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Abstract. In the past decades Machine Learning algorithms have been success-
fully used in numerous classification problems. While they usually significantly
outperform domain experts (in terms of classification accuracy or otherwise), they
are mostly not being used in practice. A plausible reason for this is that it is diffi-
cult to obtain an unbiased estimation of a single classification’s reliability. In the
paper we propose a general transductive method for estimation of classification’s
reliability on single examples that is independent of the applied Machine Learn-
ing algorithm. We compare our method with existing approaches and discuss its
advantages. We perform extensive testing on 14 domains and 6 Machine Learn-
ing algorithms and show that our approach can frequently yield more than 100%
improvement in reliability estimation performance.

1 Introduction

Usually Machine Learning algorithms output only bare classifications for the new un-
classified examples. While there are ways for almost all Machine Learning algorithms
to at least partially provide quantitative assessment of a classification in questions, so
far there is no general method to assign reliability to a single classification. Note that
we are interested in the classifier’s performance on a single example and not in average
performance on an independent dataset.

Let us define the reliability of classification as an estimated probability that the (sin-
gle) classification is in fact the correct one. Some authors [16, 21] use for this purpose
a statistical term confidence. We, however, have decided to use a term reliability, since
its calculation and interpretation are not always strictly statistical. For a given example
description xi we define the reliability of its predicted class yi as follows.

Rel(yi) = P(yi is a true class of example xi) (1)

There have been numerous attempts to assign probabilities to Machine Learning classi-
fiers’ (decision trees and rules, Bayesian classifiers, neural networks, nearest neighbour
classifiers, . . . ) in order to interpret their decision as a probability distribution over all
possible classes. In fact, we can trivially convert every Machine Learning classifier’s
output to a probability distribution by assigning the predicted class the probability 1,
and 0 to all other possible classes. The posterior probability of the predicted class can
be viewed as a classifier’s trust in its prediction (reliability) [3, 19]. However, such esti-
mations may not be good due to the applied algorithm’s language and representational
biases.
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There is some ongoing work for constructing classifiers that divide the data space
into regions that are reliable and regions that are not reliable [1]. Such meta-learning
approaches have also been used for picking the most reliable prediction from the outputs
of an ensemble of classifiers [14, 17].

We propose a different approach based on a general transductive method for relia-
bility estimations. Our approach differs from the above in the following:

• it does not divide the data space into reliable and unreliable regions, but works
instead on single data points (examples),

• it does not induce a meta-classifier at all, but instead uses a transductive framework
to generate a reliability estimate for each single example.

Our approach is independent of the applied Machine Learning algorithm and requires
only that it is able to represent its classifications as probability distributions. The core
idea is to compare differences in classification’s probability distributions between in-
ductive and transductive steps and use them to assess reliability of single points (exam-
ples) in data space. Such assessments are very useful, especially in risk-sensitive appli-
cations (medical diagnosis, financial and critical control applications) because there it
often matters, how much one can rely upon a given prediction. In such cases a general
reliability measure of a classifier (e.g. classification accuracy, mean squared error, . . . )
with respect to the whole input distribution would not provide desired warranty. An-
other use of reliability estimations is in ensembles for selecting or combining answers
from different classifiers [8].

The paper is organized as follows. In Sec. 2 we describe the basic ideas of trans-
ductive inference and outline the reasons why transductive reliability estimation should
work well. In Sec. 3 we develop our idea for general and efficient implementation of
transductive reliability estimation. In Sec. 4 we evaluate our approach on 14 domains
with 6 Machine Learning algorithms. In Sec. 5 we present some conclusions and direc-
tions for future work.

2 Transduction Principle for Reliability Estimation

Transduction is an inference principle that takes a training sample and aims at estimat-
ing the values of a discrete or continuous function only at given unlabelled points of
interest from input space, as opposed to the whole input space for induction. In the
learning process the unlabelled points are suitably labelled and included into the train-
ing sample. The usefulness of unlabelled data [12] has among others been advocated in
the context of co-training. It has been shown that for a better-than-random [2] classifier
its performance can be significantly boosted by using only additional unlabelled data.

It has been suggested [20] that when solving a given problem one should avoid
solving a more general problem as an intermediate step. The reasoning behind this
principle is that, in order to solve a more general task, resources may be wasted or
compromises made which would not have been necessary for solving only the problem
at hand (i.e. function estimation only on given points). This common-sense principle
reduces a more general problem of inferring a functional dependency on the whole
input space (inductive inference) to the problem of estimating the values of a function
only at given points (transductive inference).
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Let X be a space of attribute descriptions of points in a training sample, and Y
a space of labels (continuous or discrete) assigned to each point. Given a probability
distribution P , defined on the input space X ×Y , a training sample

S = {(x1,y1), . . . ,(xl,yl)} (2)

consisting of l points, is drawn i.i.d. (identically independently distributed) according
to P . Additional m data points (working sample)

W = {xl+1, . . . ,xl+m,} (3)

with unknown labels are drawn in the same manner. The goal of transductive inference
is to label all the points from the sample W using a fixed set H of functions f : X �→Y in
order to minimize an error functional both in the training sample S and in the working
sample W (effectively, in S∪W ) [5, 16]. In contrast, inductive inference (excluding
ensembles of classifiers) aims at choosing a single function f ∈ H that is best suited to
the unknown probability distribution P .

At this point arises a question how to calculate the labels for a working sample.
This can be done by labelling every point from a working sample with every possible
label value; however given m working points and n possible class labels this leads to a
combinatorial explosion yielding nm possible labellings. For each possible labelling, an
induction process on S∪W is run, and an error functional (error rate) is calculated.

By leveraging the i.i.d. sampling assumption and transductive inference, one can
for each labelling estimate its reliability (a probability that it is correct). If the i.i.d.
assumption holds, the training sample S as well as the joint correctly labelled sample
S∪W should both reflect the same underlying probability distribution P .

If one could measure a degree of similarity between probability distributions P (S)
and P (S∪W ), this could be used as a measure of reliability of the particular labelling.
Unfortunately, this problem is in non-computable [11], so approximation methods have
to be used [21, 9].

2.1 Why does Transduction Work?

There is a strong connection between the transduction principle and the algorithmic
(Kolmogorov) complexity. Let the sets S and S∪W be represented as binary strings u
and v, respectively. Let l(v) be the length of the string v and C(v) its Kolmogorov
complexity. We define the randomness deficiency of the string v as following [11, 21]:

δ(v) = l(v)−C(v) (4)

Randomness deficiency measures how random is the respective binary string and there-
fore the set it represents. The larger it is, the more regular the string (and the set). If we
could calculate the randomness deficiency (but we cannot, since it is not computable),
we could do it for all possible labellings of the set S∪W and select the labelling of W
that results in the largest randomness deficiency of the joint set S∪W as the most proba-
ble one [21]. We could also construct a universal Martin-Löf’s test for randomness [11]:

∑{P(x|l(x) = n) : δ(x) ≥ m} ≤ 2−m (5)
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That is, for all binary strings of fixed length n, the probability of their randomness defi-
ciency δ being greater than m is less than 2−m. The value 2−δ(x) is therefore a p-value
function for our randomness test [21].

Unfortunately, the definition of randomness deficiency is based on the Kolmogorov
complexity and is not computable. Therefore we need feasible approximations to use
this principle in practice. Extensive work has been done by using Support Vector Ma-
chines [5, 16, 21], however no general approach exists so far.

2.2 A Machine Learning Interpretation

In Machine Learning terms, the sets S and S∪W are represented with induced mod-
els MS and MS∪W . Randomness of the sets is reflected in the (Kolmogorov) complexity
of the respective models. If for the set S∪W the labelling with the largest randomness
deficiency is selected, it follows from the definition (Eq. 4) that since the uncompressed
description length l(v) is constant, the Kolmogorov complexity C(MS∪W ) is minimal.
This implies that the respective labelling of W is most consistent with the training data S,
since the minimal Kolmogorov complexity implies most regularities in the data. This
in order implies that our Machine Learning algorithm will induce the model MS∪W that
will be most similar to the MS.1 Ideally, if the training data S is sufficient for inducing a
perfect model, there is no difference between MS and MS∪W .

This greatly simplifies our view on the problem, namely it suffices to compare the
(finite) models MS and MS∪W . Greater difference means that the set S ∪W is more
random than the set S and (under the assumption that S is sufficient for learning effective
model) that W consist of (at least some) improperly labelled, untypical examples.

Although the problem seems easier now, it is still a computational burden to calcu-
late changes between model descriptions (assuming that they can be efficiently coded;
black-box methods are thus out of question). However, there exists another way.

Since transduction is an inference principle that aims at estimating the values of a
function only at given points of interest from input space (the set W ), we are interested
only in model change considering these examples. Therefore we can compare the clas-
sifications (or even better, probability distributions) of models MS and models MS∪W .
Obviously, the labelling of W that would minimally change the model MS is as given
by MS. We will examine this approach in more detail in the next section.

3 Efficient Transductive Reliability Estimations

The prerequisite for a Machine Learning algorithm to be used in a transductive relia-
bility framework is to represent its classifications as a probability distribution over all
possible classes, although these distributions may not be very good estimates.

The transductive reliability estimation process is basically a two-step process, fea-
turing an inductive step followed by a transductive step.

1 Actually, here it would be more appropriate to use a prefix Kolmogorov complexity K( ) in-
stead of C( ), and two-part MDL-style (model+exceptions) descriptions of the sets, since the
Kolmogorov complexity C( ) itself is non-monotonic [11] wrt. the string length.
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Fig. 1. Transductive reliability estimation

– An inductive step is just like an ordinary inductive learning process in Machine
Learning. A Machine Learning algorithm is run on the training set, inducing a clas-
sifier. A selected example is taken from an independent dataset and classified using
the induced classifier. The same example is duplicated, labelled with its assigned
class, and finally included into the training set (Fig. 1a).

– A transductive step is almost a repetition of an inductive step. A Machine Learning
algorithm is run on the changed training set, transducing a classifier. The same ex-
ample as before is taken from the independent dataset and again classified, now us-
ing the transduced classifier (Fig. 1b). Both classifications (represented by probabil-
ity distributions) of the same example are compared and their difference (distance)
is calculated, thus approximating the randomness deficiency. A brief algorithmic
sketch is given in Fig. 2.

3.1 Calculating the Difference between Probability Distributions

Since a prerequisite for a Machine Learning algorithm is to represent its classifications
as a probability distribution over all possible classes, we need a method to measure the
difference between two probability distributions. The difference between two probabil-
ity distributions (over discrete item sets of size N < ∞) can be viewed as a distance
between two vectors in RN . In principle, any metric can be used, however not all strict
metric properties are required. We require only that the difference measure D between
probability distributions P and Q satisfies the following:

1. D(P,Q) ≥ 0 (nonnegativity)
2. 0 ≤ D(P,Q) ≤ ∞,whereD(P,Q) = 0 ⇔ P = Q
3. D(P,Q) = D(Q,P) (symmetry law).

In our case P is a probability distribution after the inductive step, and Q is a prob-
ability distribution after the transductive step. For calculating the difference between
probability distributions, a Kullback-Leibler divergence is frequently used [18]. In our
experiments we use a symmetric Kullback-Leibler divergence.
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Requires: Machine Learning classifier, a training set and an unlabelled test
example

Ensures: Estimation of test example’s classification reliability
1: Inductive step:

• train a classifier from the provided training set
• select an unlabelled test example and classify this example with an induced classifier
• label this example with a predicted class
• temporarily add the newly labelled example to the training set

2: Transductive step:

• train a classifier from the extended training set
• select the same unlabelled test example as above and classify this example with a trans-

duced classifier

3: Calculate a randomness deficiency approximation as a difference between inductive and
transductive classification.

4: Calculate the reliability of classification as 2−difference.

Fig. 2. The algorithm for transductive reliability estimation

3.2 Kullback-Leibler Divergence

Kullback-Leibler divergence, also frequently referred to as a relative entropy or I-
divergence, is defined between probability distributions P and Q

I(P,Q) = −
n

∑
i=1

pi log2
pi

qi
(6)

Symmetric Kullback-Leibler divergence, or J-divergence, is defined between probabil-
ity distributions P and Q

J(P,Q) = (I(P,Q)+ I(Q,P)) =
n

∑
i=1

(pi −qi) log2
pi

qi
(7)

J(P,Q) is limited to the interval [0,∞], with J(P,P) = 0. Similarly to the p-values of the
universal Martin-Löf randomness test (Eq. 5), we calculate our reliability estimation as

Rel(P,Q) = 2−J(P,Q) (8)

However, measuring the difference between probability distributions does not always
perform well. There are at least a few exceptional classifiers (albeit trivial ones) where
our original approach utterly fails.

3.3 The Curse of Trivial Models

So far we have implicitly assumed that the model used by the classifier is good (at
the very least better than random). Unsurprisingly, our approach works very well with
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random classifiers (probability distributions are randomly calculated) by effectively la-
belling their classifications as unreliable [8].

On the other hand, there also exist simple constant and majority classifiers. A con-
stant classifier is such that it classifies all examples into the same class Ck with proba-
bility 1. In such cases our approach always yields reliability 1 since there is no change in
probability distribution. A majority classifier is such that it classifies all examples into
the same class Ck that is the majority class in the training set. Probability distribution
is always the same and corresponds to the distribution of classes in the training set. In
such cases our approach yields reliability very close to 1 since there is almost no change
in probability distribution (only for the example in question), that is at most for 1/N,
where N is number of training examples. In large datasets this change is negligible.

Note that such extreme cases do occur in practice and even in real life. For example,
a physician that always diagnoses an incoming patient as ill is a constant classifier. On
the other hand, a degenerated – overpruned – decision tree (one leaf only) is a typical
majority classifier.

In both cases all classifications are seemingly completely reliable. Obviously we
also need to take in account the quality of classifier’s underlying model and appropri-
ately change our definition of reliability.

If we review our original definition of reliability (Eq. 1) it is immediately obvious
that we assumed that the model was good. Our reliability estimations actually estimate
the conditional reliability with respect to the model M

Rel(yi|M) = P(yi is a true class of xi | model M is good) (9)

To calculate required unconditional reliability we apply the conditional probability the-
orem for the whole model

Rel′(yi) = P(model M is good)∗P(yi is true class of xi | model M is good) (10)

or even better for the partial models for each class yi

Rel′(yi) = P(model M is good for yi)∗P(yi is true class of xi | model M is good for yi)
(11)

Now we only need to estimate the unconditional probabilities

P(model is good) or ∀i : P(model is good for yi) (12)

In Machine Learning we have many methods to estimate the quality of the induced
model, e.g. a cross-validation computation of classification accuracy is suitable for es-
timation of Eq. 12. However it may be better to calculate it in a less coarse way, since
at this point we already know the predicted class value (yi).

We propose a calculation of (Bayesian) probability that the classification in a certain
class is correct. Our approach is closely related to the calculation of post-test probabil-
ities in medical diagnostics [3, 13]. Required factors can be easily estimated from the
confusion matrix (Def. 1) with internal testing.

Definition 1. A confusion matrix (CM) is a matrix of classification errors obtained with
an internal cross validation or leave-one-out testing on the training dataset. The i j-th
element cij stands for the number of classifications to the class i that should belong to
the class j.
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Definition 2. Class sensitivity and specificity are a generalization of sensitivity (true
positives ratio) and specificity (true negatives ratio) values for multi-class problems.
Basically, for N classes we have N two-class problems. Let Cp be a correct class in
certain case, and C a class, predicted by the classifier in the same case. For each of
possible classes Ci, i∈{1..N}, we define its class sensitivity Se(Ci)= P(C =Ci|Cp =Ci)
and its class specificity Sp(Ci) = P(C �= Ci|Cp �= Ci) as follows:

Se(Ci) = P(C = Ci|Cp = Ci) =
cii

∑ j ci j
(13)

Sp(Ci) = P(C �= Ci|Cp �= Ci) =
∑ j �=i c ji

∑ j �=i ∑k c jk
(14)

Class conditional probability is calculated for each class Ci, given its prior probability
P(Ci), approximated with the prevalence of Ci in the training set, its class specificity
(Sp) and sensitivity (Se):

Pcond(Ci) =
P(Ci)Se(Ci)

P(Ci)Se(Ci)+ (1−P(Ci))(1−Sp(Ci))
(15)

For a fixed model and a fixed class Ci its class sensitivity and specificity are typically
interdependent according to the ROC (receiver operating characteristics) curve (Fig. 3).
An important advantage of class conditional probability over classification accuracy
is that it takes in account both classifier’s characteristics and prevalence of each class
individually (Fig. 3). It is non-monotonic over all classes and therefore better describes
the classifier’s performance in its problem space.

To calculate the reliability estimation we therefore need the probability distribu-
tions P and Q, and index i = argmax P that determines the class with max. probability
(Ci). According to the Eq. 11 we calculate the reliability estimations by

Rel(P,Q;Ci) = Pcond(Ci)×2−J(P,Q) (16)

Multiplication by class conditional probabilities accounts for basic domain character-
istics (prevalence of classes) as well as classifier’s performance. This includes class
sensitivity and specificity, and it is especially useful in an automatic setting for detect-
ing possible anomalies such as default (either majority or constant classifiers) that – of
course – cannot be trusted. It is easy to see that in this case we have one class with
sensitivity 1 and specificity 0, whereas for all other classes we have sensitivity 0 and
nonzero specificity. In the first case, the class post-test probability is equal to its prior
probability, whereas in the second case it is 0.

3.4 Reliable and Unreliable Classifications

Since the datasets used for training classifiers vary in their representativeness and noise
levels as well as Machine Learning algorithms vary in strength and assumptions of their
underlying models, it is hard to obtain absolute thresholds for reliable classifications.
In our experiments they varied between 0.20 and 0.70 for different domains and Ma-
chine Learning algorithms. Therefore it is useful to calibrate our criteria in advance by
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utilizing the training dataset. On the training set, an internal cross validation or (better)
leave-one-out testing is performed. For each training example a reliability estimation
is made and the predicted as well as the exact class is known. In fact, we now have a
new dataset with two possible classes {incorrectly-classified, correctly-classified}, and
a single numeric attribute {reliability-estimation}. On this meta-problem we perform
binary discretization of the reliability estimation attribute by maximizing the informa-
tion gain of the split [4] with our goal being to obtain as pure subsets as possible. The
best threshold T for the dataset split is calculated by maximizing Eq. 19.

H(S) = entropy of the set S (17)

H(S;T ) =
S1

S
H(S1)+

S2

S
H(S2) (entropy after split) (18)

Gain(S,T ) = H(S)−H(S;T) (19)

In the set S1 there are unreliable examples {x : Rel(x) < T} whereas in the set S2 there
are reliable examples {x : Rel(x)≥ T}. An experimental result for a dataset split is pre-
sented in Fig. 4. Note that internal testing must be done only once during the preparation
for transductive reliability estimation. During this calculation we may also conveniently
calculate necessary frequencies needed for model quality estimations (Def. 1).

Fig. 3. Class conditional probabilities
with respect to the ROC curve and the
prior probability (P) of the class

Fig. 4. Reliability estimations in domain
“Diabetes” using Backpropagation neural
networks. To the left of the possible two
boundaries are unreliable classifications,
to the right are the reliable classifications
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4 Experiments

To validate our proposed methodology we performed extensive experiments with 6 dif-
ferent Machine Learning algorithms – naive and semi naive Bayesian classifier [7],
backpropagation neural network [15], K-nearest neighbour, locally naive Bayesian clas-
sifier (a combination KNN and naive Bayesian classifier) [8], Assistant (ID3-like deci-
sion trees) [6] on 14 well-known benchmark datasets (Tab. 1a and 1b).

All algorithms were modified to represent their classifications as probability dis-
tributions. As a reference method the assigned classifier’s probability was used. We
performed two comparisons. Firstly, we tested how well can the original populations be
split in the subpopulations of correctly and incorrectly classified examples. We applied
Kolmogorov-Smirnov and χ2 statistical tests. In all cases the difference between the
two populations was significant with p < 0.05, in most cases even with p � 0.01. So

Table 1. Experimental results with transductive reliability estimation on 14 domains
and 6 ML algorithms, obtained with leave one out testing

Domain Inf. gain Inf. gain Relative Kolmogorov- χ2-test
(Symm. K-L) (class prob.) improvement Smirnov test

Mesh 0.32 0.18 87.97% < 0.01 < 0.01
Breast cancer 0.14 0.06 142.76% < 0.01 < 0.01
Nuclear 0.11 0.06 88.48% < 0.01 < 0.01
Diabetes 0.23 0.09 195.44% < 0.01 < 0.01
Heart 0.13 0.12 11.45% < 0.01 < 0.01
Hepatitis 0.15 0.10 52.43% < 0.01 < 0.01
Iris 0.18 0.15 33.98% < 0.01 < 0.01
Chess endgame 0.07 0.04 145.28% < 0.01 < 0.01
LED 0.08 0.06 10.93% < 0.01 < 0.01
Lymphograpy 0.13 0.10 30.66% < 0.01 < 0.01
Primary tumor 0.22 0.13 78.54% < 0.01 < 0.01
Rheumatology 0.29 0.15 105.28% < 0.01 < 0.01
Soybean 0.17 0.11 83.05% < 0.01 < 0.01
Voting 0.11 0.09 20.31% < 0.01 < 0.01

(a) Average results on different domains

ML Inf. gain Inf. gain Relative Kolmogorov- χ2-test
algorithm (Symm. K-L) (class prob.) improvement Smirnov test
Naive Bayes 0.18 0.11 82.31% < 0.01 < 0.01
Semi naive Bayes 0.16 0.10 56.31% < 0.01 < 0.01
Neural network 0.20 0.08 169.38% < 0.01 < 0.05
K-nearest neighbour 0.13 0.09 55.19% < 0.05 < 0.01
KNN + Naive Bayes 0.16 0.12 43.10% < 0.01 < 0.01
Assistant 0.15 0.11 32.26% < 0.01 < 0.01

(b) Average results of different Machine Learning algorithms



Reliable Classifications with Machine Learning 229

the splitting criterion introduced in Sec. 3.4 really produces statistically significantly
different subpopulations.

Secondly, we measured the improvement of our methodology over the assigned
classifier’s probability. For both methods we compared information gains (Sec. 3.4)
that directly correspond to the (im)purity of the split subpopulations. Results are sum-
marized by domains (Tab. 1a) and Machine Learning algorithms (Tab. 1b).

As it is clearly visible from the results, relative improvements were always in favour
of transductive reliability estimation. After the split, the subpopulations were much
purer than the original one, information gain (Eq. 19) was on average increased by
75%, ranging between 11% and 195%. All improvements were statistically significant
using a two-tailed t-test with p < 0.05.

We also performed an in-depth comparison of transductive reliability estimations
and physicians’ reliability estimations in the nuclear dataset (nuclear diagnostics of
Coronary Artery Disease), where expert physicians were available for cooperation[10].
Our method increased the number of correctly reliable classifications by 22.5% while
the number of incorrectly marked as reliable classifications remaind the same [9]. It is
estimated that such results if applicable in practice would reduce the costs of diagnostic
process by 10%!

5 Discussion

We propose a new methodology for transductive reliability estimations of classifica-
tions within Machine Learning framework. We provide a theoretical framework for our
methodology and an efficient implementation in conjunction with any Machine Learn-
ing algorithm that can represent its predictions as probability distributions. We show
that in certain extreme cases our basic approach fails and provide improvements that
account for such anomalous cases. We argue that, especially in risk-sensitive appli-
cations, any serious Machine Learning tool should use a similar methodology for the
assessment single of classification reliability. Another use of reliability estimations is
in combining answers from different predictors, weighed according to their reliability.

Our experiments in benchmark domains show that our approach is significantly bet-
ter than evaluating classifier’s posterior probabilities. Experimental results of reliability
estimations in the Coronary Artery Disease diagnostics also show enormous potential of
our methodology. The potential improvements in diagnostic process are so big that the
physicians are seriously considering introducing this approach in everyday diagnostic
practice.

There are several things that can be done to further develop our approach. Cur-
rently we aim to replace the discretization of reliability estimation values for obtaining a
threshold value. We intend to replace it with proprietary population statistics that would
hopefully eliminate impact of differently representative datasets and model weaknesses
on resulting quantitative reliability estimation values.
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