol- 
lowing matrix: 

0 2 4 6  
T = ( l  3 5 7 )  

The set of codewords, C is public. Using the- key initialization phase the private sets: 
CR, CA,  and Cs will be set up. CR is the set of codewords that R accepts as authentic. 
CA is the set of codewords for which A will certify that they originate from R (this 
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certification is not necessarily correct). And finally, Cs is the set of codewords that S 
will actually use to communicate authentic messages. To build up these sets, S, R, 
and A are involved in the following p r o t d  in which keys are interchanged during 
the key initialization phase: 

Step 1 S and R agree on one bit X ( , R )  (X(,R) E R  X(s ,q  = (0, l}), which identifies 
a row in T. 

Step 2 R and A agreeon the pair X(R,A) = (m, n), where m # n, m, n E (0, 1,2,3}. 
The numbers m and n indicate the codewords 2m, 2m + 1,2n, 2n + 1, which 
correspond to two different columns in T. In other words X(+,A) ER X(R,A) = 

Step 3 A selects one of these columns and gives the selection to S. Hereto A sends 

The keys X(S,R) and X(s,A) specify uniquely the set of codewords, Cs, that S will use. 
When S wants to send R her message h, she will send him the codeword: 2 - X ( , , )  + 
X ( , R )  (so here Cs = (2 + X(s,A) + X(s,R)}). R will accept as authentic the codewords: 
CR = {2m + X ( , R ) ,  2n + X ( ~ , R ) } .  (So here also X ( , R )  and X(R,A) determine uniquely 
CR.) A will certify as being authentic (as being a codeword which originates from S) 
the codewords belonging to CA = {2X(s,A), 2x(s,A) + 1). so CA consists of one column 
of the matrix T. 

Let us now discuss informally the security, against several attacks, of the above 
scheme. A cheating A must guess the correct X(S,R), so the probability of a successful 
attack is 1/2. When wants to cheat he could come up with 2m, 2m + 1, 2n, or 
2n + 1. But A will only accept two of those as authentic, and because R does not 
know X ( , , q  his probability of a successful attack is 1/2. When 3 wants to perform 
her attack, she has to guess the other column that R has sent to A; her probability of 
success is 1/3. Indeed, ,!? knows that 4 pairs are possible, but that the X(S,A)’S column 
(which corresponds to (2X(s,A),2X(s,A) + 1)) is impossible because A would certify it 
as originating from S. Thus, three columns are left over to choose from, but there is 
only one other column of codewords that R will accept as being authentic. Finally the 
outside opponent’s probability of success is 1/4, because the receiver will only accept 
two out of eight codewords of T as being authentic. Notice that the example above 
relies on the decisions made bilaterally and individually. 

Observe that in this example the set X ( , A )  = {0,1,2,3}. The probability that a 
particular key X ( , A )  has been chosen depends on the actual value of X(R,A). Although 
S and A share X(S,A) the choice of it has only been made by A. 

{(0,1), (0 ,2) ,  * * * 9 (2,311. 

to s: X(S,A)  E R  {m,n}. 

3 Formalizing the problem and theoretical results 

Let us first formalize what our objectives are. To be general we will allow each par- 
ticipant (S, R and A) to make their subset of codewords using shared keys and using 
private information. 
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Definition 1 Let M be a non-empty message space (sometimes called the set of 
source states). Let C be the set of codewords. Let G = (V.,E) be a complete graph 
with vertex set V = { S , R , A } .  Let X and y be respectively the collection of all 
X ( i , j )  ( ( i , j )  E E )  and the collection of all y h  ( k  E V ) ,  where X;,j and yk are non- 
empty key sets. These sets are associated with edges and vertices, respectively. Each 
set of keys has a probability distribution associated with. We call the collection of 
these distributions D. Let 3 be a set of functions associating a subset of codewords 
to keys such that F = { f l , ~  I 1 E V and M E M and f , , ~  : BI + P(C)} where 

and P(C) is the power set of C .  We call B the collection of BI (where 1 E Y). We say 
that (G, M , C ,  X ,  y ,  D, B, 3) is a communication scheme with sender S, receiver R, 
and arbiter A,  or shortly: a communication scheme when there is no ambiguity what 
S, R and A are. 

B S  c X ( S , R )  x X(S,A)  x YS7 B R  c X ( S , R )  x X ( R , A )  x YR7 and B A  c #(&A) x X ( R , A )  x YA7 

In this text we will assume that there is no ambiguity when we speak about a 
communication scheme. In our initial example no YR was used. So YR contains only 
one element. From this viewpoint Simmons' scheme has the property that IX(,,)I = 1. 

Definition 2 In the key initialization phase each ( i , j )  E E agrees securely on an 
X ( i , j )  E X ( ; , j )  and each i E Y chooses an E Yi, which is done accordingly to 
distributions D(i,j) and Di respectively. 

Let C S , M  = f S , M ( X ( S , R ) ,  X ( S p ) r  YS), CR,M = f R , M ( X ( S , R ) ,  X ( R , A ) ,  Y R ) ,  and c A , M  = 
f A , M ( X ( S , A ) , X ( R , A ) , Y A ) .  w e  c& C S  = U M & W C S , M ,  C R  = U M E M C R , M ,  and C A  = 
U M M E M C ~ , ~  the set of codewords that respectively S, R, and A accept. 

The probability distributions D(R,A), Z)(S,R) and DR can be inter dependent. Sim- 
ilarly the probability distributions D(s,A) and DA can be inter dependent and could 
be a function of X ( R , A ) .  Finally 'Ds can be a function of X ( , R )  and X ( S , A ) .  

A communication scheme is well defined when the above probability distributions 
guarantee that: 

V ( X ( S , R ) , X ( S , A ) , Y S )  E ( X ( S , R )  x X ( S , A )  x Y S )  \ B S  : P r ( X ( S , R ) , X ( S , A ) , Y S )  = 0 
V ( X ( S , R ) , X ( R , A ) , Y R )  E ( X ( S , R )  x X(R,A)  x Y R )  \ B R  : P r ( X ( S , R ) 7 X ( R , A ) 7 Y R )  = 0 
v ( X ( S , A ) , X ( R , A ) , Y A )  E ( # ( , A )  x X ( R , A )  x Y A )  \ B A  : P r ( X ( S , A ) , X ( R , A ) , Y A )  = 0. 

We say that the number of interactions in the key initialization phase is: 

3 - x ( i f  {I#;/ = 1) then 1 else 0). 
iE& 

All the above distributions can be public or secret. The subsets 231 are however all 

Let us now define what a secure authentication scheme is. 
public. 

Definition 3 A well defined communication scheme (G, M ,  C ,  X ,  y ,  27, 8, F) with 
arbiter A is uniquely decodabte when simultaneously V M  E M : CS,M C CR,M, CS,M # 



182 

8 ,  and also: Cs c CA, and that {CR,M I M E M} forms a partition of C R .  This partition 
naturally defines the function rns : Cs --.) M and its extension r n ~  : CR --.) M .  We 
will speak about rn in both cases. When {CA,M I M E M} forms a partition of CA 
such that VM E M : CS,M c CA,M we say that there is no privacy protection relative 
to A. 

Remark 1 The subsets Bs, BR and BA can now be motivated. The exclusion of some 
undesired choices helps guarantee that a communication scheme is uniquely decod- 
able. Our first example illustrates this. Indeed given X(,A) not all choices of X(S,A) 
are possible, otherwise we could not guarantee a particular scheme to be uniquely 
decodable. 

In the final paper [5] we formally define Po, Ps, PA, PA and require that they are 
all less than 2-k ,  where k is the security parameter. An informal definition can be 
found in [18]. When Po, = Po, = Pg = PR, = PR, = PA =  PA^ < 1, we say that the 
scheme is super-equitable, which is motivated by Simmons’ definition [18]. 

Our definitions are quite general. No restrictions whatsoever were imposed on the 
sets of keys ( X ( S , R ) ,  etc.) that can be communicated between the participants S, R, 
and A. 

In the final paper [5] we prove the following theorems. 

Theorem 1 Super-equitable schemes for which the number of iterations is 2 do exist. 

Theorem 2 Let k > 0 .  For a k-secure authentication scheme (with arbiter) which 
wes a tinteraction k e y  initialization phase, holds that k 5 1. So Po ‘dr Pg or PR or 
PA is larger or equal to 1/2. 

So, to obtain a decent security one needs 3 interactions in the key initialization 
phase. Practical schemes exist, in the next section we will discuss some practical 
schemes based on geometry. 

4 Practical secure authentication schemes with arbiter 

In this section we will use many sets. Hereto we first define the functions fs, f R ,  and 
f A .  These have the same domains and co-domains as the functions f S , M ,  f R , M ,  and 
fA,M respectively (see Definition 1) such that: 

f S ( x ( S , R ) ,  X ( S , A ) , Y S )  = U f S , M ( X ( S , R ) , X ( S , A ) , Y S )  

f R ( X ( S , R )  * X ( R , A )  , Y R )  = u f R , M ( X ( S , R )  X ( R , A )  Y R )  

f A ( X ( S , A ) , X ( R , A ) ,  Y A )  = U f A , M ( X ( S , A ) , X ( R , A ) ,  Y A )  

M 

M 

M 



183 

and this holds for all possible inputs. So all those functions have as co-domain P(C). 
Using this terminology, for example, CR = ~ R ( X ( S , R ) ,  X(R,A), YR), which clarifies the 
above. The sets we define next give S some specific information about CA. S receives 
X ( S , A )  from A and this allows S to calculate the sets: 

+,A) A = n ~ A ( X ( S , A ) ,  X(R,A) 3 YA) (1) 

i y - p , A )  = U f~ (X(S,A),  X(R,A), YA) (2) 

(X(R,A)YA) E +R,A)XYA 
(X(S,A)&R,A),~A) E BA 

(X(R,A).YA) E X(R,A)XYA 
(X(S,A)J(R,A)YA) E SA 

The notation of these sets is easy to read when the following mnemonics is used. 
The above sets give information about CA, and and U3s*A) can be computed 
starting only-from X ( , A ) ,  that is, when X(S, ,q  is known. The symbol Z indicates 
intersection and we use the symbol U when the union of sets is involved. 

All sets defined in the sequel are denoted similarly, these are: 
f l R , A )  = - n ~ A ( X ( S , A ) ,  X(R,A),  YA) (3) 

@*A) = n ~ R ( X ( S , R ) ,  X(R,A), YR) (4) 

@ . R )  = n ~ R ( X ( S , R ) ,  X(R,A), YR) ( 5 )  

(X(S,A)J’A) E X ( S , A ) X Y A  
(X(S,A)J(R,A)J’A) E SA 

(X(S,R)J’R) E X(S,R)XYR 
( X ( S , R ) J ( R , A ) Y R )  E SR 

(X(R,A)PYR) E +R,A)  x y R  
(X(S,R)Z(R,A)~YR) E BR 

X and similarly we define Z4i(R,A), URXRtA), and UR(ssR) by replacing the intersection 
symbols by union symbols in respectively (3), (4), and (5) .  

= 1, l y~ l  = 1 and [ Y A l  = 1. In order to facilitate reading, 
we will often, in this section, use the symbols U:(s’R), U z R ’ A ) ,  etc. without proving 
immediately that this notation is compatible with our definitions. 

Before explaining our general practical scheme (any M) we now explain a very 
similar scheme for which ]MI = 1 which will facilitate the grasping of our general 
scheme. In this scheme p is a public prime, and lpl 2 k. C corresponds with the three 
dimensional space: 2, x 2, x Z,, which co-ordinates are denoted by (z, y, 2). 
The key initialization phase 

In this section 

Step 1 R chooses X ( , R )  ER Z,, X[R,A) ER Z,, and X?R,A) ER 2,. Then R sends 
S the number X(S,R) and A the pair: X(R,A) = ( X [ R , A ) , X t R , A ) )  to which 
respectively correspond the 2- dimensional planes : 

$ S A  . !/ = X ( , R )  
U?R,A) = uX(R,A) . 

R t +X[R, ,q  - 2  = XtR,A) - 
CR = U2ssR)  n UAXRaA), which is always a 1-dimensional line. 
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Step 2 A chooses Xh,A) €J I %p and calculates: X?s^ = X?RA^—X}SAyX}RA^ sends
5 the pair: X(S,A) = (Xh^^Xh^). CA corresponds with the 1-dimensional
line:

f * = X(S,A)
\ z = Xf

Step 3 The set Cs = U%s*> nCA = {(Xfa,X(S,R),

When S wants to send her message (in the transmission phase), she sends R the
following codeword: (X*SA),X(S,R), X^SA^). Observe that 5 knows CA and that CA is

the intersection of UA
 (K>'*) with the 2-dimensional plane: z = X}SA\.

It is not too difficult to analyze that Poa = 1/p2, Pj^ = 1/p and that P^ = I/p.
In the final paper we will explain why P§ = 1/p.

Let us now explain the general scheme. In this scheme p is a public prime, and
\p\ > k and p = \M\. C corresponds to the four dimensional space: Zpx Zpx Zpx Zp,
which coordinates are denoted by (x,y,z,u). We denote this four dimensional space
as: Z*.
The key initialization phase

Step 1 R sends 5 the tuple X(S,R) = (X)SRyX?SIn) ER Z* and R sends A the tuple:
X(R,A) — (XfRAy XfRAyX*RA)) G/j Zp to which respectively correspond the
3-dimensional planes:

y = xlsjt> • v + rfsji) (6)
Z ~ X,RA\-U + XmAy (7)

CR = UR
(SR) nUA

{R'A), which is always a 2-dimensional plane.

Step 2 A chooses and/or calculates:

X(S,A) = X{R,A) ~ X(S,A) • XIRIA) (8)

X(S,A) = X(RA) — X(SA) • X(RiA) (9)

and sends 5 the tuple: X(S,A) - (xlStA),XfSA),XfSA),Xfs<A)). CA corre-
sponds with the 2-dimensional plane:

u

Step 3 The set Cs = UR
S>K> C\CA, which is always a 1-dimensional line.
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When S wants to send the message M E M ,  she calculates the codeword: 

and she sends it to R. Observe that S knows CA and that CA is the intersection of 
Ui(RpA)  with the 3-dimensional plane: z = X[s,A, * u + Xfs,A). 

Theorem 3 When IpI 2 k and p = IMI then the geneml scheme is a L-secure 
authentication scheme with arbiter. The length of the key is proportional to k and 
when IMI 5 2k the length of the key is independent o f k .  The length of the codewords 
(when p = IM 1) is 4(pl. 

When IMI > 2k the scheme can easily be adapted, however the scheme is then 
no more so optimal. Observe that in the Wegman-Carter (no-arbiter) scheme [19] the 
length of the codewords is dramatically shorter. 

5 Extensions 

Here we introduce the ideas, in the final paper [5] we will formalize the problem and 
describe in more detail the solutions. 

A new fraud in arbitrated authentication is a jamming type fraud. Indeed when 
during the key initialization phase of the previous scheme A gives S an Cj, which 
is not a subset of URXRPA), then R will reject all S’s codewords! By using a similar 
idea as in [17] an extensions of the geometry based scheme protects probabilisticly 
against such frauds. Another extension gives a family of super-equitable authentication 
schemes with arbiter. 

We now discuss asymmetric conventional authentication. Suppose that a sender S 
wants to send (broadcast) the same message to n (e.9.  two) individuals R1, Rz, . . . , R, 
and authenticate it with an unconditionally secure scheme. The first solution would 
be that S gives the same key to all R,, however each R, could impersonate S. To avoid 
this fraud, the obvious solution is to use n keys and to send n authenticated messages 
(each authenticated with a different key). This transmission procedure is slow and no 
real broadcast can be used. The apparent ideal solution would be a signature scheme, 
but as said in the introduction, this requires a one-way function and the solution is 
no longer unconditional secure. We now discuss a situation in which a compromise 
solution is quite acceptable. 

Suppose that Sandy, a new president of an investment company, gives each of her 
n br0kers.a different key Ki and keeps the “master key”: K. In an emergency, such 
as a stock exchange crash, she will use K to authenticate M giving one codeword C, 
which she will broadcast. Ideally the length of C is independent of n. By adapting 
our geometrical scheme, such scheme can be constructed. This is formalized and a 
solution is presented in [5] .  

A major observation is that each family of authentication schemes with arbiter A 
is a l-out-of-2 family of secure asymmetric authentication schemes. Indeed choose 
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Rl = R and R2 = A. However, in the key initialization phase of an asymmetric 
authentication scheme there is no longer a secure communication channel between R1 
and R2, so the scheme must be adapted. To solve this let us make a very important 
observation (see also [18, p. 1011). The schemes of Section 4 remains functional when 
S chooses X(S,R) (i.e. the plane U z s m ” )  and X ( , A )  (i.e. the set C A )  and sends those 
securely to respectively R and A. Then A chooses some X(R,A (i.e. a plane containing 
CA) and sends it securely to R. As before, CR = Z@s*R) n UA(R*A). In the asymmetric 
authentication scheme there is no need for the communicationof X(R,A). This remark is 
the driving force behind the scheme which was only introduced here; we will describe 
the scheme in the final paper. Another feature of the system which enhances its 
applicability is the fact that it may be used in such a way so that only one receiver 
(say, R1) will accept the message. 

Another extension allows oblivious transfer [12]. In an oblivious transfer system 
Bob sends a codeword to Cleo. The probability that this codeword is meaningful 
is 1/2. In oblivious transfer Cleo knows when she received the message, however 
Bob does not, thus the transfer is indeed oblivious. We now prove that this can be 
achieved using secure authentication systems with arbiter. Let Bob correspond to R 
and Cleo with S and suppose that we have an authentication system with arbiter 
such that: l C ~ l  = 2 - ICsI. Observe that the sender corresponds to R now and the 
potential receiver to S! In the final paper we will prove that this system is an oblivious 
transfer system. Our goal, of course, was not to suggest an oblivious transfer with three 
parties as a major discovery, but rather to draw the analogy of the requirements of 
the authentication scheme protected against attacks by all participants and such an 
oblivious transfer scheme, which actually shows the strength of the authentication 
scheme. 

d 

6 Conclusions 

While Simmons scheme does not protect against impersonation and substitution by 
the arbiter, the schemes presented here do protect against such frauds. Compared 
with Simmons solution our schemes use one interaction more in the key initialization 
phase than Simmons schemes. However we have demonstrated that 3 interactions are 
necessary (in the key initialization phase) to come up with a decent security. 

We have presented a practical scheme for which the length of the key is only 
proportional to log2(IMI), which is better than in Simmons scheme. And, we have 
shown that a scheme with an arbiter allows us to come up with an oblivious transfer 
system. 

The paper introduces many open problems. First, can arbitrated authentication 
schemes be obtained which are optimal as the Wegman-Carter scheme. Do other ex- 
amples exist of asymmetric conventional cryptosystems. What is the relation between 
sharing and authentication? 
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