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Abstract. We describe a new approach for cluster-based drawing of
very large graphs, which obtains clusters by using binary space partition
(BSP) trees. We also introduce a novel BSP-type decomposition, called
the balanced aspect ratio (BAR) tree, which guarantees that the cells
produced are convex and have bounded aspect ratios. In addition, the
tree depth is O(log n), and its construction takes O(n log n) time, where
n is the number of points. We show that the BAR tree can be used to
recursively divide a graph into subgraphs of roughly equal size, such that
the drawing of each subgraph has a balanced aspect ratio. As a result, we
obtain a representation of a graph as a collection of O(log n) layers, where
each succeeding layer represents the graph in an increasing level of detail.
The overall running time of the algorithm is O(n log n + m + D0(G)),
where n and m are the number of vertices and edges of the graph G,
and D0(G) is the time it takes to obtain an initial embedding of G.
In particular, if the graph is planar each layer is a graph drawn with
straight lines and without crossings on the n × n grid and the running
time reduces to O(n log n).

1 Introduction

In the past decade hundreds of graph drawing algorithms have been developed
(e.g., see [5]), and research in methods for visually representing graphical in-
formation is now a thriving area with several different emphases. One general
emphasis in graph drawing research is directed at algorithms that display an
entire graph, with each vertex and edge explicitly depicted. Such drawings have
the advantage of showing the global structure of the graph. A disadvantage,
however, is that they can be cluttered for drawings of large graphs, where de-
tails are typically hard to discern. For example, such drawings are inappropriate
for display on a computer screen any time the number of vertices is more than
the number of pixels on the screen. For this reason, there is a growing empha-
sis in graph drawing research on algorithms that do not draw an entire graph,
but instead partially draw a graph, either by showing high-level structures and
allowing users to “zoom in” on areas of interest, or by showing substructures of
the graph and allowing users to “scroll” from one area of the graph to another.
Such approaches would be more suitable, for instance, for displaying very large
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graphs, such as significant portions of the world wide web graph, where every
web page is a vertex and every hyper-link is an edge.

A common technique used in the scrolling viewpoint context is the fish-eye
view [12, 13, 21], which shows an area of interest quite large and detailed (such
as nodes representing a user’s web pages) and shows other areas successively
smaller and in less detail (such as nodes representing a user’s department and
organization web pages). Fish-eye view drawings allow for a user to understand
the structure of a graph near a specific set of nodes, but they often do not display
global structures.

An alternate paradigm is to display global structure present in a graph by
clustering smaller subgraphs and drawing these subgraphs as single nodes or
filled-in regions. By grouping vertices together into clusters in this way we can
recursively divide a given graph into layers of increasing detail, which can then be
viewed in a top-down fashion or even in fish-eye view by following a single path
in a cluster-based recursion tree. If clusters of a graph can be given as input along
with the graph itself, then several authors give various algorithms for displaying
these clusters in two or three dimensions [6, 7, 9, 10, 18]. If, as will often be
the case, clusters of a graph are not given a priori, then various heuristics can
be applied for finding clusters, say, using properties such as connectivity, cluster
size, geometric proximity, or statistical variation [17, 19, 24]. Once a clustering
has been determined, we can generate the layers in a hierarchical drawing of
the graph, with the layer depth (i.e., number of layers) being determined by
the depth of the recursive clustering hierarchy. This approach allows the graph
to be represented by a sequence of drawings of increasing detail. As illustrated
by Eades and Feng [6], this hierarchical approach to drawing large graphs can
be very effective. Thus, our interest in this paper is to further the study of
methods for producing good graph clusterings that can be used for graph drawing
purposes.

We feel that a good clustering algorithm and its associated drawing method
should come as close as possible to achieving the following goals:

1. Balanced clustering: in each level of the hierarchy the size of the clusters
should be about the same.

2. Small cluster depth: there should be a small number of layers in the recursive
decomposition.

3. Convex cluster drawings: the drawing of each cluster should fit in a simple
convex region, which we call the cluster region for that subgraph.

4. Balanced aspect ratio: cluster regions should not be too “skinny”.
5. Efficiency: computing the clustering and its associated drawing should not

take too long.

The goal of this paper is to study how well we can achieve these goals for
very large graph drawings using clustering. Previous algorithms optimize one or
more of the above criteria at the expense of some of the rest. Our goal is to try
to optimize all of them. Our approach relies on creating the clusters using binary
space partition (BSP) trees, defined by recursively cutting regions with straight
lines.
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1.1 BSP Tree Based Clustered Graph Drawing

The main idea behind the use of a BSP tree to define clusters is very simple.
Given a graph G = (V, E), where n = |V | and m = |E|, we can use any existing
method to embed it, provided that method places vertices at distinct points in
the plane (e.g., see [5, 14, 25]). For example, if G is planar we can use any existing
method for embedding G in the plane such that vertices are at grid points, and
edges of the graph are straight lines that do not cross [4, 8, 22, 23, 26]. Once the
graph drawing is defined, we build a binary space partition tree on the vertices
of this drawing. Each node v in this tree corresponds to a convex region R of the
plane, and associated with v is a line that separates R into two regions, each of
which are associated with a child of v. Thus, any such BSP tree defined on the
points corresponding to vertices of G naturally defines a hierarchical clustering
of the nodes of G. Such a clustering could then be used, for example, with an
algorithm like that of Eades and Feng [6], who present a technique for drawing
a 3-dimensional representation of a clustered graph.

The main problem with using BSP trees to define clusters for a graph drawing
algorithm is that previous methods for constructing BSP trees do not give rise
to clustered drawings that achieve the design goals listed above. For example,
the standard k-d tree and its derivates (e.g., see [11, 20]), which use axis-parallel
lines to recursively divide the number of points in a region in half, maintain
every criteria but the balanced aspect ratio. Likewise, quad-trees and fair-split
trees (e.g., see [3, 20]), which always split by a line parallel to a coordinate
axis to recursively divide the area of a region more or less in half, maintain
balanced aspect ratio but can have a depth that is Θ(n). In our graph drawing
application, aesthetics are extremely important, as “fat” regions appear rounder
and a series of skinny regions can be distracting. But depth is also important, for
a deep hierarchy of clusterings would be computationally expensive to traverse
and would not provide very balanced clusters. The balanced box-decomposition
tree of Arya et al [1, 2] has O(log n) depth and has regions with good aspect
ratio, but it sacrifices convexity by introducing holes into the middle of regions,
which makes this data structure less attractive for use in clustering for graph
drawing applications. Indeed, to our knowledge, there is no previous BSP-type
hierarchical decomposition tree that achieves all of the above design goals.

1.2 The Balanced Aspect Ratio (BAR) Tree

In this paper we present a new type of binary space partition tree that is bet-
ter suited for the application of defining clusters in a large graph. Our data
structure, which we call the balanced aspect ratio (BAR) tree, is a BSP-type
of decomposition tree that has O(log n) depth and creates convex regions with
bounded aspect ratio (i.e., so-called “fat” regions). The construction of the BAR
tree is very similar to that of a k-d tree, except for two important differences:

1. The BAR tree allows for one additional cut direction: a 45◦-angled cut.
2. Rather than insisting that the number of points in a region be cut in half at

every level, the BAR tree guarantees that the number of points is cut roughly
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Fig. 1. The multi-level view of a graph with each cluster represented by a single node.
Note the relationship between the cuts on the left and the clusters on the right.

in half every two levels, which is something that does not seem possible to
do with either a k-d tree or a quadtree (or even a hybrid of the two) while
guaranteeing regions with bounded aspect ratios.

In short, the BAR tree is an O(log n)-depth BSP-type data structure that creates
fat, convex regions. Thus, the BAR tree is “balanced” in two ways: on the one
hand, clusters on the same level have roughly the same number of points, and,
on the other hand, each cluster region has a bounded aspect ratio.

We show that a BAR tree achieves this combined set of goals by proving
the existence of a cut, which we call a two-cut. A two-cut might not reduce the
point size by any amount but maintains balanced aspect ratio and ensures the
existence of a subsequent cut, which we call a one-cut, that both maintains good
aspect ratio and reduces the point size by at least two-thirds. In Section 3, we
formally define one- and two-cuts and describe how to construct a BAR tree.

1.3 Our Results for Cluster-Based Graph Drawing

In Section 4, we show how to use the BAR tree in a cluster-based graph drawing
algorithm. The Very Large Graph Drawing (VLGD) algorithm runs in O(n log n+
m + D0(G)) time, where n and m are the number of vertices and edges in the
graph G and D0(G) is the time to embed G. If the graph is planar, the algorithm
introduces no edge crossings and the running time reduces to O(n log n).

The algorithm creates a hierarchical cluster representation of a graph, with
balanced clusters at each layer and with cluster depth O(log n). Each cluster
region has a balanced aspect ratio, guaranteed by the BAR tree data structure.
In the actual display of the clustered graph we represent the clusters either with
their convex hulls, with a larger region defined by the BSP tree, or simply with
a single node (see Figure 1).
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create clustered graph(T, G)
K ← G
for i = k downto 0

obtain Gi from K
shrink K

add the edges of T
return C

Fig. 2. Creating the clustered graph.

2 Using a BSP Tree for Cluster Drawing

Let G = (V, E) be the graph that we want to draw, where |V | = n and |E| = m.
The goal of our VLGD algorithm is to produce a 3-dimensional representation
C of the embedded graph G given a BSP tree T . Similar to [6] we define the
clustered graph C = (G, T ) to be the graph G, and the BSP tree T , such that
the vertices of G coincide with the leaves of T . An internal node of T represents
a cluster, which consists of all the vertices in its subtree. All the nodes of T at a
given depth i represent the clusters of that level. A view at level i, Gi = (Vi, Ei),
consists of the nodes of depth i in T and a set of representative edges. The edge
(u, v) ∈ Ei if there is an edge between a and b in G, where a is in the subtree
of u and b is in the subtree of v. In addition, each node u ∈ T has an associated
region, corresponding to the partition given by T .

We create the graphs Hi in a bottom-up fashion, starting with Hk and going
all the way up to H0, where k = depth(T ). Define the combinatorial graph
K = (V (K), E(K)), where initially V (K) = {u ∈ T : depth(u) = k} and
E(K) = E(G). Notice that K is well defined since the leaves of T are exactly
the vertices of G.

At each new level i we perform a shrinking of K. Suppose u, v ∈ V (K), and
parent(u) = parent(v). We replace the pair by their parent and remove the
edge (u, v) if it exists. We also remove any multiple edges that this operation
may have created and maintain for each surviving edge a pointer to the original
edge in G. Thus a shrinking of K consists of all such operations, necessary to
transform K into a representation of G at one higher level in the tree T .

At each level Gi is a subgraph of G with certain edges removed. In addition,
the z-coordinate of a vertex v ∈ Vi is equal to i, that is, all the vertices in
Gi are embedded in the plane given by z = i. To obtain Gi from Gi+1, for
i = 0, . . . , k − 1, we use the combinatorial graph K from level i + 1. Initially
Ei = Ei+1. We then perform a shrinking of K and while removing an edge from
K we remove its associated edge from Ei.

This algorithm (see Figure 2) runs in O(n · depth(T ) + m) time. Depending
on the type of BSP tree used, we can maintain most but never all of the desired
properties. For example, if T is a k-d tree the cluster regions do not have balanced
aspect ratios. We next describe how to construct a BSP tree which satisfies all
of our goal criteria.
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3 The BAR Tree

Let us now discuss in detail the definition of our particular BSP-type decom-
position tree, the BAR tree, and its construction. We begin with some gen-
eral definitions. Let a line have a canonical slope if it forms an angle with the
x-axis that is 0◦, 90◦, or 45◦ (referred to as the x, y, z directions). Define a
canonical cut to be a cut with canonical slope, and a canonical hexagon to be a
hexagon whose sides have canonical slope and possibly degenerate length. The
aspect ratio of a canonical hexagon R is ar(R) = max(diami(R))/ min(diamj(R))
∀i, j ∈ {x, y, z}, where diamx(R) is the distance between the x-slopes of R region
in the Lm metric, and similarly for the others. Let the maximum aspect ratio be
a constant, say α = 6. A region R has balanced aspect ratio if ar(R) ≤ α and a
unbalanced aspect ratio otherwise.

For simplicity of arguments and notations, we will use the L∞ metric be-
cause all other metrics allow for “skinnier” rectangles to be produced. Using
this metric, the length ||z|| = ||z||∞ of a diagonal cut (with slope 45◦) is simply
the vertical (or horizontal) distance between its endpoints. Also, the distance
between two diagonal lines is one half of the vertical (or horizontal) distance
between them. Throughout the paper we often refer to regions with balanced
and unbalanced aspect ratios as fat and skinny regions, respectively.

Suppose we are given a point set S in the plane, |S| = n, and an initially
square region R containing S. We now introduce the BAR tree data structure,
which divides R into cells such that the following properties are guaranteed:

– Every cell is convex.
– Every cell has balanced aspect ratio.
– Every cell has no more than a constant number of points.
– The tree has O(n) nodes.
– The depth of the tree is O(log n).

The structure is straightforward and reminiscent of the original k-d tree.
Recall that in a k-d tree, every node i in the tree represents a cell region Ri and
an axis-parallel cut partitioning Ri into two subregions. The leaves of the tree
are cells with a constant number of points. In general, each cut divides the region
into two roughly equal halves, and thus the tree has O(log n) depth and uses
O(n) space. However, if the vast majority of the points are concentrated close
to any particular corner of the region, no constant number of axis-parallel cuts
can effectively reduce the size of the point set and maintain good aspect ratio.
This is a serious problem with many applications and with ours in particular.
As a result, an extensive amount of research has been dedicated to improving
and analyzing the average case performance of k-d trees and its derivatives often
concentrating on trying to maintain some form of balanced aspect ratio.

3.1 Constructing the BAR Tree

In this section we show how to construct a BAR tree T using the vertices of an
embedded graph G, an aspect ratio parameter α and a balance parameter β.



Balanced Aspect Ratio Trees and Their Use for Drawing Very Large Graphs 117

create BAR tree(R,α, β)
if an (α, β)-balanced one-cut l, exists in R

(R1, R2)← l(R)
else let s be an α-balanced two-cut in R

(R1, R2)← s(R)
let s′ be an (α, β)-balanced one-cut in R1

(R1, R3)← s′(R1)
recurse on Ri

Fig. 3. Creating the BAR tree.

Before we proceed any further with proving the existence of the necessary one-
and two-cuts, we must first formally define these cuts.

Definition 1. Let R be a convex region with aspect ratio α or less and n points
inside it and let β be the balance parameter. Define a one-cut to be a canonical
cut which divides R into two subregions R1 and R2 such that for i = 1, 2:

1. Ri contains no more than βn points.
2. Ri has aspect ratio α or less.

We say that a region R is one-cuttable if it has balanced aspect ratio and
there exists a one-cut for R.

Definition 2. Let R be a convex region with aspect ratio α or less and n points
inside it, and let β be the balance parameter. Define a two-cut to be a canonical
cut, s, which divides R into two subregions R1 and R2 such that:

1. R1 contains no less than βn points.
2. R2 has aspect ratio α or less.
3. R1 is one-cuttable (call that cut s′).

In other words, the sequence of two cuts, s and s′, results in three regions
each with balanced aspect ratio and each containing no more than βn points. A
region R is two-cuttable if it has balanced aspect raion and there exists a two-cut
for R.

We are now ready to give the pseudo-code for the construction of a BAR
tree (see Figure 3). Here we use the notation (R1, R2)← l(R) as a shorthand for
cutting the region R with a cut l which results in subregions R1 and R2. Given α
and β, a cut is α-balanced if the subregions produced have aspect ratio less than
or equal to α. Similarly, a cut is β-balanced if the subregions produced have less
than or equal to a β fraction of the points in the original region. Finaly, a cut is
(α, β)-balanced if satisfies both conditions.
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Fig. 4. The labels on the sides of a general canonical hexagon and the maximizing cuts
in the respective directions.

3.2 Two-Cut Existence Theorem

Here we consider the correctness and performance our algorithm for constructing
a BAR tree. In the creation of the BAR tree we rely on the existence of either
a one-cut or a two-cut. Recall that we only make canonical cuts (cuts with x-
angle 0◦, 90◦, 45◦, referred to as the x, y, z directional cuts of “canonical” slope).
Thus the regions we create are canonical hexagons. We state the following trivial
lemmas and postpone the detailed proofs for the final version of the paper.

Lemma 1. Given a canonical hexagon R with balanced aspect ratio, consider
a line l with canonical slope and coincident to a (degenerate) side of R. Let’s
sweep l upwards (inside R) until the region above l, P , has either maximum
aspect ratio or is empty. Call the region P maximized in the direction of l and
the defining cut, l, a maximal-cut. If P is not empty and we continue sweeping,
the region above l will have an unbalanced aspect ratio until it becomes empty.

Corollary 1 If the region P is maximized in the direction of l, ar(P ) = α and
min(diamx(P ), diamy(P ), diamz(P )) = diaml(P ).

Lemma 2. If there exists a continuum of canonical cuts completely covering a
region, R, in which each cut always yields two subregions of balanced aspect ratio,
there exists a one-cut in R, for β ≥ 2/3.

Here we are extending a well-known geometric result which states that we
can find a bisector in any direction. In our case, we have a continuum of cuts
(in no more than three directions) which “cover” the entire region, while always
maintaining balanced aspect ratios.

What are some specific regions guaranteed to be one-cuttable? We describe
two such regions that are needed for guaranteeing the existence of two-cuts.
Before we look at some specific regions, let us define the sides of the regions
we will be dealing with. Let xl, xr, yl, yr, zl, zr be the sides of a general canoni-
cal hexagon. Furthermore, let xl, xr, yl, yr, zl, zr be the cuts that maximize the
regions in the respective directions as shown in Figure 4.
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Fig. 5. CIT and CRT regions.

Lemma 3. Canonical isoceles trapezoidal (CIT) regions and canonical right-
angle trapezoidal (CRT) regions are one-cuttable regions (see Figure 5).

Proof. Let di = diami(R). We analyze each region individually.
(a) CIT regions: In a CIT with aspect ratio α define δ = ||zr|| = dx − ||xr ||.

From the shape of the region, we know that dx = dy and xr = yr. Recall
that in the L∞ metric, dz = xr/2 = yr/2. Since the object has aspect ratio α,
we have dx/dz = α and 2dx/xr = α, and so 2dx = α(dx − δ), which implies
that dx = αδ/(α − 2). We can sweep from xl and from yl covering the entire
region while maintaining balanced aspect ratio for α ≥ 4. Thus, such an isoceles
trapezoid has a one-cut.

(b) CRT regions: In a CRT with aspect ratio α, we have dx = αdy and so
xlα/(α − 1) = xr = dx = αdy, which implies dy = xl/(α − 1). We can sweep
from yl and from zr in the same manner for α ≥ 4. Thus, such a right-angled
trapezoid has a one-cut.

It is easy to construct examples where a region R cannot be divided into
roughly equal portions by a simple single cut (be it axis-alligned or diagonal-
type cut). However, the following theorem shows that using a two-cut followed
by a one-cut we can in fact divide the cells into convex subregions with the
desired properties (balanced aspect ratio and less than a constant fraction of the
region’s points). We omit the proof due to lack of space.

Theorem 1. (Two-Cut Existence Theorem) A canonical hexagon R which
does not have a one-cut must have a two-cut.

Theorem 2. Given a point set S in the plane, we can construct a BAR tree
representing a decomposition of the plane into regions in O(n log n) time.

Proof. Notice that a one-cut or a two-cut in any of the three canonical directions
can be found in O(n) time and that the depth of the tree is O(log n).
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VLGD(G, α, β)
embed(G)
T ← create BAR tree(G, α, β)
H ← create clustered graph(T, G)
display(H)

Fig. 6. Main algorithm.

4 Using a BAR Tree for Cluster Based Drawing

Let G = (V, E) be the graph that we want to draw. Once we obtain the em-
bedding of G, using whatever algorithm is most appropriate for the graph, we
associate with the graph the smallest bounding square, R, which we call G’s
cluster region. Using the embedding and its cluster region, we create the BAR
tree T , as described above. Each node u ∈ T maintains region(u), cluster(u),
and depth(u). Here cluster(u) is the subgraph of G which is properly con-
tained in region(u). Recall that the depth of the tree T is k = O(log n). In
our application of the tree structure to cluster-based graph drawing, we want
every leaf to be at the same depth. Therefore, we propagate any leaf not at the
maximum depth down the tree until the desired depth is reached. This is merely
conceptual and does not require any additional storage space or change in the
tree structure.

Using the tree T , we create the clustered graph C, which consists of k layers.
Each layer is an embedded subgraph of G along with the regions and clusters
obtained from T . The layers are connected with vertical edges which are simply
the edges in T . The other inputs to VLGD are the aspect ratio parameter α and
the balance parameter, β. Here, α determines the maximal aspect ratio of a
cluster region in C, and β determines the cluster balance, the ratio of a cluster’s
size to its parent’s. For a summary of the operations, see Figure 6.

Lemma 4. A call to VLGD(G, α, β) for α = 6, β = 2/3 results in 2/3-balanced
clustering with aspect ratio less than or equal to 6 and cluster depth O(log n).

Proof. By construction, the clusters are β-balanced and the cluster depth is
equivalent to the depth of T . For α ≥ 6 and β ≥ 2/3 the depth is O(log1/β n).

Theorem 3. For α ≥ 6, β ≥ 2/3, algorithm VLGD creates a 2/3-balanced clus-
tered graph C in O(n log n + m + D0(G)) time.

Proof. The proof follows directly from the construction of the algorithm and
previous statements about the running time of each component.

Once we obtain the clustered graph C, we can display it as a 3-dimensional
multi-layer graph representing each cluster by either the the convex hull of its
vertices or by its associated region in the BAR tree. Along with the clustered
graph C we can display a particular cluster with more details. Thus we provide
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G G G1 2

L

Fig. 7. Graph G with an inherently large cut. Any cut L which maintains an β-balance
between the clusters, where 1/2 ≤ β < 1, cuts O(n) edges.

the global structure using the clustered graph and the local detail using the
individual clusters.

4.1 Planar Graphs

When the graph G is planar, we are able to show a few special properties of our
clustered drawings.

Theorem 4. If G is planar, for α ≥ 6, β ≥ 2/3, algorithm VLGD creates a 2/3-
balanced clustered graph C in O(n log n) time. Moreover, C is embedded with
straight lines and no crossings on the n× n× k grid, where k = O(log n).

Proof. We begin with a planar grid embedding with straight-line edges [4, 8, 22]
and then the original layer, Gk, is planar. Since each successive layer is a proper
subgraph of the previous layer, it too must be planar and drawn without edge
crossings.

It is possible to have an edge cross a region that is does not belong to.
Moreover, it is possible to have an edge cross the convex hull of a cluster that it
does not belong to. If we represent a cluster by the convex hulls of its connected
components, however, there will be no such crossings. Thus, if we could guarantee
that each cluster is connected or has a small number of connected components,
the display of the graph can be improved even further. Alternatively, we can
redefine the clusters at each level to be the connect components of vertices
inside each cluster region of the BAR tree. With this definition of clusters we
could then use the algorithm of Eades and Feng [6] to produce a new clustered
embedding of the planar graph so as to have no edge or region crossings.

4.2 Extensions

Throughout this paper we do not discuss the cut sizes produced by our algorithm,
that is the number of edges intersected by a cut line in the BAR tree. In some
applications it is important that the number of such edges cut be as small as
possible. There exist graphs, however, that do not allow for “nice” cuts of small
size. Consider the star graph G on Figure 7. Any cut, which maintains a β-
balance between the two subgraphs it produces, intersects O(n) edges. If the
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Fig. 8. The graph in part (a) has no β-balanced line cut of size better than O(n) but it
does have a cycle cut (the dotted circle) of size O(1). We can transform the graph in (a)
to the graph in (b) by taking one of the faces crossed by the cycle as the outer face. Note
that in (b) the cycle cut has become a line and its size is O(1).

balance parameter is β = 1/2, the cut contains bn
2 c edges. As this example

shows, we cannot hope to guarantee cut sizes better than O(n). Still, if the
given graph has a small cut then we would like to find a small cut as well.

Minimizing the cut size violates two of our five criteria, namely, speed and
convexity. First of all, looking for the best β-balanced cut is a computationally
expensive operation, and while it can be done in polynomial time, it is not hard
to see that it cannot be done in linear time. In addition, the best β-balanced
cut may not preserve the convex cluster drawing property that VLGD maintains,
which may result in new edge crossings in our clustered graph.

Our algorithm does not guarantee that it will find the optimum β-balanced
cut but we can modify the BAR tree construction so that we find locally optimal
cuts. Here are some of the possible criteria that we can use in choosing among
the potential cuts: minimize cut size, minimize connected components resulting
from a given cut, minimize aspect ratio, maximize β-balance.

These criteria can also be combined in various ways to produce desired scoring
methods. In finding such optimal cuts, it is important to note that a one-cut,
if available, might not always be a better choice over a potential two-cut. Yet
again, a two-cut that minimizes the cut size may have no subsequent one-cut
that does not cut many more edges. Thus, it may be reasonable to go two levels
in evaluating possible scores instead of choosing greedily.

5 Conclusion and Open Problems

In this paper we present a straightforward and efficient algorithm for displaying
very large graphs. The VLGD algorithm optimizes cluster balance, cluster depth,
aspect ratio and convexity. Our algorithm does not rely on any specific graph
properties, although various properties can aide in performance, and produces
the clustered graph in a very efficient O(n log n + m + D0(G)) time.

The embedding of the cluster graph is determined in the very first step of
our algorithm. Unfortunately, it is possible that the initial embedding is not the
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best one. In fact, as shown on Figure 8, G may have a minimum β-balanced cut
of size O(n) or O(1), depending on the embedding. While it is still true that
some graphs may always have cuts of size O(n) (for example, the star graph,
Figure 7), we would like to minimize the cut whenever we can. It is an open
question whether it is possible to determine the optimal embedding, one that
yields the minimum β-balanced cuts.

Another open question is related to the separator theorems of Lipton and
Tarjan [15] and Miller [16]. Is it possible given a 2-connected planar graph G to
always produce O(

√
dn) β-balanced cuts, where d is its maximum degree, and n is

the number of vertices? If so, can we find an embedding for the resulting clustered
graph which preserves efficiency, cluster balance, cluster depth, convexity, and
guarantees good aspect ratio and straight-line drawings without crossings?
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