
Edge Labeling in the Graph Layout Toolkit?

Uğur Doğrusöz1,2, Konstantinos G. Kakoulis1,3, Brendan Madden1, and
Ioannis G. Tollis3

1 Tom Sawyer Software, 804 Hearst Avenue
Berkeley, CA 94710

{ugur,kostas,bmadden}@tomsawyer.com
2 Dept. of Computer Engineering and Information Science

Bilkent University, Ankara 06533, Turkey
ugur@cs.bilkent.edu.tr

3 Dept. of Computer Science, University of Texas at Dallas
Richardson, TX 75083-0688

{kostant,tollis}@utdallas.edu

Abstract. The Graph Layout Toolkit is a family of portable graph draw-
ing and layout libraries designed for integration into graphical user inter-
face application programs. When visualizing graphs, it becomes essential
to communicate the meaning of each graphical feature via text labels. We
present the interface and the basic engine of the Graph Layout Toolkit
that produce a high quality automated placement of labels for edges of
a graph.

1 Introduction

Graph layout is the automatic positioning of the nodes and edges of a graph
in order to produce an aesthetically pleasing drawing that is easy to compre-
hend. Graph drawings can be used to display complex information that can be
modeled as objects and connections between the objects. In many diagramming
applications, it is essential that a drawing be labeled. Labels assist in conveying
information or clarifying the meaning of complex structures. The problem of
positioning labels corresponding to graphical objects of drawings is called auto-
matic label placement. This is very important for visualization tools in numerous
areas such as project management, software development, database design, and
network management. We present our approach to the above problem as imple-
mented in the Graph Layout Toolkit.

Many graph layout and editing systems have been developed in the past.
Please refer to [1] for an overview of such systems. One essential aspect that
has not been addressed in any previous system, is the capability to support the
automatic placement of labels related to the edges of a drawing.

The Graph Layout Toolkit (GLT) [5,6] is a family of graph layout libraries
that facilitate easy integration with graphical user interface programs for the
? Research supported in part by NIST, Advanced Technology Program grant number

70NANB5H1162. A patent for these and related results is pending.

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 356–363, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



Edge Labeling in the Graph Layout Toolkit 357

development of applications that require diagramming visual interfaces. Graph
layout comes in different styles, each having particular features and benefits
suited for different industries and applications. The GLT offers four different
layout libraries: Circular , Hierarchical , Orthogonal , and Symmetric.

Just as graph layout is a time consuming and monotonous task, so is the
positioning of labels. The automatic placement of edge labels falls into the class
of NP-Hard problems [2]. Recent advances offer efficient solutions to the problem.
Each library in the GLT is equipped with fast algorithms for the automatic
placement of edge labels which are based on [3]. In this paper we present some
of the challenges of incorporating a labeling interface into a graph layout system,
and the way we chose to resolve these in the framework of the Graph Layout
Toolkit.

2 Objectives

The labeling of edges is aimed at communicating edge attributes in the most
convenient way. This is only possible when labels are positioned in the most
appropriate places.

Good label placement aids in conveying the information that labels represent
and enhances the aesthetics of the drawing. It is difficult to quantify all the char-
acteristics of a good label placement since they reflect human visual perception,
intuition, tradition and/or experience. However, one can follow some basic rules:

Elimination of ambiguity: A label which is associated with exactly one
edge, must not overlap any other edge or any node. Otherwise it is not clear
which object the label describes.
Clarity: Relationships between labels and edges should be easily identified
without cluttering the drawing. Thus, labels are positioned close to, but not
overlapping edges if possible.
Flexibility: Placement constraints on the labels should be allowed. For in-
stance, in some applications it is required that a label is associated with one
of the endpoints, or the middle, of an edge.

It is important to emphasize here that the user must be able to customize the
rules of label placement quality to meet specific needs. For example, the user
must be able to specify that the preferred position for an edge label is closer to
the source or target node of the associated edge. Building a tool that supports
automatic labeling presents two main challenges:

– Devise efficient algorithms that produce high quality label placement com-
pared with manual placement.

– Build a labeling interface that is flexible enough to accommodate the specific
requests for good placement for a variety of applications.

The next section details the framework and the interface built to integrate the la-
beling algorithm into the GLT. After that, the labeling algorithms are described.
Figure 1 shows an example of GLT’s edge labeling facility.



358 Uğur Doğrusöz et al.

LabelLabel

Label Label

Label
Label

Label

Label

Label

Label

Label LabelLabel
LabelLabel

LabelLabel Label
Label LabelLabel

Label Label

Label Label
LabelLabel

Label Label

Label
Label LabelLabel

Label Label

Label

Label

LabelLabel

Label

Label

Label Label

Label

Fig. 1. Sample drawing with edge labels produced by the GLT.

3 Interface

Each edge label is represented by a rectangle in the GLT. A label’s position,
where its reference point should be placed, is determined by a percentage distance
from the source of its owner edge and an offset from this point on the edge. These
two values are kept constant over changes of the interactive routing of the edge
unless the user explicitly changes either of these values (see Figure 2). When
a label is repositioned interactively (e.g., dragged with the mouse) these two
values are recomputed based on the point on the owner edge that is closest to
the label’s new position.

The automatic label placement can be performed either during layout or
independently, on the current drawing of a graph. In the latter case, the posi-
tions of other graph objects are preserved while labels are repositioned by the
algorithm.

GLT’s tailoring options for labeling are quite flexible and allow the users to
customize the system to their specific needs. A user can specify the preferred
position to place a label with respect to the associated edge by specifying a
distinct style, association, and orientation as defined below:

Style: The style of a label specifies whether the label should be placed above
or below, for horizontal edges, or to the left or right, for non-horizontal edges.
Figure 3 shows examples.



Edge Labeling in the Graph Layout Toolkit 359

Source

Target

label A

label B

label C

Source

Target

label A

label B

label C

Fig. 2. Notice how the relative positions of labels with respect to edges are
preserved as the routing of an edge changes since the percentage distance from
source and offset values of the labels are fixed.

Association: The association of a label specifies whether the label should
be placed towards the top, center, or bottom of its owner edge. In other
words, it associates the label with the source, center, or target of the edge,
respectively. See Figure 4 for an example.
Orientation: The style and association of a label might have different mean-
ings depending upon the orientation chosen. One can use either a global ori-
entation of the drawing (based on the y-coordinates of the endpoints of the
edge), or an edge orientation (based on the direction of each edge).

In addition, there are a number of global tailoring options that can be used
to fine tune the algorithm. When drawings are very dense or there is a large
number of oversized labels, the default label assignment produced by the labeling
system might not be satisfactory. In these instances, the user can fine tune
the algorithm either by requiring the labeling algorithm to spend more time in
the post-processing step as discussed later, or by relaxing the labeling quality
constraints by allowing overlaps. For the former case, a label positioning quality
parameter ranging from 1 to 10 sets the intensity of the algorithm, which is
mostly related to the post-processing step. A higher integer value results in
more accurate positioning of labels under certain circumstances but it takes
longer to execute. For the latter case, the allowed overlap percentage parameter
determines if the labels are allowed to overlap with one another and with other
graph objects. When set to 10 percent, for example, each label’s dimensions are
treated as if they were 10 percent smaller, which increases the overall success
of the algorithm at a cost of up to 10 percent overlap. Figure 5 illustrates this
tailoring option with an example.



360 Uğur Doğrusöz et al.

Fig. 3. Label style can be set such that the label is placed to the left (left) or
right (right) of its owner edge.

4 Algorithms

The algorithms used in the labeling engine of the Graph Layout Toolkit are based
on the techniques presented in [3]. First, a number of potential label solutions for
each edge is carefully selected. Then, an assignment of labels to available label
solutions is performed by solving a variant of the matching problem. Specifically,
first, the label positions are grouped such that each label position, that is part of
a group, overlaps any other label position that belongs to the same group. This
results in mutually disjoint sets of label positions. Next, edges are matched to
label positions by allowing at most one label position from each group to be part
of a label assignment. Lastly, a post-processing step is performed if necessary.
Labels are assigned to edges by locally shifting already assigned labels followed
by a limited number of backtracking operations.

The algorithm tries to place labels to respect the tailoring options (preferred
position). If it does not succeed, then it tries to find a place that is as close to the
preferred position as possible (acceptable position). In the final label assignment
produced by the algorithm, each label will not overlap other labels or nodes or
edges other than its associated edge.

The labeling techniques presented in [3], however, are not suitable for orthog-
onal drawings because such drawings have many horizontal edges. To overcome
this deficiency the labeling techniques have been extended to broaden the initial
set of label positions for horizontal edges. Figure 6 shows an example.



Edge Labeling in the Graph Layout Toolkit 361

TL TR

CL CR

BL2 BR2

BL BR

TA

BB

Fig. 4. An illustration detailing how label association affects its placement.

Fig. 5. A circular drawing where labels are allowed to overlap other graph objects
to a certain extent.



362 Uğur Doğrusöz et al.

Graph Layout Toolkit Version 2.4
Tom Sawyer Software

2 4 8

5 9 12

1 13 15 14

3 7 11

6 10

2_to_4 4_to_8

1_to_2 2_to_5 4_to_9 8_to_12

5_to_9 9_to_12

9_to_13 12_to_15

13_to_15 14_to_15

1_to_3 10_to_13 11_to_14

3_to_7 7_to_11 10_to_14

3_to_6 7_to_10

6_to_10

Fig. 6. An orthogonal drawing with edge labels which contains many horizontal
edge segments.

The algorithms have further been extended to support placement of more
than one label per edge. Multiple labels per edge are needed not only when
edges are very long and repetition is necessary, but also when more than one
attribute per edge must be displayed (see Figure 7 as an example). An iterative
approach has been applied to solve the problem of assigning multiple labels to
each edge of a drawing. At each iteration, one label is assigned to each edge of
the drawing. Each successive round respects the previously placed labels and
reduces the solution space accordingly. For more details of the algorithms, refer
to [4].

5 Conclusion

The Graph Layout Toolkit provides generic algorithms for automatic placement
of edge labels. The interface to these algorithms comes with per label and per
graph tailoring options that not only provide input to the algorithms about spe-
cific constraints on the placement of labels, but also to adjust several parameters
that let the user fine tune these algorithms.

One natural extension to the Graph Layout Toolkit’s labeling support is
integration of algorithms that can handle not only edge labels but also node
and even graph labels. Another one of the future research goals on labeling is to
design efficient interactive and incremental labeling algorithms for dynamically
changing graphs.



Edge Labeling in the Graph Layout Toolkit 363

Fig. 7. A U.S. map with airline routes where labels are used to convey fare and
distance information.

References

1. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing
graphs: an annotated bibliography. Comput. Geom. Theory Appl., 4:235–282, 1994.

2. K. G. Kakoulis and I. G. Tollis. On the Edge Label Placement Problem. In
S. North, editor, Graph Drawing (Proc. GD ’96), volume 1190 of Lecture Notes
in Computer Science, pages 241–256. Springer-Verlag, 1997.

3. K. G. Kakoulis and I. G. Tollis. An Algorithm for Labeling Edges of Hierarchical
Drawings. In G. Di Battista, editor, Graph Drawing (Proc. GD ’97), volume 1353
of Lecture Notes in Computer Science, pages 169–180. Springer-Verlag, 1998.

4. K. G. Kakoulis and I. G. Tollis. On the Multiple Label Placement Problem. To
appear in the Proc. of the 10th Canadian Conference on Computational Geometry,
August 1998.

5. Tom Sawyer Software. Graph Layout Toolkit Reference Manual. Berkeley, CA,
1992-1998.

6. Tom Sawyer Software. Graph Layout Toolkit User’s Guide. Berkeley, CA, 1992-
1998.


	Introduction
	Objectives
	Interface
	Algorithms
	Conclusion
	References

