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Abstract. We propose and study a new technique for aggregating an
ensemble of bootstrapped classifiers. In this method we seek a linear
combination of the base-classifiers such that the weights are optimized
to reduce variance. Minimum variance combinations are computed us-
ing quadratic programming. This optimization technique is borrowed
from Mathematical Finance where it is called Markowitz Mean-Variance
Portfolio Optimization. We test the new method on a number of binary
classification problems from the UCI repository using a Support Vector
Machine (SVM) as the base-classifier learning algorithm. Our results in-
dicate that the proposed technique can consistently outperform Bagging
and can dramatically improve the SVM performance even in cases where
the Bagging fails to improve the base-classifier.

1 Introduction

This paper is concerned with Bagging (Bootstrap Aggregation) of classifiers.
Bagging works by applying a learning algorithm on a number of bootstrap sam-
ples of the training set. Each of these applications yields a classifier. The resulting
pool of classifiers is combined by taking a uniform linear combination of all the
constructed classifiers. This way a new (test) point is classified by the “master”
classifier by taking a majority vote between the classifiers in the pool.

Since its introduction in [3] Bagging attracted considerable attention, and
together with Boosting is considered to be among the most popular techniques
for constructing and aggregating an ensemble of classifiers. A number of theo-
retical and experimental studies attribute the success of Bagging to its ability
to reduce variance; see e.g. [1], [10] and [4].

We ask and attempt to answer the following question: Is it possible to im-
prove the performance of Bagging by optimizing the combined classifier over
all weighted linear combinations so as to reduce variance? In the context of
regression such a scheme is particularly appealing since the bias of a normal-
ized weighted combination is unchanged if the original biases are all the same.
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Although this result is not directly related to classification it may be sugges-
tive, and if variance reduction of the base-classifier is one of the main effects of
Bagging, one can expect that this question should be answered affirmatively.

Indeed, we provide strong evidence that a Variance Optimized Bagging,
which we term for short Vogging, consistently improves on Bagging. The
main ideas behind the new technique are borrowed from Mathematical Finance.
Specifically, we import the basic ideas of Markowitz Mean-Variance Portfolio
Theory [16,17] that is used for generating low variance portfolios of financial
assets, and use it in our context to construct optimized “portfolios” of boot-
strapped classifiers.!

This paper is organized as follows. In Section 2 we briefly overview the basic
ideas of Markowitz portfolio theory. We then use these ideas and introduce the
new Vogging technique in Section 3. In Section 4 we discuss our experimental
design and present our results in Section 5. Related work is discussed in Section 6
and finally, in Section 7, we summarize our conclusions and suggest directions
for further research.

2 Markowitz Mean-Variance Portfolio Optimization

In this section we provide a brief overview of the main ideas of the Markowitz
Single-Period Mean-Variance Portfolio optimization technique. These ideas set
the path for a most influential theory in mathematical finance. They will later
be utilized in our new classifier aggregation technique.

The single period Markowitz algorithm solves the following problem. We con-
sider m assets (e.g. stocks, bonds, etc.) Si,...,S,,. We are given: (i) A predicted
expected monetary return r; for each asset S;; (ii) A predicted standard devia-
tion o; of the return of S;; and (iii) The m x m covariance matrix @ with Q;; = o;
and Q;; = pijoio; where p;; is the correlation coefficient between the returns

of S; and S;.
A portfolio is a linear combination of assets. It is given by a vector w of m
weights w = (w1, ..., wy,) with Y. w; = 1. The expected return of a portfolio

w is >, w;r;. The risk of a portfolio is traditionally measured by its variance
o?(w),
o%(w) = Zwiijij =w'Qw.
i,

It is assumed that investors are interested in portfolios that yield high returns
but are averse to large variance. The exact risk aversion pattern of an investor is
modeled via a utility function. Nevertheless, an empirical fact (which is backed
up by economic theories) is that the return of an asset typically trades-off its
variance; that is, assets with large average return tend to exhibit large variance
and vice versa.

! Thirty-eight years after Markowitz published his paper “Portfolio Selection” [16] he
shared a Nobel Prize with Miller and Sharpe for his study that has become a well
established theory of portfolio selection.
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The output of the Markowitz algorithm is a set of portfolios with expected
return greater than any other with the same or lesser risk, and lesser risk than any
other with the same or greater return. This set is called the efficient frontier.
The efficient frontier is conventionally plotted on a curve with the standard
deviation (risk) on the horizontal axis, and the expected return on the vertical
axis. An efficient frontier illustration is given in Figure 12. A useful feature of the
single period mean-variance portfolio problem is that it is soluble using quadratic
programming.

Using the efficient frontier an investor seeking to invest in an “optimal”
portfolio should choose one that lies on the frontier curve. The exact portfolio
will be chosen using his/her personal utility function. A particular “off-the-shelf”
recommended utility function was proposed by Sharpe and is called the Sharpe
Ratio [22]. Sharpe’s ratio is a risk-adjusted measure of return that divides a
portfolio’s return in excess of the riskless return by the portfolio’s standard
deviation. Specifically, let Ry be the return of a risk-free asset (i.e. cash or
treasury bills) and let (R(w), o(w)) be the return and risk pair of a portfolio w.
Then, the Sharpe ratio of w is

R(w) — Ro

Sharpe(w) = —————. 1
pe(w) = = (1)

3 Bagging and Vogging
150% Let H be a binary hy-
pothesis class of functions
1% Efficient Fronoer Sample Portfolio ICGE from the input space X
E 14.0% +  AMZN to {:l:].} and let S =
é (xlay1)7"'7(xn7yn) be a
E 1% training sample where x; €
é - X and y; € {£1}. Bag-
ging works as follows. We
0% 1 generate T bootstrap sam-
T-Bills ples Bi,...,Br from §S.
£.0% T T T T T .
0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 1% EaCh bOOtStrap Sa‘mple 18
Risk (Volarility) generated by sampling with
replacement n points from
Fig. 1. Efficient Frontier illustration S. We train T classifiers h;€
H, j = 1,...,T, such

that h; is trained using the sample B;. Given a new point x € X we predict
that its label is sign (% > hj(x)). Thus, the aggregated classifier is simply a
threshold applied on a uniform average of the base classifiers h;.

The idea in Vogging (Variance Optimized Bagging) is to optimize a lin-
ear combination of classifiers so as to aggressively reduce variance while at-

2 A nice Java applet computing the efficient frontier of some familiar assets can be

downloaded at nttp://www.duke.edu/ charvey/applets/EfficientFronticr/fronticr. html.
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tempting to preserve a prescribed accuracy. As in ordinary Bagging we gener-
ate T bootstrap samples from the training set and induce T hypotheses from
‘H using these samples. Here again, let h; denote the resulting hypotheses.
Let A;(B;) denote the empirical accuracy achieved by h; on the sample B;.
Let A; = =~ >_izj Aj(B;) be the average empirical accuracy over all the other
bootstrap samples. Since each Bootstrap sample B; only contains a fraction of
the data (on average, approximately 63%), we can view A; as a proxy for an
unbiased estimation of the error (more sophisticated “out-of-bag” methods can
be considered, as discussed in Section 7).

Consider the (column) vectors A; = (A4,(B1),...,A4;(Br)), j =1,...,T,
and let A be their average, A = % Z;‘T:1 A;. Let @ be the empirical covariance
matrix of these vectors,

T
Q= 7y D4y — A)(4; — AY 2)
j=1
Using the empirical accuracies and covariance matrix ¢Q we now employ the
Markowitz algorithm to estimate the efficient frontier of combined minimum-
variance “portfolios” of base-classifiers and use the classifier with the highest
Sharpe ratio (see below). Specifically, we estimate the dynamic range of achiev-
able accuracies using the end points min; A; and max; A; and take k uniformly
spread points, a1, ..., ax, in this interval. Each a; is an achievable empirical ac-
curacy by some linear combination of classifiers. Using the a;’s we interpolate the
efficient frontier as follows. For each a € {a;} we solve the following quadratic
program (QP) with linear constraints:

minimize (over w): twlQw
subject to:  (Ay,..., Ar)tw >a

ijjzl, w > 0.

That is, by solving QP, we attempt to minimize variance while keeping the
accuracy sufficiently large.

Remark 1. The solution of QP with a lower bound accuracy constraint a, if it
exists, is a weight vector w that corresponds to a mean accuracy and variance
pair (a’,0?) and a’ may be larger than a.

In the Markowitz-Sharpe framework, in order to compute the weighted combi-
nation with the largest Sharpe ratio we need to use the return of a “riskless”
asset (see Eq. (1)). The best analogy in our context is the expected accuracy
of the trivial classifier that always predicts according to the label of the largest
class in the training set. We call this classifier the baseline classifier. In Figure 2
we provide pseudo-code of the Vogging learning algorithm. The output of the
algorithm is a single classifier based on the weighted combination that achieved
the highest Sharpe ratio. We call this classifier the Sharpe Classifier. The mo-
tivation for using the Sharpe classifier is purely heuristic. While we would like
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Input:
1. T (number of bagged classifiers)
2. k (number of efficient frontier points)
3. 8= (xz1,y1),-.-,(Tn,yn) (training set)
4. 'H (base classifier hypothesis class)
Training:
1. Generate T bootstrap samples, Bi,..., Br from S
2. Train T classifiers hi, ..., hr such that h; € H is trained over B,
3. Evaluate Ay, for all j = 1,...,T; evaluate Q (see Eq. (2)) -
4. Choose k uniformly spread points a1, ...,as in [minj A;, max; A;]
5. Solve k instances of QP (Eq. (3)) with the accuracy constraints a1, ..., ay. For
i=1,...,k, let w; and (a}, ;) be the resulting weight vector and mean-variance

pair corresponding to a;.
6. Let po be the proportion of the larger class in §

/7
a;—po
P

Output: “Vogging weight vector” w;« with i* = arg max;

Fig. 2. Pseudo-code for Vogging learning algorithm

to use a classifier with a small risk, this would make little sense if the variance
of the classifier is very large. In order to reach a compromise between the risk
and variance, we select a classifier with a small risk, subject to a constraint that
its standard deviation is no too large. Eq. (1) provides an approximate imple-
mentation of this idea. Note also that a similar type of argument is used in the
construction of the classic Fisher discriminant function.

4 Experimental Design

Our main goal in these experiments is to analyze and better understand the new
Vogging technique and compare its performance to ordinary Bagging.

Many previous studies of Bagging considered as their base-classifiers induc-
tive learning algorithms such as decision trees, neural networks and naive Bayes;
see e.g. [3], [19], [14], [7], [19], [1] and [5]. As argued by [3] and [4], Bagging be-
comes effective when the base-classifier is unstable; intuitively this means that
its decision boundaries significantly vary with perturbations of the training set.

We chose to use a Support Vector Machine (SVM) as our base classifier;
see [21] and [23]. While SVM’s are considered to be rather stable classifiers,
even an SVM classifier exhibits instabilities when trained with small samples,
especially when polynomial kernels are used. Since our main focus here is on
situations where only a small amount of data is available, in all experiments
described below we always used 30% of the available labeled samples to train
our classifiers while leaving the rest of the data for testing. While Support Vec-
tor Machiens have been widely used for many problems, and shown to yeild
state-of-the-art results, their behavior for particularly small data sets has not
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been thoroughly investigated. In ongoing work we are looking at other classifiers
(including decision trees and neural networks). It should be emphasized that for
small data sets variance is known to be a major problem, and thus we expect
that variance reduction techniques should be particularly useful in this case.
In fact, several exact calculations support this observation [18,13], stressing the
particular advantage of sub-sampling.

The new algorithm was tested on a number of datasets from the UCI repos-
itory [2]. Table 1 provides some essential properties of the datasets used. Note
that the baseline (i.e. the proportion of the largest class in the training set) of
each dataset is used for computing the Sharpe-ratio (Step 6 in the algorithm
pseudo-code). In each experiment we used 10-fold cross-validation. Each fold
consisted of a 30%-70% random partition where the 30% portion was used for
training. The remaining 70% was used solely for testing, and was in no way
accessible to the learning algorithm, for example, while the Ion dataset contains
351 labeled instances, in each of our folds we only used 105 labeled instances for
training. Following [3] we generated, in most cases, T' = 50 bootstrap samples
(and 50 base-classifiers) from each training set. Due to the computational inten-
sity, for the larger sets we generated 25 bootstrap samples®. In all experiments
we used a polynomial kernel SVM with degree 20. The polynomial kernel is par-
ticularly convenient to use in our method due to its relative instability compared
to other popular kernels such as RBF and linear.

In most of the experiments we report on the performance of the following
classifiers: (i) The Vogging classifier; (ii) The Bagging classifier; (iii) The “full-
set” base-classifier, which is trained over the entire training set.

5 Results

As an illustration of the
proposed algorithm we Table 1. Some essential details of the datasets used.
first present one experi- The “Baseline” attribute is the trivial accuracy that
ment in some detail. In can be achieved (proportion of the largest class in the
Figure 3 we depict the training set)

training results of a sin-

gle fold of the Vogging DATASET irli‘s“szTcii ATTRIBUTES BASELINE
algorithm on the Vot- o 435 (130) 16 0.61
ing dataset (130 train-  Diappres 768 (230) 8 0.65
ing examples). The fig-  Jon 351 (105) 34 0.64
ure shows the mean- SONAR 208 (62) 60 0.53
variance points corre- BREAST 683 (204) 10 0.65
sponding to the ob- WDBC 569 (170) 30 0.62
served accuracy and var- CREDIT-G 653 (195) 15 0.54
iance (estimated based Tic-TAc-TOE 958 (287) 9 0.65

on the training) of 50

3 In [1] 25 bootstrap samples were used in all experiments.
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Table 2. 10-fold cross-validated mean/std error performance comparison be-
tween Vogging, Bagging,the full-sample classifier and Vogging advantage over

Philip Derbeko et al.

Bagging; see also Figure 5

DATASET VOGGING Baccing FULL-SAMPLE | VOGGING
(TRAINING SET SIZE) BASE-CLASSIFIER|ADVANTAGE
VoTInG (130) 13.11+4.12(23.90+11.31| 37.224+12.18 45.15%
DIABETES (230) 33.4641.46| 35.554+1.10 | 42.24+14.14 5.88%
Ton (105) 15.89+2.37(29.51£10.21| 32.64415.31 46.16%
SONAR (62) 38.3644.42| 45.96+7.00 | %40.714+5.67 16.53%
BREAST (204) 4.97+1.72 1 19.12+4.04 | 23.68+11.61 74.00%
WDBC (170) 22.76£8.56| 26.12+6.67 | 36.77+£17.05 12.86%
CREDIT-G (195) 40.4145.35| 46.22+1.00 48.4148.29 12.57%
Tic-TAac-TOE (287) [32.33+3.37| 36.30+£7.27 | 51.77£10.98 10.93%
|AVERAGE [25.16+3.92] 32.84+6.08 | 39.18+11.9 | 28.01% |

base-classifiers. On the left part of the figure we see the efficient frontier and
the Sharpe classifier (on the frontier). As can be seen, the top composite clas-
sifiers on the efficient frontier achieve somewhat smaller training accuracy than
the best base-classifiers in the pool, but the composite classifier show noticeable
reduction in standard deviation. Unlike financial assets, which usually exhibit a
trade-off between return and variance (see illustration in Figure 1), the training
performance of the base-classifiers do not exhibit this trade-off and the better
(high accuracy) classifiers also have smaller variance.?

In Figure 4 we see the final 10-fold cross-validation average accuracy of Vog-
ging and Bagging on the Voting dataset. On the top left corner we depict the
average accuracy and standard deviation of the Vogging classifier To the right
of the Vogging classifier we see the Bagging classifier. The layered cloud of cir-
cles that fill the bulk of the figure is the test performance of all the 50 x 10
base-classifiers that were generated during the entire 10-fold experiment. Evi-
dently, the Vogging classifier is significantly better both in terms of accuracy and
variance. We should emphasize that the tiny circles (depicting base-classifiers)
do not represent cross-validated performance. Interestingly, a large fraction of
the base-classifiers converged to the baseline classifier performance (61%), while
another subset reduced to the counter baseline classifier (39%).

It is interesting to examine the components of the aggregated classifiers on
the frontier. In Figure 3 we identify the 9 largest components of the Sharpe
classifier. These components are numbered 1-9 in the figure (in a decreasing
order of their weights in the composite classifier). Although the weights are
diversified between more classifiers, these 9 classifiers hold most of the weight.
It is evident that lower accuracy base-classifiers are included with large weights
(e.g. classifier 2 has a weight of 0.15).

* We could generate a (training set) behavior more similar to this financial assets’
pattern by aggressively over-fitting the base-classifiers.
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In Figure 5 we see 10-fold cross-validated performance comparison on 8
datasets between Vogging, Bagging and the full-sample classifier. These results
and the relative advantage of Vogging over Bagging are numerically presented
in Table 2. In all these results the base-classifier is a degree 20 polynomial ker-
nel SVM. In Table 2 the last column summarizes relative error improvement of
Vogging over Bagging given by

Err(Bagging) — Err(Vogging)
Err(Bagging)

The asterisk in one entry in the second last column corresponds to a case where
Bagging could not improve on the full-sample base-classifier. Note that in all
cases Vogging outperformed both the Bagging and full-sample classifiers.

We note the following. First it is striking that Vogging achieves higher accu-
racy than Bagging using polynomial kernel SVMs. Overall we see an error im-
provement average (over these datasets) of 28% over Bagging®. In most cases the
standard deviations exhibited by Vogging was significantly smaller than Bagging
(and the other base-classifiers). Overall, we see a 35% average variance reduction
improvement over Bagging.

The absolute errors reported here are not directly comparable to other pub-
lished results on Bagging performance on the same datasets in [19,14,5], which
used much larger training set sizes (e.g. most of these studies used 90% of the
data for training). In general, our absolute errors are larger than those reported
in these studies. In the full version of the paper we will include a comparison
with other known algorithms.

6 Related Work

Bagging falls within the sub-domain of “ensemble methods”. This is an extensive
domain whose coverage is clearly beyond the scope of this paper; see e.g. [6,12]
and references therein. Bagging [3] and Boosting [9] are among the most popular
re-sampling ensemble methods that generate and combine a diversity of classi-
fiers using the same learning algorithm for the base-classifiers. Classical boost-
ing algorithms like Adaboost are considered stronger than bagging on noise-free
data. They also lie on more solid theoretical grounds in the form of conver-
gence, consistency and generalization results, and have many more extensions
and variations than bagging.® However, there are strong empirical indications
that Bagging is much more robust than boosting in noisy settings; see e.g. [5].
An intuitive explanation for this resilience of bagging suggested by Dietterich is
that the bootstrap samples avoid a large fraction of the noise while still gener-
ating a diverse pool of classifiers. We note that new regularized and improved
boosting algorithms that can resist noise were recently proposed.

There have not been to-date very many theoretical analyses of Bagging. A
recent paper [1] proves that bagging with a non-stable base-classifier (where

5 calculated over polynomial kernels only.
6 See the Boosting web site at http://www.boosting.org/.
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Fig. 3. Voting dataset, estimated training accuracy and standard deviation of
50 base-classifiers (SVM, polynomial kernel of degree 20 with C' = 100); the
resulting (interpolated) efficient frontier is marked; The Sharpe classifier (on the
frontier) is pointed by an arrow; the inner graph shows the Sharpe ratios of
the various classifiers on the frontier (in the order of their appearance on the
frontier)

stability is defined in an asymptotic sense similar to statistical consistency) will
reduce variance. This paper also analyzes a sub-sampling variant of bagging
called sub-agging. Other interesting discussions and analyses of bagging can be
found at [8], [1] and [10].

The paper [11]7 proposes a heuristic method for generating weighted average
of bagged classifiers. The proposed weighting for a base-classifier is a function of
its relative accuracy advantage over the other classifiers where these quantities
are estimated over “out-of-bag” training samples. According to this paper, in a
comparative empirical evaluation using ID3 decision tree learning as the base-
classifier, this weighted bagging technique outperformed ordinary bagging and
boosting on the majority of UCI datasets that were examined.

The idea of employing Markowitz portfolio optimization for ensemble con-
struction was proposed by [15] as a method for avoiding standard parameter
tuning in neural networks (e.g., based on cross-validation). Specifically, Mani
proposed to train a pool of neural nets with a diversity of parameters and then
combine them using a Markowitz optimized linear combination. He did not ad-
dress the issue of choosing a weighted combination from the efficient frontier. As

7 The exact date of this unpublished manuscript is unknown to the authors; we esti-
mated it to be 2000.
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Fig. 4. Voting dataset, 10-fold test accuracy (and standard deviaition repre-
sented via error bars) of the Vogging classifier, Bagging and 50 x 10 base-
classifiers. Each of these base-classifier accuracies is not cross-validated and ap-
peared at a single fold. The base-classifiers are grouped by the folds, each vertical
strip contains the base-classifiers of a single fold

far as we know, this idea was never tested. Along these lines, in the context of
regression [20] propose to consider a pool of predictors with a diversity of values
to their parameters so as to span a reasonable range. Then they propose to use
an “out-of-bootstrap” sampling technique to estimate least-squares regression
weights of members of the pool.

7 Conclusions and Open Directions

In this paper we proposed a novel and natural extension of Bagging that op-
timizes the weights in linear combinations of classifiers obtained by Bootstrap
sampling. The motivation and main ideas of this new weighted bootstrap tech-
nique are borrowed from mathematical finance where it is used to optimize
financial portfolios. The proposed algorithm attempts to aggressively reduce the
variance of the combined estimator, while trying to retain high accuracy.

We presented the results of a number of experiments with UCI repository
datasets. Using an SVM as the base-classifier we focused on situations where the
training sample size is relatively small. Such cases are of particular interest in
practical applications. Our results indicate that the new technique can dramati-
cally improve the (out of sample) test accuracy and variance of the base-classifier
and of Bagging. Although these results are striking, due to the moderate scope of
our experimental study we view them only as a proof of concept for the proposed
method.
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Fig. 5. 10-fold cross-validation test results on 8 datasets using a degree 20 poly-
nomial kernel SVM base-classifier. Each dataset entry consists of 4 mean/std
error bars corresponding (from left to right) to Vogging, Bagging and full-set
(training set) classifier. Dataset names appear to the left of their error bars.
Numerical summary of these results appear in Table 2

We concentrated on small training sample scenarios where the effects of es-
timation variance are particularly harmful to classification accuracy. It appears
that the utilization of Bootstrap samples allowed us to obtain a reliable esti-
mates of the variance (and covariance), a parameter which cannot be reliably
estimated from the same set of points used to train the classifiers. More sophis-
ticated estimation techniques can possibly improve the estimation accuracy and
the algorithmic efficiency. For instance, techniques similar to those used by [20]
and [11] can potentially improve the sampling component of our algorithm.

To the best of our knowledge the above results are the first reported experi-
mental evidence of a successful use of SVM as the base-classifier in Bagging.

Instability of the base-classifier learning algorithm is a major factor in the
ability to generate diversity in the form of anti-correlations between the various
base-classifiers in the pool, which is the key for variance reduction. Therefore,
one can expect that the relative advantage of our technique will increase if used
with more unstable base-classifiers such as decision trees and neural networks.
We plan to investigate this direction.
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