
On-Line Support Vector Machine

Regression

Mario Martin

Software Department, Universitat Politècnica de Catalunya
Jordi Girona 1-3, Campus Nord, C6., 08034 Barcelona, Catalonia, Spain

mmartin@lsi.upc.es

Abstract. This paper describes an on-line method for building ε-insen-
sitive support vector machines for regression as described in [12]. The
method is an extension of the method developed by [1] for building in-
cremental support vector machines for classification. Machines obtained
by using this approach are equivalent to the ones obtained by apply-
ing exact methods like quadratic programming, but they are obtained
more quickly and allow the incremental addition of new points, removal
of existing points and update of target values for existing data. This
development opens the application of SVM regression to areas such as
on-line prediction of temporal series or generalization of value functions
in reinforcement learning.

1 Introduction

Support Vector Machines, from now on SVM, [12] have been one of the most
developed topics in Machine Learning in the last decade. Some reasons that
explain this success are their good theoretical properties in generalization and
convergence –see[2] for a review. Another reason is their excellent performance
in some hard problems –see for instance [9,4].

Although SVMs are being used mainly for classification tasks, they can also
be used to approximate functions (what is called SVM regression). One problem
that prevents a wider use of SVMs for function approximation is that, though
their good theoretical approaches, they are not applicable on-line, that is, in
cases where data is sequentially obtained and learning has to be done from the
first data. One paradigmatic example is the on-line prediction of temporal series.
When new data arrive, learning has to begin from scratch.

SVMs for regression have not been either suitable for problems where the
target values of existing observations change quickly, for instance, in reinforce-
ment learning [11]. In reinforcement learning, function approximation is needed
to learn value functions, that is, functions that return for each state the future
expected reward if the agent follows the current policy from that state. SVMs
are not used to approximate value functions because these functions are continu-
ously update as the agent learns and changes its policy. One time, the estimated
future reinforcement from state s is y, but later (usually very soon) a new esti-
mation returns another value for the same state. Using SVM regression in this
case implies again learning from scratch.

T. Elomaa et al. (Eds.): ECML, LNAI 2430, pp. 282–294, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

On-Line Support Vector Machine Regression 283

One alternative is to adapt to the regression case one of the recent algorithms
for incremental SVMs [3] and on-line learning [5,7,6], but such techniques return
approximate solutions (though in some cases the error is bounded) and, more
important, they do not allow to remove data or update target values of data.
The only exception we know of is [1] but it is only described for classification
tasks.

In order to allow the application of SVMs for regression to these areas, this
paper describes the first (at our best knowledge) exact on-line learning algorithm
for SVM function approximation. The algorithm is based in three actions that
allow respectively (1) incrementally add new data to the SVM, (2) remove data
from the SVM, and (3) update target values for existing data in the SVM.

The algorithm we propose is an extension of the work proposed in [1] for
incremental SVM learning for classification tasks, but now applied to function
approximation. In brief, the key idea of the algorithm consists in finding the
appropriate Karush-Kuhn-Tucker (KKT) conditions for new or updated data
by modifying its influence (β) in the regression function while maintaining con-
sistence in the KKT conditions for the rest of the data used for learning. This
idea is fully explained throughout the paper.

2 Reformulation

Specifically, we propose in this paper a method for the on-line building of
ε-insensitive support vector machines for regression. The goal of this kind of
machines is to find a function that presents at most ε deviation from the target
values [12] while being as “flat” as possible. This version of SVM regression is
appealing because not all vectors become support vectors, which is not the case
in other approaches [10].

SVMs for regression are usually solved by resorting to a standard dualiza-
tion method using Lagrange multipliers. The dual formulation for ε-insensitive
support vector regression is to find values for α, α∗ that minimize the following
quadratic objective function:

W =
1
2

∑
ij

(αi − α∗
i)Qij(αj − α∗

j)−
∑

i

yi(αi − α∗
i) + ε

∑
i

(αi + α∗
i) (1)

subject to the following constraints:

0 ≤ αi, α
∗
i ≤ C (2)∑

i

(αi − α∗
i) = 0 (3)

where Q is the positive-definite kernel matrix Qij = K(xi, xj), and ε > 0 is the
maximum deviation allowed.

Including in (1) a Lagrange multiplier for constraint (3), we get the following
formulation:

284 Mario Martin

W =
1
2

∑
ij

(αi − α∗
i)Qij(αj − α∗

j)−
∑

i

yi(αi − α∗
i) + ε

∑
i

(αi + α∗
i) + b

∑
i

(αi − α∗
i) (4)

with first order conditions for W :

gi =
∂W

∂αi
=

∑
j

Qij(αj − α∗
j)− yi + ε + b (5)

g∗i =
∂W

∂α∗
i

= −
∑

j

Qij(αj − α∗
j) + yi + ε − b = −gi + 2ε (6)

∂W

∂b
=

∑
j

(αj − α∗
j) = 0 (7)

Renaming (αi − α∗
i) to βi for simplicity, we have:

gi =
∂W

∂αi
=

∑
j

Qijβj − yi + ε + b (8)

g∗i =
∂W

∂α∗
i

= −
∑

j

Qijβj + yi + ε − b = −gi + 2ε (9)

∂W

∂b
=

∑
j

βj = 0 (10)

2.1 Separation of Data

The first order conditions for W lead to the Karush-Kuhn-Tucker (KKT) con-
ditions, that will allow the reformulation of SVM for regression by dividing the
whole training data set D into the following sets: margin support vectors S
(where gi = 0 or g∗i = 0), error support vectors E (where gi < 0), error star
support vectors E∗ (where g∗i < 0), and the remaining vectors R. Specifically,
centering on gi, KKT conditions are:



2ε < gi → g∗i < 0 βi = −C i ∈ E∗

gi = 2ε → g∗i = 0 −C <βi <0 i ∈ S
0<gi <2ε → 0<g∗i <2ε βi = 0 i ∈ R

gi = 0 → g∗i = 2ε 0<βi <C i ∈ S
gi < 0 → g∗i > 2ε βi = C i ∈ E

Figure 1 shows the geometrical interpretation of these sets in the feature
space. Note that

∑
j Qijβj + b − yi is the error of the target value for vector i.

Thus gi and g∗i can be thought as thresholds for error in both sides of the ε-tube.

On-Line Support Vector Machine Regression 285

Fig. 1. Decomposition of D following KKT conditions into margin support vec-
tors S, error support vectors E, error support vectors star E∗ and remaining
vectors R. Cross marks represent vectors in the feature space. S vectors are ex-
actly on the margin lines, R vectors are inside the ε-tube (grey zone), and E
and E∗ vectors are outside the ε-tube

The division of the data set into subsets and the characterization of β values
for each subset, allow us to rewrite equations (8), (9) and (10), for all vectors
i ∈ D, as follows:

gi =
∑
j∈S

Qijβj + C
∑
j∈E

Qij − C
∑

j∈E∗
Qij

−yi + ε + b (11)

g∗i = −gi + 2ε (12)

∑
j∈S

βj + C|E| − C|E∗| = 0 (13)

3 On-Line Support Vector Regression

In order to build exact on-line support vector machines for regression, we need
to define three incremental actions:

add one new vector: One new observation xc is added to the data set D with
the target value yc. This operation should include the corresponding vector
in the feature space with the “exact” βc value but without beginning from
scratch.

remove one vector: One existing observation xc in D with target value yc is
removed from the data set. The resulting SVM should be the same that
would be training from scratch a SVM with D − {c}.

286 Mario Martin

update one vector: One existing observation xc in D with target value yc

changes the target value to y′
c. As in the previous cases the resulting machine

should be the same that would be training from scratch a SVM with exact
methods.

In this section we will describe how these actions can be efficiently imple-
mented. Addition and update actions will consist in finding consistent KKT
conditions for the vector being added or updated. Removal will be based on di-
minishing the influence of the vector being removed on the regression tube until
it vanishes.

3.1 Adding One New Vector

A new vector c is added by inspecting gc and g∗c . If both values are positive, c is
added as an R vector because that means that the new vector lies inside the ε-
tube (see KKT conditions). When gc or g∗c are negative, the new vector is added
by setting its initial influence on the regression (βc) to 0. Then this value is
carefully modified (incremented when gc < 0 or decremented when g∗c < 0) until
its gc, g∗c and βc values become consistent wrt KKT conditions (that is, gc < 0
and βc = C, or g∗c < 0 and βc = −C, or 0 < βc < C and gc = 0, or −C < βc < 0
and g∗c = 0).

Modification of βc Variations in the βc value of the new vector c, influ-
ence gi, g

∗
i and βi values of the other vectors in D, and thus, can force the

transfer of some vectors from one set S, R, E or E∗ to another set. This transfer
means that gi, g

∗
i and βi values for vector i become no longer consistent with

the KKT conditions of the set where vector i is currently assigned, but become
consistent with the KKT conditions of another set.

The modification of βc must take into account these transfers between sets.
This section describes how the modification of βc influences gi, g

∗
i and βi values

of the vectors in D while sets S, E, E∗ and R remain constant. In the next section
we describe how to deal with vector migrations between sets.

From equations (11), (12), and (13) it is easy to calculate the variation
in gi, g

∗
i and βi when a new vector c with influence βc is added without mi-

gration of vectors between sets S, E, E∗ and R:

∆gi = Qic∆βc +
∑
j∈S

Qij∆βj + ∆b (14)

∆g∗i = −∆gi (15)

∆βc +
∑
j∈S

∆βj = 0 (16)

Note that while one vector remains in E, E∗ or R sets, its β value does not
change.

On-Line Support Vector Machine Regression 287

In particular, if margin support vectors must remain in S, then ∆gi ≡ 0 for
i ∈ S. Thus, if we isolate ∆βc terms in equations (14) and (16) for vectors i ∈ S,
we get:

∑
j∈S

Qij∆βj + ∆b = −Qic∆βc (17)

∑
j∈S

∆βj = −∆βc (18)

That, assuming S = {S1, S2, · · · , Sl}, can be matricialy formulated as follows:

Q ·




∆b
∆βS1

...
∆βSl


 = −




1
QS1c

...
QSlc


∆βc (19)

where Q is defined as:

Q =



0 1 · · · 1
1 QS1,S1 · · · QS1,Sl

...
...

. . .
...

1 QSl,S1 · · · QSl,Sl


 (20)

From (19),



∆b
∆βS1

...
∆βSl


 = −Q−1 ·




1
QS1c

...
QSlc


∆βc (21)

and thus,

∆b = δ∆βc (22)
∆βj = δj∆βc ∀j ∈ S (23)

where



δ
δS1

...
δSl


 = −R




1
QS1c

...
QSlc


 (24)

and R = Q−1.

Equations (22) and (23) show how the variation in the βc value of a new
vector c influences βi values of vectors i ∈ S. The δ values are named coefficient

288 Mario Martin

sensitivities from [1]1. Note that β values for vectors not in S do not change while
these vectors do not migrate to another set. Thus, we can extend equation (23)
to all vectors in D by setting δi ≡ 0 for i
∈ S.

Now, we can obtain for vectors i
∈ S how gi and g∗i change as βc changes.
From equation (14), we replace ∆βj and ∆b by their equivalence in equations (22)
and (23).

∆gi = Qic∆βc +
∑
j∈S

Qij∆βj + ∆b =

Qic∆βc +
∑
j∈S

Qijδj∆βc + δ∆βc =

(
Qic +

∑
j∈S

Qijδj + δ
)
∆βc =

γi∆βc (25)

where

γi = Qic +
∑
j∈S

Qijδj + δ ∀i
∈ S (26)

The γ values are named margin sensitivities and are defined only for non
margin support vectors because for i ∈ S, ∆gi = 0. As we have done with
coefficient sensitivities, if we extend equation (25) to all vectors in D, we must
set γi ≡ 0 for i ∈ S.

Equation (25) shows how gi changes as βc changes, but indirectly also shows
how g∗i changes, because equation (15) states that ∆g∗i = −∆gi.

Summarizing, equation (25) shows, for vectors not in S, how gi and g∗i values
change as βc changes (note that their β value does not change). Equation (22)
shows how βi for vectors i ∈ S change as βc changes (note that ∆gi and ∆g∗i is
0 for these vectors). Finally, equation (23) shows how b varies as βc changes.

All these equations are valid while vectors do not migrate from set R, S, E
or E∗ to another one. But in some cases, in order to reach consistent KKT con-
ditions for the new vector c, it could be necessary to change first the membership
of some vectors to these sets. Well, do not worry. Modify βc in the right direc-
tion (increment or decrement) until one migration is forced. Migrate the vector
updating S, E, E∗ and R sets adequately, and then continue the variation of βc.

Migration of Vectors between Sets This section describes all possible dif-
ferent kinds of migrations between sets S, E, E∗ and R, and how they can be
detected. One vector can migrate only from its current set to a neighbor set.
Figure 1 shows the geometrical interpretation of each set and from it we can
infer the following possible migrations.
1 Note that [1] use the β symbol for representing this concept. As β is widely used in

SVM regression as (α − α∗), we have decided to change the notation.

On-Line Support Vector Machine Regression 289

from E to S: One error support vector becomes a margin support vector. This
migration can be detected when updating gi for i ∈ E following equa-
tion (25), gi (that was negative) becomes 0.
The maximum variation in βc that does not imply migrations from E to S
can be calculated as follows: The maximum ∆gi allowed for one vector i ∈ E
is (0 − gi), that is, from gi < 0 to gi = 0. From equation (25) we have,
∆βc = ∆giγ

−1
i . Thus, the maximum variation allowed without the migration

of vector i from E to S can be equated as: (0−gi)γ−1
i . Calculating this value

for all vectors in E and selecting the minimum value, we obtain the maximum
variation allowed in βc that does not force migration of vectors from E to S.

from S to E: One margin support vector becomes an error support vector.
This migration is detected when, updating βi for i ∈ S following equa-
tion (23), βi (that was 0<βi <C) becomes C.
Similarly to the previous case, from equation (23), ∆βc = ∆βiδ

−1
i . Thus, the

maximum variation allowed without the migration of vector i from S to E
can be formulated as: (C −βi)δ−1

i . Calculating this value for all vectors in S
and selecting the minimum value, we obtain the maximum variation allowed
in βc that does not force migration of vectors from S to E.

from S to R: One margin support vector becomes a remainder vector. This
happens when updating βi for i ∈ S following equation (23), βi (that was
0<βi <C or −C <βi <0) turns into 0.
The maximum variation allowed without the migration of vector i from S
to R can be formulated as in the previous case as follows: (0 − βi)δ−1

i .
Calculating this value for all vectors in S and selecting the minimum value,
we obtain the maximum variation allowed in βc that does not force migration
of vectors from S to R.

from R to S: One remainder vector becomes a margin support vector. This
case is detected when the update of gi or g∗i for i ∈ R (thus with gi > 0
and g∗i > 0) causes that one value becomes 0.
The maximum variation in βc that does not imply migrations from R to S
is calculated by collecting (0 − gi)γ−1

i and (0 − g∗i)γ
−1
i for all vectors in R

and selecting the minimum value. This is the maximum variation allowed in
βc that does not force migration of vectors from R to S.

from S to E∗: One margin support vector becomes an error support vector.
This case is detected when, in the update of βi for i ∈ S the value changes
from −C <βi <0 to −C.
The maximum variation in βc that does not imply migrations from S to E∗

is calculated by collecting (−C−βi)δ−1
i for all vectors in S and selecting the

minimum value.
from E∗ to S: One error support vector becomes a margin support vector. This

last case is detected when updating g∗i for vectors i ∈ E∗, the value for one
vector becomes g∗i = 0.
The maximum variation in βc that does not imply migrations from E∗ to S
is calculated by collecting (0− g∗i)γ

−1
i for all vectors in E∗ and selecting the

minimum value.

290 Mario Martin

The only memory resources required in order to monitorize KKT conditions
fulfilled by vectors in D are: gi and g∗i for vectors i
∈ S, and βi for vectors i ∈ S.
In addition, in order to efficiently update these variables we also need to main-
tain Qij for i, j ∈ S –needed in equation (26)–, and R –needed in equation (24).

Note that each possible migration is from S or to S and thus, after any
migration, S must be updated. This implies that, in addition to the update of gi

and g∗i for vectors i
∈ S, and the update of βi for i ∈ βi, also matrixes Qij

for i, j ∈ S and R, must be updated. To update matrix Q is easy because it
only consists in adding/removing the row and column with the kernel values of
the margin support vector added/removed. But the efficient update of matrix R
is not obvious. In the following section we describe how to efficiently maintain
matrix R.

Updating R Matrix R is defined in (24) as the inverse of Q, which at the same
time, is defined in (20). Note that we only need R for the update of β values,
not Q. When one vector becomes a margin support vector (for instance due to a
migration from another set) matrix Q should be updated and, thus, R should be
updated too. The naive idea of maintaining Q and calculate its inverse to obtain
R is expensive in memory and time resources. Instead of this, we will work on
R directly.

The updating procedure is an adaptation of the method proposed by [1] for
classification to the regression problem.

On one hand, when we are adding one margin support vector c, matrix R is
updated as follows:

R :=




0

R ...
0

0 · · · 0 0


 +

1
γc




δ
δS1

...
δSl

1



· [δ δS1 · · · δSl

1
]

(27)

On the other hand, when margin support vector k is removed, matrix R is
updated as follows:

Rij := Rij −R−1
kk RikRkj ∀j, i
= k ∈ [0..l] (28)

where the index 0 refers to the b-term.

Finally, to end the recursive definition of the R matrix updating, it remains
to define the base case. When adding the first margin support vector, the matrix
is initialized as follows:

R := Q−1 =
[
0 1
1 Qcc

]−1

=
[−Qcc 1

1 0

]
(29)

On-Line Support Vector Machine Regression 291

Procedure for Adding One New Vector Taking into account the consid-
erations of the previous sections, the procedure for the incremental addition of
one vector results as follows:

1. Set βc to 0
2. If gc > 0 and g∗c > 0 Then add c to R and exit
3. If gc ≤ 0 Then

Increment βc, updating β for i ∈ S and
gi, g

∗
i for i
∈ S, until one of the following

conditions holds:
- gc = 0: add c to S, update R and exit
- βc = C: add c to E and exit
- one vector migrates from/to sets E, E∗

or R to/from S: update set memberships
and update R matrix.

Else {g∗c ≤ 0}
Decrement βc, updating β for i ∈ S and
gi, g

∗
i for i
∈ S, until one of the following

conditions holds:
- g∗c = 0: add c to S, update R and exit
- βc = −C: add c to E∗ and exit
- one vector migrates from/to sets E, E∗

or R to/from S: update set memberships
and update R matrix.

4. Return to 3

In this procedure, the influence on the regression of vector c to be added
(βc) is incremented until it reaches a consistent KKT condition. Increments in
βc are done monitoring gi, g

∗
i and βi of the whole set of vectors D. When one

vector i does no longer fulfill the KKT conditions associated with the set where
it was assigned, the vector is transferred to the appropriate set and variables are
updated as necessary.

This procedure always converges. The time cost to add one vector is linear
in time with the number of vectors in D. The memory resources needed are
quadratic in the number of vectors in S, because of matrix R.

3.2 Removing One Vector

The procedure for removing one vector from D uses the same principles that the
procedure for adding one new vector.

One vector c can be safely removed from D only when it does not have any
influence on the regression tube. This only happens when the vector lies inside
the ε-tube, or in other words, when βc = 0.

If βc is not 0, the value must be incremented or decremented (depending on
the sign of βc) until it reaches 0. As in the case of adding one new vector, the

292 Mario Martin

modification of βc can change the membership to E, E∗, R and S of some other
vectors in D. Thus, the modification of βc must be done carefully, keeping an
eye on possible migrations of vectors between sets. The algorithm for the on-line
removal of one vector is the following:

1. If gc > 0 and g∗c > 0 Then remove
c from R and exit

2. If gc ≤ 0 Then
Decrement βc, updating β for i ∈ S and
gi, g

∗
i for i
∈ S, until one of the following

conditions holds:
- βc = 0: remove c from R and exit
- one vector migrates from/to sets E, E∗

or R to/from S: update set memberships
and update R matrix.

Else {g∗c ≤ 0}
Increment βc, updating β for i ∈ S and
gi, g

∗
i for i
∈ S, until one of the following

conditions holds:
- βc = 0: remove c from R and exit
- one vector migrates from/to sets E, E∗

or R to/from S: update set memberships
and update R matrix.

3. Return to 2

As in the case of on-line addition of one vector, the procedure always con-
verge. The time cost is linear in |D| while the memory cost is quadratic in |S|.

3.3 Updating Target Value for Existing Data

The obvious way to update the target value for one existing vector c in D consists
in making good use of the previous actions. In order to update the pair<xc, yc >
to <xc, y

′
c >we can follow this procedure:

1. on-line removal of<xc, yc >
2. on-line addition of<xc, y

′
c >

Equations (8) and (9) show that the update of the target value yc changes gc

and g∗c . Thus, usually after an update, gc, g
∗
c and βc values are no longer con-

sistent with KKT conditions. An alternative and more efficient way of updating
the target value consists in varying βc until it becomes KKT-consistent with gc

and g∗c like in the removal and addition cases. This procedure is described in [8].

On-Line Support Vector Machine Regression 293

4 Conclusions

In this paper, we have shown the first on-line procedure for building ε-insensitive
SVMs for regression. An implementation of this method in Matlab is available
at http://www.lsi.upc.es/~mmartin/svmr.html.

The aim of this paper is to open the door to SVM function approximation
for applications that receive training data in an incremental way, for instance
on-line prediction of temporal series, and to applications where the target for
the training data changes very often, for instance reinforcement learning.

In addition to the on-line property, the proposed method presents some in-
teresting features when compared with other exact methods like QP. First, the
memory resources needed are quadratic in the number of margin support vec-
tors, not quadratic on the total number of vectors. Second, empirical tests of
the algorithm on several regression sets show comparable (or better) speeds in
convergence, which means that the on-line learning procedure presented here is
adequate even when the on-line property is not strictly required.

Acknowledgement

I would thank to the people of the SVM seminar at the LSI department in
the UPC for the enlightening discussions about SVM topics, specially to Cecilio
Angulo for his comments and interest in this paper. I would also thank to Gert
Cauwenberghs for making the incremental SVMc program available. This work
has been partially supported by the Spanish CICyT project TIC 2000-1011.

References

1. G. Cauwenberghs and T. Poggio. Incremental and decremental support vector
machine learning. In T. G. Dietterich T. K. Leen and V. Tresp, editors, Advances
in Neural Infomation Processing Systems 13, pages 409–415. MIT Press, 2001. 282,
283, 288, 290

2. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000. 282

3. C. Domeniconi and D. Gunopulos. Incremental support vector machine construc-
tion. In N. Cercone, T. Lin, and X. Wu, editors, Proceedings of the 2001 IEEE
Intl. Conference on Data Mining, pages 589–592. IEEE Computer Society, 2001.
283

4. S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms
and representations for text categorization. In 7th International Conference on
Information and Knowledge Management, ACM-CIKM98, pages 148–155, 1998.
282

5. C. Gentile. A new approximate maximal margin classification algorithm. In
T. G. Dietterich T. K. Leen and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 500–506. MIT Press, 2001. 283

6. T. Graepel, R. Herbrich, and R. Williamson. From margin to sparsity. In T. G. Di-
etterich T. K. Leen and V. Tresp, editors, Advances in Neural Information Pro-
cessing Systems 13, pages 210–216. MIT Press, 2001. 283

294 Mario Martin

7. J. Kivinen, A. Smola, and R. Williamson. Online learning with kernels. In S. Becker
T. G. Dietterich and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14. MIT Press, 2002. 283

8. M. Martin. On-line support vector machine for function approximation. Technical
report, Universitat Politècnica de Catalunya, Forthcomming. 292

9. E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an ap-
plication to face detection. In International Conference on Computer Vision and
Pattern Recognition, CVPR97, pages 30–136, 1997. 282

10. A. Smola and B. Schölkopf. A tutorial on support vector regression. Technical
Report NC2-TR-1998-030, NeuroCOLT2, 1998. 283

11. R. Sutton and A. Barto. Reinforcement Learning. MIT Press, 1998. 282
12. V. Vapnik. The nature of statistical learning theory. Springer Verlag, 1995. 282,

283

	On-Line Support Vector Machine Regression
	Introduction
	Reformulation
	Separation of Data

	On-Line Support Vector Regression
	Adding One New Vector
	Modification of βc
	Migration of Vectors between Sets
	Updating R
	Procedure for Adding One New Vector

	Removing One Vector
	Updating Target Value for Existing Data

	Conclusions
	Acknowledgement
	References

