Maximum Weight Triangulation and Graph Drawing*

Cao An Wang¹, Francis Y. Chin², and Bo Ting Yang¹

Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X5

wang@garfield.cs.mun.ca

² Department of Computer Science, University of Hong Kong, Hong Kong chin@cs.hku.hk

Introduction

Triangulation of a set of points is a fundamental structure in computational geometry. According to the authors' best knowledge, there is not much research done on *maximum weight triangulation*, MaxWT. From the theoretical viewpoint, MaxWT and its counterpart, the minimum weight triangulation, attract equally interest. The graph drawings as MaxWT are investigated.

• The weight of a triangulation T(P) is given by

$$\omega(T(P)) = \sum_{\overline{p_i p_j} \epsilon T(P)} \omega(\overline{p_i p_j}),$$

where $\omega(\overline{p_ip_j})$ is the Euclidean length of line segment $\overline{p_ip_j}$.

• A maximum weight triangulation of P (MaxWT(P)) is defined as for all possible T(P), $\omega(MaxWT(P)) = max\{\omega(T(P))\}$.

Main Results

- (A) $O(n^2)$ time algorithm for MaxWT of an inscribed n-gon.
- (B) O(n) time algorithm for MaxWT of a regular n-gon.
- (C) $O(n^2)$ time 0.5-approximation algorithm for MaxWT of a general convex n-gon.
 - (D) Linear-time algorithm for maximum drawing of Caterpillar graphs.
- (E) Forbidden (non-maximum weight drawable) graphs on any convex point set.

(A) Inscribed Polygon Case

FACT 1: If P is a convex polygon, then each interior angle of any fly triangle of the MaxWT(P) must be no less than $\frac{\pi}{4}$.

FACT 2: If P is a convex polygon, then no interior angle of any fly triangle of MaxWT(P) is larger than $\frac{\pi}{2}$.

 $^{^{\}star}$ This work is supported by NSERC grant OPG0041629 and RGC grant HKU 541/96E.

S.H. Whitesides (Ed.): GD'98, LNCS 1547, pp. 460-461, 1998.

[©] Springer-Verlag Berlin Heidelberg 1998

FACT 3: If P is an inscribed polygon. Then MaxWT(P) cannot contain any fly triangle. That is, the internal edges of MaxWT(P) form a tree.

Recurrence Formula

• $W_{i,j}$ —The weight of convex subpolygon of the inscribed polygon P with vertics (i, i+1, ..., j) for $i, j \in [0, n]$.

$$W_{i,j} = \begin{cases} 0 & \text{if } j = (i+1)_{modulo.n}; \\ max\{W_{i,j-1}, W_{i+1,j}\} + \omega(\overline{ij}) & \text{otherwise} \end{cases}$$

• $O(n^2)$ time algorithm.

(B) Regular Polygon Case

- Any inner-spanning tree of a regular n-gon P is maximum and it together with the boundary edges of P form a MaxWT(P).
 - \bullet An inner-spanning tree of a regular n-gon P can be found in linear time.

(C) A 0.5-Approximation Algorithm for MaxWT(P)

- Let $\triangle abc$ be a fly triangle of MaxWT(P). The removal of a fly triangle $\triangle abc$ will divide P into three components, each associates with an edge of $\triangle abc$. $\triangle abc$ is called an ear-fly triangle if at most one of its three components contains other fly triangles.
 - An (n^2) time approximate algorithm which guarantees $\frac{\omega(ApT(P))}{\omega(MaxWT(P))} \geq \frac{1}{2}$.

(D) Maximum Weight Drawing of Caterpillar Graph

- caterpillar is a tree such that all internal nodes connect to at most 2 non-leaf nodes.
 - O(n) time algorithm.

(E) Forbidden Graphs for Maximum Weight Drawing

- A graph G is *outerplanar* if it has a planar embedding such that all its nodes lie on a single face; an outerplanar graph is *maximal* if no edge can be added to the planar embedding without crossing.
- If G(V, E) is a maximal outerplanar graph containing a simple cycle C with four nonconsecutive nodes which form two triangles sharing a common edge, then G cannot have a maximum weight drawing.

Concluding Remarks

- Does MaxWT(P) can be found in $o(n^3)$ time?
- Does every maxmal planar graph admit a maximum weight drawing?