
Drawing Algorithms for Series-Parallel Digraphs

in Two and Three Dimensions?

Seok-Hee Hong1, Peter Eades2, Aaron Quigley2, and Sang-Ho Lee1

1 Department of Computer Science and Engineering,
Ewha Womans University, Korea.
{shhong, shlee}@cs.ewha.ac.kr

2 Department of Computer Science and Software Engineering,
University of Newcastle, Australia.

{eades, aquigley}@cs.newcastle.edu.au

1 Introduction

Series parallel digraphs are one of the most common types of graphs: they appear
in flow diagrams, dependency charts, and in PERT networks. Algorithms for
drawing series parallel digraphs have appeared in [2,3].

In this paper we describe algorithms which can draw series parallel digraphs
in two and three dimensions. Sample drawings are in Figure 1. Specific variations
of the algorithms can be used to obtain symmetric drawings, or drawings in which
the “footprint” (that is, the projection in the xy plane) is minimized.

This extended abstract is organized as follows. In the next section, we sum-
marize the necessary background for series parallel digraphs. Then concepts for
symmetric drawings, especially with respect to series parallel digraphs, are pre-
sented in Section 3. The two dimensional algorithm is given in Section 4; building
on the two dimensional algorithm, the three dimensional algorithm is given in
Section 5.

2 Series Parallel Digraphs

First we review some of the fundamental notions for series parallel digraphs. A
digraph consisting of two vertices u and v joined by a single edge is a series
parallel digraph, and if G1 and G2 are series parallel digraphs, then so are the
digraphs constructed by each of the following operations:

– series composition: identify the sink of G1 with the source of G2.
– parallel composition: identify the source of G1 with the source of G2 and the

sink of G1 with the sink of G2.
? This is an extended abstract. This research has been supported by an Aus-

tralian Research Council Grant, KOSEF No.971-0907-045-1, and the SCARE
project at the University of Limerick. Note that the three dimensional draw-
ings in this paper are static. Animated drawings are available from A. Quigley.
http://www.cs.newcastle.edu.au/∼aquigley. This paper was partially written
when the first author was visiting the University of Newcastle.

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 198–209, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Drawing Algorithms for Series-Parallel Digraphs 199

Fig. 1. Drawings output by the algorithms described in this paper.

The subgraphs G1 and G2 are components of G. Series parallel digraphs may
be represented as decomposition trees [13], such as in Figure 2(a). Leaf nodes
in the tree represent edges in the series parallel digraph, and internal nodes are
labeled S or P to represent series or parallel compositions.

Because parallel composition is commutative and both series and parallel
compositions are associative, there may be more than one binary decomposition
tree for a series parallel digraph. This means that an algorithm based on the
binary decomposition tree cannot fully display symmetries. To overcome this we
construct the structure tree (sometimes called a canonical decomposition tree) in
which the same composition operations are placed on the same level. Figure 2(b)
shows the structure tree corresponding to Figure 2(a). The structure tree can be
computed in linear time using the algorithm of Valdes et al. [13,14] followed by
a simple depth-first-search restructuring operation. The structure tree is unique
up to the ordering of siblings.

The ∆-algorithm [2,3] draws series parallel digraphs. The algorithm produces
grid drawings with straight-line edges. It has been claimed that this algorithm
can be varied to display symmetries. However, at best, the ∆-algorithm displays a
subset of the set of possible symmetries. The method in Section 4 below displays
all possible symmetries.

3 Symmetric Drawings in Two Dimensions

To ensure that all possible symmetries are displayed, it is important to use a
rigorous model for the intuitive concept of symmetry display. In this section we
describe such a model, derived from those introduced by Manning [8,9,10] and
Lin [6].

Symmetries of a graph drawing correspond to automorphisms of the graph.
However, some automorphisms cannot be displayed as symmetries of any graph
layout. Further, it is possible to have two automorphisms, each of which can be

200 Seok-Hee Hong et al.

displayed, but for which there is no drawing which displays both. See [4,6] for
examples. For these reasons, we define “geometric automorphism group” in the
following section, and indicate how this notion relates to symmetry groups of
graph drawings.

S S

S S S

P

P

(a) Decomposition tree

P

S P

SS

P

S S

S

(b) Structure tree

Fig. 2. (a) A binary decomposition tree, and (b) the equivalent structure tree.

Drawing Algorithms for Series-Parallel Digraphs 201

3.1 Geometric Automorphisms of Graphs and Symmetries of
Graph Drawings

We need some of the terminology of permutation groups; for more details see [15].
We denote the identity permutation by I. The group generated by a1, a2, . . . , ak

is denoted by < a1, a2, . . . , ak >. If a permutation p acting on a set V has a fixed
element v ∈ V , that is, p(v) = v, then p induces a permutation pv on V −{v}. A
permutation group P is semiregular if each non-identity permutation in P does
not have a fixed element.

A permutation p on V is a rotational permutation if either < p > or < pv >
(for some v ∈ V) is semiregular, and | < p > | > 1. Note that a rotational
permutation has at most one fixed element. A permutation p on V is an axial
permutation if p2 = I and p is a non-identity permutation. A permutation
is a geometric permutation if it is either an axial permutation or a rotational
permutation.

A permutation group P on V is geometric if it is one of the following types:

1. P =< q > where q is an axial permutation; or
2. P =< p > where p is a rotational permutation; or
3. P =< p, q > such that:

(a) p is a rotational permutation and q is an axial permutation, and
(b) < p > ∩ < q >= {I}, and
(c) qp = p−1q.

A subgroup P of the automorphism group of a graph G is geometric if P is a
geometric permutation group on V .

Next we consider graph drawings. The symmetries of a bounded set of points
in the plane (such as a two dimensional graph drawing) form a group called
the symmetry group of the set. A symmetry α of a drawing D of a graph G
induces an automorphism p of G if the restriction of α to the points representing
vertices of G is p. A drawing D of a graph G displays a geometric automorphism
p of G if there is symmetry α of D which induces p; D displays a geometric
automorphism group P of a G if D displays every element of P . It is easy to
see that the symmetry group of a graph drawing induces a geometric subgroup
of the automorphism group of the graph. The converse was proved by Lin [6]
and Manning [10]: for every geometric automorphism group P of a graph G,
there is a drawing D of G which displays P . In Section 4 we show that for every
geometric automorphism group P of a series parallel digraph G, there is a planar
drawing D of G, of the type illustrated in Figure 1, which displays P . To apply
this result, however, we must compute geometric automorphism groups of series
parallel digraphs. In general, the problem of finding a geometric automorphism
of a graph is NP-hard [7,10]; it may be strictly harder than the problem of
finding the automorphisms of graphs in general (which is merely isomorphism
hard [11]). The next section shows that for the case of series-parallel digraphs,
finding geometric automorphisms is not difficult.

202 Seok-Hee Hong et al.

3.2 Geometric Automorphisms of Series Parallel Digraphs

In this section we sketch an algorithm which finds geometric automorphisms
for series parallel digraphs. The geometric automorphism group obtained in this
way is used explicitly to draw the graph symmetrically.

For the purposes of this paper, an automorphism of a digraph either main-
tains the direction of all directed edges, or reverses all directed edges. Thus such
an automorphism maps a source to either a sink or a source; further, it maps
cut vertices to cut vertices. This leads directly to the next lemma.

Lemma 1. The automorphism group of a series parallel digraph contains at
most two axial geometric automorphisms and at most one rotational geometric
automorphism (which must have degree 2.)

Proof. Omitted.

An important consequence of this Lemma is that for series parallel graphs,
there is a single maximal geometric subgroup of the automorphism group. Fur-
ther, we can derive a method for finding all geometric automorphisms of a series
parallel digraph. Roughly speaking, the method proceeds as follows.

1. We construct the structure tree [13,14].
2. We label the structure tree. The labeling is canonical, in the sense that

isomorphic blocks have equal labels. The labeling can be computed in linear
time by adapting the tree isomorphism algorithm [1,13]. This labeling step
is the critical part of the algorithm.

3. We check for the existence of each of the geometric automorphisms men-
tioned in Lemma 1.

The complete algorithm can be implemented in linear time; details will appear
in the full version of this paper.

4 The Two Dimensional Drawing Algorithm

First we describe a simple procedure for giving a visibility representation [12] of a
series parallel digraph G. In the representation that we construct, the horizontal
line segment for the source is a vertical translation of the horizontal line segment
of the sink.

For a graph which consists of single edge, such a representation is simple.
Suppose that D1 and D2 are visibility representations of series parallel digraphs
G1 and G2 respectively. If G is a series composition of G1 and G2, then we can
construct a representation D of G by “stretching” the narrower of D1 and D2

and identifying the source of one with the sink of the other; see Figure 3(a). If G
is a parallel composition of G1 and G2, then we can construct a representation
D of G by “stretching” the shorter of D1 and D2 and identifying their sources
and sinks; see Figure 3(b).

Two traversals of the structure tree can be used to compute the visibility
representation. One traversal computes the size of the enclosing rectangle for

Drawing Algorithms for Series-Parallel Digraphs 203

(b)

(a)

D
1

D
2

composition
Parallel
composition

Series

Fig. 3. Constructing visibility representations of series parallel digraphs.

each component, the next computes the route for each edge. This works in linear
time. The details will appear in the full version of this paper.

This visibility representation can be transformed to a quasi-orthogonal draw-
ing1 in a simple way; Figure 4 shows a quasi-orthogonal drawing obtained from
Figure 3(b). Note that the source and the sink share a vertical line; this is
important in Section 5 for drawing in three dimensions.

Fig. 4. Quasi-orthogonal drawing of a series parallel digraph.

1 Strictly speaking, this is not an orthogonal drawing, since the edges overlap. The
precise definition of this class of drawing is involved and we will omit it in this
extended abstract.

204 Seok-Hee Hong et al.

Our algorithm places parallel components across the page in the same order
that they appear in the structure tree. To display symmetry, we need to order the
children of each node corresponding to a parallel composition in the structure
tree before applying the drawing algorithm. For example, Figure 5(a) has no
symmetry; Figure 5(b) is a symmetric drawing of the same graph. The difference
between Figure 5(a) and (b) is the left-right order of components of parallel
compositions. It can be shown that the order can be chosen to display the any
geometric automorphism group of a series parallel digraph.

(a) (b)

Fig. 5. Symmetric and asymmetric drawings of a series parallel digraph.

Theorem 1. Then there is a linear time algorithm which constructs quasi-
orthogonal drawings of series parallel digraphs such that the output is planar,
and displays every geometric automorphism of the input.

Proof. The algorithm uses the same labeling technique used for computing geo-
metric automorphisms. Details are omitted in this extended abstract.

The drawings obtained by this algorithm are not grid drawings. However,
they do have good area bounds, in the sense that if the minimum distance
between a pair of vertices is one, then the drawing is O(n)×O(n). It is possible to
vary the algorithm to give straight-line drawings. However, note that a straight-
line drawing may require exponential area (see [2]).

5 Drawing Series Parallel Digraphs in Three Dimensions

In this section we present an algorithm for producing three dimensional drawings
of series parallel digraphs. The drawings improve on the resolution of the two
dimensional drawings. Note that as long as we keep to the rule that the minimum

Drawing Algorithms for Series-Parallel Digraphs 205

distance between a pair of vertices is one, improvements to resolution can be
obtained by reducing the extent of the drawing in each dimension.

Consider the drawing in Figure 6, obtained from the algorithm described
in the previous section. Suppose that this drawing is in the xz plane within a

Fig. 6. Two dimensional drawing, with a rotation indicated.

three dimensional space, with the z axis vertical on the page. For each parallel
node ν in the structure tree, the children of ν are aligned with the x axis. Note
the source and sink of each component share a vertical line. We can rotate a
component about this line so that it aligns with the y axis; this is illustrated in
Figure 7.

The rotation is the basic operation used to improve resolution. For each
parallel node ν in the structure tree, we can choose to align the children of ν
either in the x direction or in the y direction. Such a choice is illustrated in
Figure 8. The result of these choices is illustrated in Figure 9.

The z extent of the three dimensional drawing is fixed by the height of the
structure tree; we concentrate on reducing the x and y extents. The footprint
of a three dimensional graph drawing is the projection of the drawing in the xy
plane. To improve the resolution, we need to reduce the size of the footprint. If
the minimum enclosing rectangle R of the footprint has dimensions X ×Y , then
the size of the footprint is max(X, Y).

In fact, we can find a choice of x or y alignment for each parallel composition
in such a way that it minimizes the size of the footprint. We use a dynamic
programming approach, along the lines of methods for drawing two dimensional
“hv-trees” [5].

206 Seok-Hee Hong et al.

Fig. 7. Three dimensional drawing obtained by executing the rotation indicated
in Figure 6.

y

y

x

x

x

y y

Fig. 8. Choices of x or y alignment for nodes in the structure tree.

We say that a layout is minimal if its footprint has size X × Y , and there
is no layout with footprint of size X ′ × Y ′ where X ′ ≤ X , Y ′ ≤ Y , and
(X ′, Y ′) 6= (X, Y). A layout with a (globally) minimum size footprint is among
those of minimal footprint. There may be many minimal layouts of a series par-
allel digraph. The algorithm computes all minimal layouts, and chooses one with
a minimum size footprint. The algorithm proceeds from the leaves of the struc-
ture tree to the root: at each internal node it computes the minimal layouts of
that component.

The footprint of a leaf in the structure tree (that is, an edge in the graph)
has dimensions 1× 1. Minimal layouts for a component represented by a node ν
in the structure tree can be computed from minimal layouts of the components
represented by the children of ν, as follows.

Drawing Algorithms for Series-Parallel Digraphs 207

Fig. 9. The three dimensional drawing resulting from the choices in Figure 8.

Suppose that ν is a node in the structure tree with children µ1, µ2, . . . , µk,
and the footprint of µi has dimensions Xi × Yi for 1 ≤ i ≤ k.

First suppose that ν represents a series composition. Then the footprint for
ν has size X × Y where

X = max(X1, X2, . . . , Xk),
Y = max(Y1, Y2, . . . , Yk).

This is illustrated in Figure 10. As mentioned previously, each component may
have many minimal layouts. We store all the minimal layouts for each child µi

of ν as a list
Lµi =

(
(X1

i , Y 1
i), (X2

i , Y 2
i), . . . , (Xmi

i , Y mi

i)
)

Xa

Ya

Xb

XbXa

Y b

Ya Y b

composition of a and b

Footprint for the series

Footprint for a

Footprint for b

max(,)

max(,)

Fig. 10. The footprint of a series composition.

208 Seok-Hee Hong et al.

of pairs such that Lµi is decreasing in X coordinate. Note that since each element
is minimal, Lµi is increasing in Y coordinate. A list Lµ of minimal layouts for ν
can be computed from Lµ1 , Lµ2 , . . . , Lµk

using a kind of merge algorithm below.
Here (Cx, Cy) is a candidate for a minimal footprint layout for ν, and pi is the
pointer to the current element of list Lµi .

1. Choose ` such that X1
` is maximized; (Cx, Cy) = (X1

` , Y 1
`).

2. Lµ = ((Cx, Cy)).
3. For i = 1, 2, . . . , k, pi = 1.
4. p` = 2.
5. While pi ≤ mi for each i:

(a) Cx = max (Xp1 , Xp2 , . . . , Xpk).
(b) Cy = max (Y p1 , Y p2 , . . . , Y pk).
(c) Suppose that (LASTx, LASTy) was the last element appended to Lν.

If LASTx < Cx and LASTy > Cy

then append (Cx, Cy) to Lν ;
else replace (LASTx, LASTy) by (Cx, Cy) in Lµi .

(d) Choose ` such that Xp`

` is maximized.
(e) p` = p` + 1.

Step 5(c) ensures that the elements of Lν are minimal. The choice of ` at step
5(d) can be done using an indexed priority queue; this has amortised constant
time per access. Thus the algorithm takes time proportional to the sum of the
lengths of the input lists.

In the case that ν represents a parallel composition, we need to choose
whether to align the children in the x direction or in the y direction. An x
alignment for ν has dimensions X × Y where

X = X1 + X2 + · · · + Xk,

Y = max(Y1, Y2, . . . , Yk),

and a y alignment for ν has dimensions X × Y where

X = max(X1, X2, . . . , Xk),
Y = Y1 + Y2 + · · · + Yk.

One can use these equations with merge operations in a similar but more com-
plex way to the method for a series composition (see [5]) to compute all minimal
footprint layouts for the graph. The details are omitted for this extended ab-
stract.

The complete algorithm works in time O(n2).

Theorem 2. There is an algorithm which computes a minimum size footprint
layout of a series parallel digraph in time O(n2).

Proof. Omitted.

Drawing Algorithms for Series-Parallel Digraphs 209

6 Conclusion

In this paper we have introduced two algorithms for drawing series parallel
digraphs. One constructs two dimensional drawings which display symmetries,
the other constructs three dimensional drawings with a footprint of minimum
size.

Future work will include combinations of these two algorithms: we would like
to display as much symmetry as possible in a three dimensional drawing of small
footprint.

References

1. A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, 1974.

2. P. Bertolazzi, R.F. Cohen, G. D. Battista, R. Tamassia and I. G. Tollis, How to
Draw a Series-Parallel Digraph, International Journal of Computational Geometry
and Applications, 4 (4), pp 385-402, 1994.

3. R.F. Cohen, G. D. Battista, R. Tamassia and I. G. Tollis, Dynamic Graph Draw-
ing:Trees, Series-Parallel Digraphs, and Planar st-Digraphs, SIAM Journal on
Computing, 24 (5), pp 970-1001, 1995.

4. P. Eades and X. Lin, Spring Algorithms and Symmetry, Computing and Combi-
natorics, Springer Lecture Notes in Computer Science 1276, (Ed. Jiang and Lee),
202 –211.

5. P. Eades, T. Lin and X. Lin, Minimum Size h-v Drawings, Advanced Visual Inter-
faces (Proceedings of AVI 92, Rome, July 1992), World Scientific Series in Com-
puter Science 36, pp. 386 - 394.

6. X. Lin, Analysis of Algorithms for Drawing Graphs, PhD thesis, University of
Queensland 1992.

7. A. Lubiw, Some NP-Complete Problems similar to Graph Isomorphism, SIAM
Journal on Computing 10(1):11-21, 1981.

8. J. Manning and M. J. Atallah, Fast Detection and Display of Symmetry in Trees,
Congressus Numerantium 64, pp. 159-169, 1988.

9. J. Manning and M. J. Atallah, Fast Detection and Display of Symmetry in Outer-
planar Graphs, Discrete Applied Mathematics 39, pp. 13-35, 1992.

10. J. Manning, Geometric Symmetry in Graphs, PhD Thesis, Purdue University 1990.
11. R.A. Mathon, A Note on Graph Isomorphism Counting Problem, Information

Processing Letters 8, 1979, pp. 131-132.
12. R. Tamassia and I. G. Tollis, A unified approach to visibility representations of

planar graphs, Discr. and Comp. Geometry 1 (1986), pp. 321-341.
13. J. Valdes, R. Tarjan and E. Lawler, The Recognition of Series-Parallel Digraphs,

SIAM Journal on Computing 11(2), pp. 298-313, 1982.
14. J. Valdes, Parsing Flowchart and Series-Parallel Graphs, Technical Report STAN-

CS-78-682, Computer Science Department, Stanford University, 1978.
15. H. Wielandt, Finite permutation groups, Academic Press, 1964.

	Introduction
	Series Parallel Digraphs
	Symmetric Drawings in Two Dimensions
	Geometric Automorphisms of Graphs and Symmetries of Graph Drawings
	Geometric Automorphisms of Series Parallel Digraphs

	The Two Dimensional Drawing Algorithm
	Drawing Series Parallel Digraphs in Three Dimensions
	Conclusion
	References

