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Abstract. Research in machine learning concentrates on the study of
learning single concepts from examples. In this framework the learner
attempts to learn a single hidden function from a collection of examples,
assumed to be drawn independently from some unknown probability dis-
tribution. However, in many cases – as in most natural language and vi-
sual processing situations – decisions depend on the outcomes of several
different but mutually dependent classifiers. The classifiers’ outcomes
need to respect some constraints that could arise from the sequential
nature of the data or other domain specific conditions, thus requiring a
level of inference on top the predictions.
We will describe research and present challenges related to Inference with
Classifiers – a paradigm in which we address the problem of using the
outcomes of several different classifiers in making coherent inferences –
those that respect constraints on the outcome of the classifiers. Examples
will be given from the natural language domain.

The emphasis of the research in machine learning has been on the study of
learning single concepts from examples. In this framework the learner attempts
to learn a single hidden function from a collection of examples, assumed to
be drawn independently from some unknown probability distribution, and its
performance is measured when classifying future examples.

In the context of natural language, for example, work in this direction has
allowed researchers and practitioners to address the robust learnability of predi-
cates such as “the part-of-speech of the word can in the given sentence is noun”,
“the semantic sense of the word “plant” in the given sentence is “an industrial
plant”, or determine, in a given sentence, the word that starts a noun phrase. In
fact, a large number of disambiguation problems such as part-of speech tagging,
word-sense disambiguation, prepositional phrase attachment, accent restoration,
word choice selection in machine translation, context-sensitive spelling correc-
tion, word selection in speech recognition and identifying discourse markers
have been addressed using machine learning techniques – in each of these prob-
lems it is necessary to disambiguate two or more [semantically, syntactically or
structurally]-distinct forms which have been fused together into the same rep-
resentation in some medium; a stand alone classifier can be learned to perform
these task quite successfully [10].
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However, in many cases – as in most natural language and visual processing
situations – higher level decisions depend on the outcomes of several different but
mutually dependent classifiers. Consider, for example, the problem of chunking
natural language sentences where the goal is to identify several kinds of phrases
(e.g. noun (NP), verb (VP) and prepositional (PP) phrases) in sentences, as in:

[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow
] [PP to ] [NP only $ 1.8 billion ] [PP in ] [NP September] .

A task of this sort involves multiple predictions that interact in some way. For
example, one way to address the problem is to utilize two classifiers for each type
of phrase, one of which recognizes the beginning of the phrase, and the other
its end. Clearly, there are constraints over the predictions; for instance, phrases
cannot overlap and there may also be probabilistic constraints over the order
of phrases and over their lengths. The goal is to minimize some global measure
of accuracy, not necessarily to maximize the performance of each individual
classifier involved in the decision [8].

As a second example, consider the problem of recognizing the kill (KFJ,
Oswald) relation in the sentence “J. V. Oswald was murdered at JFK after
his assassin, R. U. KFJ...”. This task requires making several local deci-
sions, such as identifying named entities in the sentence, in order to support the
relation identification. For example, it may be useful to identify that Oswald and
KFJ are people, and JFK is a location. In addition, it is necessary to identify
that the action kill is described in the sentence. All of this information will help
to discover the desired relation and identify its arguments. At the same time,
the relation kill constrains its arguments to be people (or at least, not to be
locations) and, in turn, helps to enforce that Oswald and KFJ are likely to be
people, while JFK is not.

Finally, consider the challenge of designing a free-style natural language user
interface that allows users to request in-depth information from a large collec-
tion of on-line articles, the web, or other semi-structured information sources.
Specifically, consider the computational processes required in order to “under-
stand” a simple question of the form “what is the fastest automobile in
the world?”, and respond correctly to it. A straight forward key-word search
may suggest that the following two passages contain the answer:

... will stretch Volkswagen’s lead in the world’s fastest growing vehicle
market. Demand for cars is expected to soar...

... the Jaguar XJ220 is the dearest (415,000 pounds), fastest (217mph)
and most sought after car in the world.

However, “understanding” the question and the passages to a level that allows
a decision as to which in fact contains the correct answer, and extracting it, is a
very challenging task.

Traditionally, the tasks described above have been viewed as inferential tasks [4,
7]; the hope was that stored knowledge about the language and the world will
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allow inferring the syntactic and semantic analysis of the question and the candi-
date answers; background knowledge (e.g., Jaguar is a car company; automobile
is synonymous to car) will then be used to choose the correct passage and to
extract the answer. However, it has become clear that many of the difficulties in
this task involve problems of context-sensitive ambiguities. These are abundant
in natural language and occur at various levels of the processing, from syntactic
disambiguation (is “demand” a Noun or a Verb?), to sense and semantic class
disambiguation (what is a “Jaguar”?), phrase identification (importantly, “the
world’s fastest growing vehicle market” is a noun phrase in the passage above)
and others. Resolving any of these ambiguities require a lot of knowledge about
the world and the language, but knowledge that cannot be written “explicitly”
ahead of time. It is widely accepted today that any robust computational ap-
proach to these problems has to rely on a significant component of statistical
learning, used both to acquire knowledge and to perform low level predictions
of the type mentioned above.

The inference component is still very challenging. This view suggests, how-
ever, that rather than a deterministic collection of “facts” and “rules”, the in-
ference challenge stems from the interaction of the large number of learned pre-
dictors involved. Inference of this sort is needed at the level of determining an
answer to the question. An answer to the abovementioned question needs to be
a name of a car company (predictor 1: identify the sought after entity; predictor
2: determine if the string Z represents a name of a car company) but also the
subject of a sentence (predictor 3) in which a word equivalent to “fastest” (pre-
dictor 4) modifies (predictor 5) a word equivalent to “automobile” (predictor 6).
Inferences of this sort are necessary also at other, lower levels of the process, as
in the abovementioned problem of identifying noun phrases in a given sentence.

Thus, decisions typically depend on the outcomes of several predictors and
they need to be made in ways that provide coherent inferences that satisfy some
constraints. These constraints might arise from the sequential nature of the data,
from semantic or pragmatic considerations or other domain specific conditions.

The examples described above exemplify the need for a unified theory of
learning and inference. The purpose of this talk is to survey research in this
direction, present progress and challenges.

Earlier works in this direction have developed the Learning to Reason frame-
work - an integrated theory of learning, knowledge representation and reasoning
within a unified framework [2, 9, 12]. This framework addresses an important as-
pect of the fundamental problem of unifying learning and reasoning - it proves
the benefits of performing reasoning on top of learned hypotheses. And, by in-
corporating learning into the inference process it provides a way around some
knowledge representation and comprehensibility issues that have traditionally
prevented efficient solutions.

The work described here – on Inference with Classifiers – can be viewed as
a concrete instantiation of the Learning to Reason framework; it addresses a
second important aspect of a unified theory of learning and reasoning, the one
which stems from the fact that, inherently, inferences in some domains involve
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a large number of predictors that interact in different ways. The fundamental
issue addressed is that of systematically combine, chain and perform inferences
with the outcome of a large number of mutually dependent learned predictors.

We will discuss several well known inference paradigms, and show how to use
those for inference with classifiers. Namely, we will use these inference paradigms
to develop inference algorithms that take as input outcomes of classifiers and pro-
vide coherent inferences that satisfy some domain or problem specific constraints.
Some of the inference paradigms used are hidden Markov models (HMMs), con-
ditional probabilistic models [8, 3], loopy Bayesian networks [6, 11], constraint
satisfaction [8, 5] and Markov random fields [1].

Research in this direction may offer several benefits over direct use of clas-
sifiers or simply using traditional inference models. One benefit is the ability to
directly use powerful classifiers to represent domain variables that are of inter-
est in the inference stage. Advantages of this view have been observed in the
speech recognition community when neural network based classifiers were com-
bined within an HMM based inference approach, and have been quantified also
in [8]. A second key advantage stems from the fact that only a few of the domain
variables are actually of any interest at the inference stage. Performing inference
with outcomes of classifiers allows for abstracting away a large number of the
domain variables (which will be used only to define the classifiers’ outcomes)
and will be beneficial also computationally.

Research in this direction offers several challenges to AI and Machine Learn-
ing researchers. One of the key challenges of this direction from the machine
learning perspective is to understand how the presence of constraints on the
outcomes of classifiers can be systematically analyzed and exploited in order to
derive better learning algorithms and for reducing the number of labeled exam-
ples required for learning.
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