Boosting Density Function Estimators

Franck Thollard, Marc Sebban, and Philippe Ezequel

EURISE, Department of Computer Science
Université Jean Monnet de Saint-Etienne
{franck .thollard,marc.sebban, ezequel}@univ—st—etien.ne fr

Abstract. In this paper, we focus on the adaptation of boosting to den-
sity function estimation, useful in a number of fields including Natural
Language Processing and Computational Biology. Previously, boosting
has been used to optimize classification algorithms, improving general-
ization accuracy by combining many classifiers. The core of the boosting
strategy, in the well-known ADABOOST algorithm [4], consists in updat-
ing the learning instance distribution, increasing (resp. decreasing) the
weight of misclassified (resp. correctly classified) examples by the cur-
rent classifier. Except in [17, 18], few works have attempted to exploit
interesting theoretical properties of boosting (such as margin mazimiza-
tion) independently of a classification task. In this paper, we do not
take into account classification errors to optimize a classifier, but rather
density estimation errors to optimize an estimator (here a probabilistic
automaton) of a given target density. Experimental results are presented
showing the interest of our approach.

1 Introduction

Most of the machine learning algorithms in supervised learning aim at provid-
ing efficient classification rules, often by optimizing the success rate of a given
classifier. However, in some other machine learning areas, such as in Natural
Language Processing, the main objective rather consists in correctly estimat-
ing probability densities over strings. In such a context, the algorithms aim at
modelling a target density from a learning sample, in order to assess the occur-
rence probability of a new instance. This way to proceed is particularly useful
in machine learning areas such as shallow parsing, spelling correction, speech
recognition [7, 8, 12, 19] and computational biology [2, 10].

Many algorithms are available for estimating these densities from learning
data: Hidden Markov Models [7], probabilistic automata [9, 13, 21], Markov
Models and their smoothing techniques [5], etc. Recently, some work has dealt
with density estimation by combining some of these models [3, 20]. In this paper,
we also use such a strategy by introducing a boosting approach to density esti-
mation. Although during the last decade many papers have shown the interest of
voting classification algorithms (such as boosting or bagging) (see e.g. [1, 11, 11]),
to the best of our knowledge this is the first attempt to use the optimization prop-
erties of boosting in such a context. However, we think that this way to proceed

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 431-443, 2002.
© Springer-Verlag Berlin Heidelberg 2002

432 Franck Thollard et al.

deserves further investigation. Thanks to the margin maximization principle, it
not only would allow the optimisation of estimation performance, but also would
avoid the tricky use of smoothing techniques, often crucial in density estimation.

By combining many weak hypotheses (usually a hypothesis is a classifier),
the algorithm ADABOOST [4] generates a relevant final weighted classifier. Re-
cently, many theoretical results have justified the relevance of the boosting in
machine learning [15]. But so far, its use has been limited to optimize classifi-
cation tasks, despite recent original extensions to prototype selection [18] and
feature selection [17].

Using boosting for estimating density functions is much more difficult than a
simple classification optimization. It requires modification of the weight update
rule, the core of the ADABOOST algorithm, that we recall in section 2. Here,
we do not aim to generate an efficient classifier which minimizes the rate of
misclassified examples, but rather we aim to automatically and correctly estimate
target density function. We show in section 3 that the final combined estimator
must then minimize estimation errors (i.e. over and under estimations) regarding
the original distribution. For the experimental study, a probabilistic automaton
is used during the boosting step as a weak estimator. We present it in section 4.
Finally, its performance is tested on a language modelling task, and results are
presented in section 5.

2 Properties of Boosting

Boosting consists in combining many (") weak hypotheses produced from various
distributions Dy (e) over the learning set (LS). The pseudo-code of the original
boosting algorithm, called ADABOOST [4], is described by the Algorithm 1. At
the beginning of the process, each instance e is initially distributed according to
an uniform density Dj(e) (note that a given example can of course occur many
times in LS, resulting in a higher density at this point). At each stage t, AD-
ABOOST decreases (resp. increases) the weight of the training instances, a priori
labeled y(e), correctly (resp. incorrectly) classified by the current weak hypoth-
esis h;. Boosting thus forces the weak learner to learn the hardest examples.
The weighted combination H(e) of all the weak hypotheses results in a better
performing model. Schapire and Singer [16] proved that, in order to minimize
the training error, one must seek to minimize Z; (the normalization factor, i.e.
the sum of the updates) on each round of boosting. It is easy to show that for
minimizing the objective function Z;, the confidence oy of each weak hypothesis
(used in the final combined classifier H) is %log(lz—:*).

In order to introduce our boosting approach to density estimation, we recall
here notations already proposed in Schapire and Singer [16]. Suppose that y(e) €
{—1,+1} and that the range of each weak hypothesis h; is restricted to —1, 0, +1.

Boosting Density Function Estimators 433

Algorithm 1: Pseudo-code for ADABOOST.

Data : A learning sample LS, a number of iterations T, a weak learner WL
Result : An aggregated classifier H

Initialize distribution: Ve € LS, Di(e) = g ;
for t =2 to T do
ht = WL (LS,Dt);

€ = Z Dy (e) ;

e:y(e)#hi(e)
ap = %log(—l;e‘) ;

—ayy(e)hy ()
Distribution Update /*Vee€ LS, Diy1(e) = Duleer VA ® */,

Zy

Return H s.t. H(e) = %(Z?zl athi(e)) ;

Let W=1, W% and W*! be defined by

Wb = > Dy(e)

e€LS:y(e)h(e)=b

Using symbols + and - for +1 and -1, the following property is then satisfied:
WHt+w-+wo=1

W (resp. W) describes then the sum of the weights of the correctly (resp.
incorrectly) classified instances. W9 describes the part of the instances unclassi-
fied by the current classifier (for example, a point located on a linear separator).

3 Boosting a Density Estimator

In our framework, the weak hypothesis h; is not a classifier which labels an
example e, by giving it a negative or positive label (—1 or +1). In Natural
Language modelling, the examples are not split into two negative and positive
classes. e is usually described by a symbol and its context, i.e. the beginning of
the string in which it appears. Hence, h; is now a model which must provide an
occurrence probability for a given example e. The objective is then to compare the
current inferred distribution D; with the original density D; which is the target
distribution. D; is not the uniform distribution anymore (as in ADABOOST),
but rather the distribution over the data. D;(e) describes in fact a conditional
probability, to observe in the learning sample a symbol given its context. We aim
to fit the original distribution D; and the distribution D; estimated by h;. In
such a context, we cannot use the instance classes (y(e) in ADABOOST). The use
of the weight update rule according to the correct or incorrect prediction of h(t),
is then impossible. To allow this adaptation of boosting to density estimation,
we must solve the following problems:

434 Franck Thollard et al.

1. We must redefine W+ and W~ which describe respectively the proportion
of correctly and incorrectly classified examples in the standard ADABOOST.
What is now a good or a bad prediction of the weak hypothesis 7

2. Are there examples not modelled by a given weak hypothesis (corresponding
to the quantity W° in ADABOOST) ?

3. We must redefine the weight update rule, taking into account the quality of
the current estimator.

As to the first problem, we can enumerate three mutually exclusive cases for
each learning instance e (see the example described on figure 1):

1. The weak hypothesis h; provides a good estimate of the probability of e.
The weights of such points will be describe by W7 in our approach, defined
as follows: W+ =37 1, () _p, () De(e)

2. The weak hypothesis h; under-estimates the probability to have e. The
weights of such points will be described by W, the first part of W—, the
weighted sum of instances incorrectly treated by the weak hypothesis. W~
is then de.ﬁned as follox-?vz W = Ze/(Dt(e.).—Dl(e))<0 Dy(e). .

3. The algorithm over-estimates the probability to have e. The weights of such
points will be denoted W5, the second part of W—. W5 is then defined as

follow: W; = Ze/(Dt(e)—D1(e))>0 Dt(e)'

Contrary to ADABOOST, which accepts instances unclassified (those described
by W?) by the weak hypothesis, the estimator provides a given density for each
learning example, resulting in W9 = 0. That deals with the second problem.

We then handle three quantities, which satisfy the following properties:
WH+ W, + Wy =1

Finally, in order to correct the estimation error of h;, we will increase (resp.
decrease) the density of examples under-estimated (resp. over-estimated) by the

densiny trgel density edimated density
0 fe) Djed

) |
i

A

P

Dje} >0 e
Dfe) < Dfe) ‘(:! e

Wa

ul” hm

W Examples

Fig. 1. Estimation errors

Boosting Density Function Estimators 435

hypothesis. The weight of the correctly estimated examples remains the same.
Then, we will use the following general weight update rule:

Di(e).e—+(Dele)=Da(e))
Zy

where Z; is the normalization factor: Z, =, Dy (e).e~t(Dile)=Du(e))

Dii1(e) =

According to ADABOOST, the confidence level a; of the current weak hypothe-
sis can be assessed by minimizing Z;. Actually, minimizing Z; results in minimiz-
ing the error rate of the weak hypothesis, since the main part of the Z; quantity
is due to misclassified instances. In our adaptation to density estimation, mis-
estimated instances can be either under or over-estimated. Minimizing Z; would
attribute more relevance to under-estimated instances than to over-estimated
ones. In such a context, a better optimization would consist in minimizing the
following objective function,

Zt* — ZDt(e).eiatlDt(e)fDl(e)l

The confidence a; of the weak hypothesis is determined by minimizing Z;.
0Zf
3at

= = 22 IDi(e) = Di(e)|-Dyfe)e P)=

ar|Di(e)=Di(e)] 1y its power series, we obtain

oz} —(—ay)™ >, |Di(e) — Di(e)|" 1Dy (e
-y (—ar)™ >, [Di(e) (e)l (e)

Oay n!

Replacing e~

n>0
Since |Ds(e) — D1 (e)| € [0,1], we can assume that, for n > 2, |Dy(e) — D1 (e)|"*?
is negligible, and then

0z > Di(e) = Di(e)]-De(e) +ar Y _(IDi(e) = Di(e)[*.Dy(e)

8th -

The value of «; for which gfi =0 is then

oy - ZlDie) = DiOLDIe) _ BGi(e)
2c[Di(e) = Di(e)?.Di(e) E(bi(e)?)
where 6;(e) = |Di(e) — D1i(e)|, E(0t(e)) is its first statistical moment, and
E(d,(e)?) its second statistical moment. Despite our approximation, we can note
that a; keeps the following interesting properties:

1. oy tends to oo when the estimated density tends towards the initial distri-
bution. We then highly weight such a good weak hypothesis.

2. oy tends to 0 for estimated densities which do not have overlap with the
initial distribution.

The pseudo-code of our boosted-algorithm, called PDFBOOST, is presented in
the Algorithm 2.

436 Franck Thollard et al.

Algorithm 2: PDFBOOST.

D1 (e) is the probability to observe e in the learning sample, Ve € LS
for t =2 to T do

Build an automaton hy using D1

Get an estimation D; of the probability density;

Compute the confidence a; = 5(5‘?((:))2)) where d:(e) = |D+(e) — D1(e)l;

“ay(Dy(e)— D1 (e))
Update: Ve € LS: Diy1(e) = De(e)e™% Ztt RAy
/+Z; is a Normalization Factork/;

Return the final model aggregating the 7" weighted-distributions:

D*(e) = Zlat (3" Dy (e))

4 Probabilistic Automaton as Weak Hypothesis

We recall that boosting can aggregate many weak hypothesis, i.e. many models.
This feature induces two kind of constraints on the type of model used: on the
one hand, each model must be compact, on the other hand its use must be very
efficient. We decided to use, for the experimental study, Probabilistic Determin-
istic Finite States Automata, since they are, on the one hand, more compact
than, say the N-gram model, and on the other hand, the determinism makes
them faster than non deterministic probabilistic automata (i.e. Hidden Markov
Models) when used in real applications. We present here the formal definition of
the model and the inference algorithm.

A Probabilistic Finite Automaton (PFA) A is a 7-tuple (X, Q4, ¢7*, €4,64 44, F4)
where Y is the alphabet, i.e. a finite set of symbols Q4 is the set of states, @ eq
is the initial state, €4 C Q x ¥ x Q x (0,1] is a set of probabilistic transi-
tions. F'4: Q4 — [0,1] is the “end of parsing” probabilistic function. Functions
64 and v4, from Q x X' to Q and (0, 1] respectivelly are defined as: 64 (¢;, o) = ¢;
iff 3 pe (0,1 :(gi,0,q5,p) € Eand v gi,0) = piff 3 ¢; € Q : (¢s,0,45,p) €&
These functions can be trivially extended to @ x X™*.

We require that for all states ¢, > Mg, 0,¢")+ F*(q) = 1. We assume that
all states are reachable from the start state with non-zero probability, and that
the automaton terminates with probability one. This then defines a distribution
over XL*.

Pra(z) = v*(qr,x) x FA(6(qr,x)) will be the probability of # w.r.t. the
automaton A.

These automata differ from the one used in many papers in that they define
a probability distribution over X* and not over Y™ with n a constant.

Let LS denote a positive sample, i.e. a set of strings belonging to the prob-
abilistic language we are trying to model. Let PT A(LS) denote the prefix tree

Boosting Density Function Estimators 437

a (9/11)

(o) —(ram) ==
a (4/9N

[3(0/4)j ﬂ[5(3/3)j

N
a(1/4)

Fig. 2. PPTA built with LS = {aac,), aac, abd, aac, aac, abd, abd, a, ab, A}

acceptor built from a positive sample LS. The prefix tree acceptor is an automa-
ton that only accepts the strings in the sample and in which common prefixes
are merged together resulting in a tree-shaped automaton. Let PPT A(LS) de-
note the probabilistic prefix tree acceptor. It is the probabilistic extension of the
PTA(LS) in which each transition has a probability related to the number of
times it is used while generating, or equivalently parsing, the positive sample.
Let C'(¢q) denote the count of state ¢, that is, the number of times the state ¢
was used while generating LS from PPTA(LS). Let C(q,#) denote the num-
ber of times a string of LS ended on ¢. Let C(g,a) denote the count of the
transition (¢, a) in PPTA(LS). The PPT A(LS) is the maximal likelihood esti-
mate built from LS. In particular, for PPT A(LS) the probability estimates are

Y (qa) = S8 g c DU {#).

Figure 2 exhibits a PPT A and the learning set it is built from.

We now present the second tool used by the generic algorithm: the state
merging operation. This operation induces two modifications to the automaton:
(i) it modifies the structure (figure 3, left) and (ii) the probability distribu-
tion (figure 3, right). It applies to two states. Merging two states can lead to
non-determinism. The states that create non-determinism are then recursively
merged. When state ¢ results from the merging of the states ¢’ and ¢”, the
following equality must hold in order to keep an overall consistent model:

(g a) = S v e DU {#)
One can note two properties of the update of the probabilities: (i) %

is included in [CCE((I;’,()L) , CCE((I;,’,(;)] which means that the probability of an after merge

transition has a value bounded by the two values of the transitions it comes from;
(ii) the merge naturally weights more the probability of the transition that holds
the more information. For instance, % = 1112005 is closer to 1000 than to }gg

These remarks hold for each pair of transitions that takes part in the merge.
Let us merge states ¢; and ¢; and define P, (resp. P,;) as the probability dis-
tribution defined by considering state g¢; (resp. g;) as the initial state. Since
the merge is recursively applied (see figure 3), the probability distribution after
merging states ¢; and g; will be a kind of weighted mean between the distribu-
tions P, and F;.

438 Franck Thollard et al.

A a (p=8/40)
a (p=40/50)

S0 () ()
—© CX O——0 2 (p=50/50)_~ | e om0y
Merge of 9 and 4.

@45—@/@

Mergg of 10 apd 6 A’

o 9
~0-+-8-0--0 (o i)~ (3@

! ¢ (p=20/140)

a (p=98/140)

Fig. 3. Merging states 5 and 2

We are now in a position to present the MDI algorithm itself for which we
recall in the next section the main features.

The MDI algorithm [21] (algorithm 3) takes two arguments: the learning set
LS and a tuning parameter (. It looks for an automaton, that is the result of
a tradeoff between a small size and a small distance to the data. The distance
measure used is the Kullback-Leibler divergence. The data are represented by the
PPTA as it is the maximum likelihood estimate of the data. While merging two
states, the distance between the automaton and the data, in general, increases
and, at the same time, the number of states and the number of transitions,
in general, decreases. Two states will be set compatible if the impact in terms
of divergence of their merge divided by the gain of size is smaller than the
parameter 3.

Algorithm 3: MDI (LS,).

A < Numbering_in Breadth First_Order (PPTA);
for ¢; =1 to Nb_State (A) do
for gj =01toi—1do
L | if Compatible (A, qi,q;) <3 then Merge (A,gi,q;) ;

Return A ;

The MDI algorithm tries to infer a small automaton that is close to the data.
In fact, the bigger G, the more general (and small with respect to the number
of states) the resulting automaton should be. The parameter 3 hence controls
the level of generalization of the algorithm. Since boosting is known to overfit

Boosting Density Function Estimators 439

Table 1. Probability updates, where D;("to”) = D;("to|l'd like...C”)

| c [Di[Do [Ds [Da [Ds[[D] D3 [D3 [Dy [Dg |
Cli’d .. D [I || .4961] 8754 [.0012] 1 || 1 | .7407 | .7864 | .8155 | .8532
tol 1'd..c_ | 1 || 4304 | .5931 | .0254 |.9265||.6061] .5157 | .5410 | .6391 | .6977
Atlantall’d. .to| I || .1682 | .0910 | .0621 |5640]|.2791] .2220 | .1775 | .1483 | 2331

with noisy data, having such a controlling parameter seems to be crucial in this
context.

Usually, a cross validation protocol is used to assess the right value for the
parameter 3. The learner is then considered as the algorithm with 3 estimated
on a held-out development set. Another point of view is to consider that each
value of § defines a particular algorithm that belongs to a family of learner
parameterized by 3. Note that the point here is not to optimally define the value
of the parameter (3, because the algorithm is still a heuristic method. Moreover
the boosting just needing a weak learner, we will consider the MDI algorithm,
used with a fixed value of the parameter (3, as a given weak learner. We will see
in the next section that it deserves further investigation.

5 Experimental Issues

We used for this experimental study a very noisy database coming from a lan-
guage modeling task, i.e. the ATIS task. The Air Travel Information System
(ATIS) corpus [6] was developped under a DARPA speech and natural lan-
guage program that focused on developing language interfaces for information
retrieval systems. The corpus consists of speakers of American English mak-
ing information requests such as: ¢ ‘I’d like to find the cheapest flight
from Washington D C to Atlanta’’.

Since the probabilities of the whole sentences are here very small (as a product
of all the conditional probabilities), we decided to deal with the conditional
probabilities. Since, the PPTA represents the maximum likelihood of the data,
it will describe the target density D; in PDFBOOST. At each step ¢, D41 is not
an update of LS, but rather an update of the PPTA transition probabilities.

Before studying the PDFBOOST behavior on the whole database, we decided
to test it on some conditional probabilities to see whether our intuitions are
corroborated.

The PdfBoost behavior is shown on table 1 where we provide the evolu-
tion of some conditional probabilities taken from the example sentence given
above (”... D C to Atlanta)”. In this table, D; is the probability provided at
iteration ¢; D} is the probability provided by the first i-aggregated models.

As one can see, the probabilities tend rather quickly to the value of the train-
ing sample (column D, in the table). This is true either for the non aggregate
models (columns D;) and for the aggregate ones (columns D). One can note

440 Franck Thollard et al.

that aggregate models converge slower, hopefully leading to less overfit than the
models taken alone.

6 Behavior on the Full Task

The criterion used to estimate the quality of a model is the perplexity. Probabilis-
tic models cannot be evaluated by classification error rate, as the fundamental
problem has become the estimation of a probability distribution over the set of
possible strings.

The quality of the model is measured by the per symbol log-likelihood of
strings x belonging to a test sample according to the distribution defined by the
hypothesis P4 (x) computed on a test sample S :

IS] =

LL =~z 30 3 los P(elld)

j=1i=1

where P(acf l¢") denotes the probability of generating xf , the i-th symbol of the j-
th string in S, given that the generation process was in state ¢'.

The test sample perplexity PP is most commonly used for evaluating lan-
guage models of speech applications. It is given by PP = 2L The minimal
perplexity PP = 1 is reached when the next symbol z/ is always predicted with
probability 1 from the current state ¢* (i.e. P(z7|¢') = 1) while PP = |%| cor-
responds to random guessing from an alphabet of size |X|.

We aim here to check if the behavior of PDFBOOST is coherent with the
behavior of the standard ADABOOST algorithm. With the standard algorithm,
the classifier gets closer and closer to the training set. Figure 4 shows the training-
set perplexity of the aggregated automata. As expected, the perplexity goes down
as the number of iterations grows. It stabilizes at around 100 iterations.

This means that the update function chosen is adequate with respect to the
perplexity.

beia =0.0005 ——
heta =0.0008 —-—--
6.5 —‘L 1
H\\
6 4
! S i
1 :
35 F 1
z S
E 3 1 1 1 1 1 1 1 1
g 0 20 40 &0 80 100 120 140 160 180 200

number of automala agregated

Fig. 4. Behavior of the aggregated model on the training set

Boosting Density Function Estimators 441

= I I : ! T T T T
,,—o-’_'_r'_'_’ —
96 - o |
e beta = 0.0008
94 - s _
/“—/
-
92 /’v _
= -
£ 00 ! - -
$r . = - - - = -
§ / e beta = 0.0015 |
& 88/ - |
1.0 A
z B0 -]
k-1
= I I ¥ - ! I I L L
0 10 20 30 40 50 60 70 pos ps =

Number of aggregated models

Fig. 5. Behavior of the aggregated model on the development set

Figure 5 shows the behavior of the method on the development set, i.e. its
behavior in generalization. As one can see, the two curves are rather different
depending on the value of the tuning parameter 3. It is interesting to notice that
the parameter which performs best on the training set performs worse on the
development one. From our point of view, this means that having a parameter
that prevents generalization will cause over-fitting. Actually, during the four
first boosting steps the development-set perplexity goes down, which shows the
interest of our approach. The curves then raise, which, from our point of view,
proves over-fitting. We think that tuning the MDI parameter § at each boosting
step could prevent over-fitting and thus lead to better results in generalization.

7 Conclusion and Further Work

The preliminary results presented in Figure 5 seem promising to us in that they
tend to show that the behavior of PDFBOOST is coherent with the one usually
observed in the classical boosting. The next step will be to have a complete study
of the behavior on the development set, e.g. tuning the inference algorithm at
each boosting step in order to prevent overfitting.

Since the boosting has been already applied to prototype selection [18], an-
other further work should be to see if there exists a unified boosting that could
include the three frameworks known at the moment, i.e. the classic boosting, the
boosting applied to protototype selection, and the boosting of density function
estimation.

Acknowledgments

We wish to thank Alexander Clark for useful remarks on preliminary version.

442

Franck Thollard et al.

References

1]

2]

E. Bauer and R. Kohavi. An empirical comparison of voting classification al-
gorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2):105-139,
1999. 431

P. Bladi, Y. Chavin, and T. Hunkapillerand McClure. Hidden markov models of
biological primary sequence information. In National Academy of Science, pages
1059-1063, USA, 1991. 431

Andrew Brown and Geoffrey Hinton. Products of hidden markov models. In
T. Jaakkola and T. Richardson, editors, Artificial Intelligence and Statistics, pages
3-11. Morgan Kaufmann, 2001. 431

Y. Freund and R. E. Shapire. A decision theoretic generalization of online learning
and an application to boosting. Intl. Journal of Computer and System Sciences,
55(1):119-139, 1997. 431, 432

Joshua Goodman. A bit of progress in language modeling. Technical report,
Microsoft Reserach, 2001. 431

L. Hirschman. Multi-site data collection for a spoken language corpus. In DARPA
Speech and Natural Language Workshop, pages 7-14, 1992. 439

Frederick Jelinek. Statistical Methods for Speech Recognition. The MIT Press,
Cambridge, Massachusetts, 1998. 431

D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall, Englewood Cliffs, New Jersey, 2000. 431

M. J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie.
On the learnability of discrete distributions. In Proc. of the 25th Annual ACM
Symposium on Theory of Computing, pages 273-282, 1994. 431

Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjolander, and David Haus-
sler. Hidden markov models in computational biology: Applications to protein
modeling. Journal of Molecular Biology, 235:1501-1531, 1994. 431

R. Maclin and D. Opitz. An empirical evaluation of bagging and boosting. In
Proc. of the Fourteenth Natl. Conf. on Artificial Intelligence, pages 546-551, 1997.
431

E. Roche and Yves Schabes. Finite-State Language Processing. MIT Press, 1997.
431

D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic prob-
abilistic finite automata. In ACM, pages 31-40, Santa Cruz, 1995. COLT’95.
431

E. Tjong Kim Sang. Text chunking by system combination. In CoNLLL-2000
and LLL-2000, pages 151-153, Lisbon, Portugal, 2000. 431

R. E. Schapire, Y. Freund, P. Bartlett, and W. Sun Lee. Boosting the margin:
a new explanation for the effectiveness of voting methods. Annals of Statistics,
1998. 432

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-
rated predictions. In Proceedings of the Eleventh Annual Conference on Compu-
tational Learning Theory, 1998. 432

M. Sebban and R. Nock. Contribution of boosting in wrapper models. In Proc.
of the Thirth European Conf. on Principles and Practice of Knowledge Discovery
in Databases, pages 214-222, 1999. 431, 432

M. Sebban, R. Nock, and S. Lallich. Boosting neighborhood-based classifiers. In
Proc. of the Seventeenth Intl. Conf. on Machine Learning, 2001. 431, 432, 441

(19]

20]

21]

Boosting Density Function Estimators 443

A. Stolcke and S. Omohundro. Inducting probabilistic grammars by bayesian
model merging. In Lecture Notes in Artifitial Intelligence, editor, Second Intl
Collo. on Gramatical Inference, 862, pages 106-118. ICGI-94, 1994. 431

F. Thollard. Improving probabilistic grammatical inference core algorithms with
post-processing techniques. In FEighth Intl. Conf. on Machine Learning, pages
561-568, Williams, July 2001. Morgan Kauffman. 431

F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic dfa inference using
kullback-leibler divergence and minimality. In Pat Langley, editor, Seventh Intl.
Conf. on Machine Learning, San Francisco, June 2000. Morgan Kaufmann. 431,
438

	Boosting Density Function Estimators
	Introduction
	Properties of Boosting
	Boosting a Density Estimator
	Probabilistic Automaton as Weak Hypothesis
	Experimental Issues
	Behavior on the Full Task
	Conclusion and Further Work
	Acknowledgments
	References

