
Possibilistic Induction in Decision-Tree Learning
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Abstract. We propose a generalization of Ockham’s razor, a widely
applied principle of inductive inference. This generalization intends to
capture the aspect of uncertainty involved in inductive reasoning. To this
end, Ockham’s razor is formalized within the framework of possibility
theory: It is not simply used for identifying a single, apparently optimal
model, but rather for concluding on the possibility of various candidate
models. The possibilistic version of Ockham’s razor is applied to (lazy)
decision tree learning.

1 Introduction

Inductive reasoning – by its very nature – is inseparably connected with uncer-
tainty [4]. To begin with, the data presented to learning algorithms is imprecise,
incomplete or noisy most of the time, a problem that can badly mislead a learn-
ing procedure. But even if observations are perfect, the generalization beyond
that data is still afflicted with uncertainty. For example, observed data can gen-
erally be explained by more than one candidate theory, which means that one
can never be sure of the truth of a particular model. In fact, the insight that
inductive inference can never produce ultimate truth can be traced back at least
as far as Francis Bacon’s epistemology. In his Novum Organum

1, Bacon

advocates a gradualist conception of inductive enquiry and proposes to set up
degrees of certainty. Thus, from experience one may at best conclude that a
theory is likely to be true – not, however, that it is true with full certainty.

In machine learning and mathematical statistics, uncertainty is often handled
by means of probabilistic methods. In Bayesian approaches, for example, the
data-generating process is modeled by means of a probability distribution which
depends on the true model. Given the data S, a (posterior) probability (density)
can thus be assigned to each model M ∈ M, where M is the class of candidate
models. The specification of a probability distribution, µ, over that class of
models allows one to take the uncertainty related to the learning (prediction) task
into account. For example, rather than making a single prediction y0 = M∗(x0)
on the basis of a particular model M∗ (and a given query x0), one can derive a
probability Pr(y) = µ({M ∈ M|M(x0) = y}) for each potential outcome y.

Probabilistic approaches are not always applicable, however, and they do not
capture every kind of uncertainty relevant to machine learning. Particularly, this
1 Published in 1620.
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appears to be true for the uncertainty or, say, unreliability connected to heuristic
principles of inductive inference such as Ockham’s razor. Such principles usu-
ally suggest one particular model M∗ ∈ M, thereby disregarding the aspect of
uncertainty. Our aim in this paper is to alleviate this drawback by means of a
possibilistic approach to inductive inference. More specifically, we shall propose
a formalization of Ockham’s razor within the framework of possibility theory.
In its generalized version, Ockham’s razor specifies the possibility of alternative
models rather than selecting one particular model.

Section 2 recalls some basic principles of decision tree learning. In Section 3,
the possibilistic version of Ockham’s razor is introduced. The application of
this generalized principle to classical decision tree learning and to a lazy variant
thereof are discussed, respectively, in Sections 4 and 5. Finally, Section 6 presents
some experimental results.

2 Decision Tree Learning

We proceed from the common framework for learning from examples: X denotes
the instance space, where an instance corresponds to the description x of an
object in attribute–value form. That is, each object x is characterized through
attribute values αı(x) ∈ Aı, 1 ≤ ı ≤ k, where Aı = dom(αı) is the (finite) domain
of the ı-th attribute αı; the set of all attributes is denoted A. L = {λ1, . . . , λm}
is a set of labels, and 〈x, λx〉 is called a labeled instance or an example. S denotes
a sample that consists of n labeled instances 〈xı, λxı〉, 1 ≤ ı ≤ n. Finally, a new
instance (query) x0 ∈ X is given, whose label λx0 is to be estimated.

The basic principle underlying most decision tree learners, well-known exam-
ples of which include the ID3 algorithm [12] and its successor C4.5 [13] as well
as the CART system [2], is that of partitioning the set of given examples, S, in
a recursive manner. Each inner node η of a decision tree τ defines a partition
of a subset Sη ⊂ S of examples assigned to that node. This is done by clas-
sifying elements x ∈ Sη according to the value of a specific attribute α. The
attribute is selected according to a measure of effectiveness in classifying the
examples, thereby supporting the overall objective of constructing a small tree.
A widely applied “goodness of split” measure is the information gain, G(S, α),
which is defined as the expected reduction in entropy (impurity) which results
from partitioning S according to α:

G(S, α) .= ent(S) −
∑

u∈dom(α)

|Su|
|S| ent(Su), (1)

where Su
.= {〈x, λx〉 ∈ S |α(x) = u}. The entropy of a set S is given by

ent(S) .=
∑
λ∈L

−qλ · log2(qλ), (2)

where qλ
.= card({〈x, λx〉 ∈ S |λx = λ}) · card(S)−1. Besides, a number of other

selection measures have been devised. See [11] for an empirical comparison of
such measures.
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Since decision tree induction is by now a well-known method, we shall restrict
ourselves to a concise exposition of the basic algorithm underlying ID3 and
C4.5. This algorithm derives a decision tree in a top-down fashion by means of
the following heuristic (greedy) strategy:

– The complete set of training samples, S, is assigned to the root of the tree.
– A node η becomes a leaf (answer node) of the tree if all associated samples Sη

belong to the same class λ. In this case, η is assigned the label λ.2

– Otherwise, node η becomes a decision node: It is split by partitioning the
associated set Sη of examples. This is done by selecting an attribute (among
those that have not been used so far) as described above and by classify-
ing the samples x ∈ Sη according to the values α(x). Each element of the
resulting partition defines one successor node.

Once the decision tree has been constructed, each path can be considered
as a rule. The antecedent of a rule is a conjunction of conditions of the form
αı(x) = uı, where αı is an attribute and uı ∈ dom(αı) a specific value thereof.
The conclusion part determines a value for the class variable. New examples are
then classified on the basis of these rules, i.e. by looking at the class label of the
leaf node whose attribute values match the description of the example.

3 A Possibilistic Version of Ockham’s Razor

3.1 Possibility Theory

Here we briefly review some aspects of possibility theory without going into
technical detail. Possibility theory [7] is an alternative calculus for modeling
and processing uncertainty or, more generally, partial belief. Possibility theory
makes a distinction between the concepts of certainty (necessity) and plausi-
bility (possibility) of an event. As opposed to probability theory, it does not
claim that the confidence in an event is determined by the confidence in the
complement of that event. Consequently, possibility theory is non-additive. In
fact, the basic axiom of possibility theory involves the maximum-operator rather
than the arithmetic sum: Π(A ∪B) = max

{
Π(A), Π(B)

}
. In plain words, the

possibility of the union (disjunction) of two events A and B is the maximum of
the respective possibility of the individual events. A possibility distribution Π
on 2X (satisfying Π(X) = 1 and Π(∅) = 0) is related to a possibility measure
π : X → V via Π(A) .= supx∈A π(x). V is a totally ordered scale which is usu-
ally taken as the unit interval [0, 1]. However, V can also be a purely qualitative
scale, in which case π(x) < π(y) simply means that y is more plausible than x.
A so-called necessity measure N , defined by N(A) .= 1 − supx∈X\A π(x) for all
A ⊆ X , is associated with a possibility measure Π . A necessity measure satisfies
N(A ∩B) = min

{
Π(A), Π(B)

}
.

2 In the case of noisy data, it may happen that all attributes have already been used
along the path from the root of the tree to η, though not all samples have the same
label.
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Where does a possibility distribution come from? Originally, the idea of
Zadeh [14] was to induce a possibility distribution from vague linguistic infor-
mation, as represented by a fuzzy set. For example, the uncertainty related to the
vague statement that “x is a small positive integer” translates into a distribution
which lets x = 1 appear fully plausible (π(1) = 1), whereas, say, 5 is regarded
as more or less plausible (π(5) = 1/2) and 10 as impossible (π(10) = 0).3

More generally, a possibility distribution can be induced by a flexible con-
straint: Consider a set A of alternatives and suppose information about an ele-
ment a0 ∈ A of interest to be given, expressed in the form of a constraint. Usually,
a constraint completely excludes some alternatives a ∈ A and can hence be iden-
tified with a subset C ⊆ A of still admissible candidates. A flexible constraint
may exclude alternatives to a certain extent. A possibility degree π(a) is then
understood as the plausibility that remains of alternative a given the constraint.

Note that two constraints are naturally combined by intersection. The pos-
sibilistic counterpart to this kind of conjunctive operation is the (pointwise)
minimum, i.e. the combination of two possibility distributions π1 and π2 into a
new distribution π : x �→ min{π1(x), π2(x)}.

In the following section, we shall look at Ockham’s razor as a flexible con-
straint. More generally, our view of a heuristic inductive reasoning principle is
that of a constraint which may exclude a model (from the class of candidate
models) to a certain degree.

3.2 Ockham’s Possibilistic Razor

According to Ockham’s razor, a simple model is to be preferred to a more
complex one. In the context of decision trees, simplicity is usually equated with
size and, hence, one tries to find the smallest tree among those consistent with the
data. Note that the heuristic divide and conquer algorithm outlined in Section 2
only finds an approximation to this tree.

Of course, what we actually desire is the true model, and the assumption
underlying Ockham’s razor is that a simple model is more likely to be true than
a complex one if both explain the data equally well. Even though this assumption
is not very well settled from a theoretical point of view it is intuitively appealing
and has proved its worth in practice [5].

Now, consider two decision trees τ∗ and τ , where τ is only slightly more com-
plex than τ∗. In such a case, one would generally not completely reject τ . Indeed,
when taking the “more likely to” in the above formulation of Ockham’s razor
seriously, then τ should be assigned a certain degree of possibility as well. This,
in turn, should be taken into account when making inferences about new objects.
More generally, this possibilistic interpretation of Ockham’s razor suggests to
define a possibility distribution πM over the class of models M, where the pos-
sibility πM(τ) depends on the simplicity of τ in comparison to the simplicity of

3 The specific definition of π clearly depends on the context.
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the simplest (and hence most plausible4) model τ∗:

πM(τ) = πM(τ |S) .=
{

0 if τ is not consistent
f(|τ |, |τ∗|) otherwise , (3)

where |τ | denotes the complexity of τ (a model τ is consistent if τ(x) = λx

for all instances 〈x, λx〉 ∈ S). A possibilistic prediction, that is a possibility
distribution over the class of labels L, can then be obtained by applying the
well-known extension principle:

πL(λ) = πL(λ |x0) .= sup{πM(τ) | τ(x0) = λ}. (4)

Needless to say, the computation of the possibility measure (3) is generally
not tractable, as it requires the consideration of all (consistent) models. Apart
from that, one will often not be interested in the possibility degrees of all mod-
els, but only in those models with a high degree of possibility. In the following
section, we shall propose a heuristic approach which is a generalization of re-
cursive partitioning: The problem of inducing a decision tree is decomposed into
sub-problems in a hierarchical way, and the possibility of a tree τ is derived from
the possibilities of its sub-trees.

4 Generalized Decision Tree Learning

Recall that the selection of an attribute in decision tree learning is made on
the basis of a measure such as (1). Now, suppose that G(Sη, α

∗) is quite large
for the apparently optimal attribute α∗, whereas G(Sη, α) is rather small for
all remaining attributes. Taking the adequacy of the decision tree approach for
granted, one can then be quite sure that α∗ is indeed the “correct” selection
(problem decomposition) at this place. However, if G(Sη, α) is close to G(Sη, α

∗)
for some alternative attribute α, it is reasonable to say that α appears possible to
a certain extent as well. More specifically, one might define a degree of possibility
πA(α |Sη) for each attribute α on the basis of the set of measures {G(Sη, α) |α ∈
A}, for example

πA(α) = πA(α |Sη) .= max
{

0, 1 − c (G(Sη, α
∗) −G(Sη, α)

)}
, (5)

where c > 0. In order to guarantee a meaningful interpretation of the difference
G(Sη, α

∗) −G(Sη, α), the measure G(·) is assumed to be normalized such that
0 ≤ G(·) ≤ 1, with 1 being the best evaluation.

This idea suggests the following generalization of the algorithm for decision
tree induction: At a node η, a recursive partitioning is not only made for the
best attribute a∗ but rather for all attributes in the set

A∗
η
.= {α ∈ Aη |πA(α) > ∆} (6)

4 Letting πM(τ∗) = 1 for a least one τ∗ ∈ M means that at least one model is fully
plausible. This can be seen as a kind of closed world assumption. More generally, one
might allow that πM(τ ) < 1 for all τ ∈ M, suggesting that none of the candidate
models is fully plausible.
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of candidates whose possibility exceeds a lower threshold ∆. More precisely, a
possibilistic branching is realized as follows: For each attribute α ∈ A∗

η and each
value u ∈ dom(α), one outgoing edge is added to η. This edge is marked with
the test α = u and the possibility degree πA(α). Thus, one obtains a possibilistic
tree or, say, a meta-tree T in which an instance can branch at a node in different
directions. T actually consists of several ordinary trees τ . In fact, an ordinary
tree is obtained by retaining at each (meta-)node η only those edges associated
with a single attribute and by deleting all other edges. The possibility of a tree,
πM(τ), is determined by the smallest possibility of its edges.

4.1 Classification with Possibilistic Trees

Now, suppose that a new query x0 is to be classified. Given the possibility
distribution πM(·) as defined above, a possibilistic prediction of the label λx0

can be derived from (4). However, a more efficient approach is to propagate
possibility degrees in the meta-tree T directly. To this end, define possibility
distributions πη

L for nodes η in a recursive way as follows: If η is a leaf node,
then πη

L is defined by

πη
L : λ �→

{
1 if η is labeled with λ
0 otherwise .

Otherwise, let η1, . . . , ηr be the successor nodes of η, and suppose the edge
leading from η to ηı be marked with the possibility degree pı. The distribution
associated with η is then given by

πL : λ �→ max
1≤ı≤r

min{πηı

L (λ), pı}. (7)

The possibility distribution πL = πL(· |x0) is defined to be the possibility dis-
tribution πη0

L associated with the root η0 of the meta-tree.

Proposition 1. The propagation of possibility degrees in the meta-tree yields
the same possibilistic prediction πL(· |x0) as the extension principle (4).

Proof. Let πL be the possibility distribution derived from the propagation of
possibility degrees in the meta-tree T . Moreover, consider a label λ ∈ L and let
p = πL(λ). If p = 0 then none of the leaf nodes in T is labeled with λ, and
the proposition is obviously correct. Now, let p > 0. The definition (7) of distri-
butions associated with nodes entails the existence of a path ρ∗ = (η1, . . . , ηk)
in T such that the following holds: (1) η1 is the root of τ and ηk is a leaf node
with label λ. (2) The possibility π(ρ∗) of the path ρ∗, that is the minimum of
the possibility degrees assigned to the edges (ηı, ηı+1), 1 ≤ ı < k, is given by p.
Moreover, π(ρ) ≤ p for all other paths ρ in the meta-tree whose leaf nodes are
labeled with λ.

Now, it is easily verified that the path ρ∗ can be completed to an ordinary
decision tree τ such that πM(τ) = d. In fact, at each node η in the meta-tree T
there is an attribute α such that all edges associated with that attribute are
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labeled with the possibility degree 1. Thus, the path ρ∗ can be extended to a
tree τ such that each edges of τ which is not an edge of ρ∗ is labeled with a
possibility degree of 1. Therefore, πM(τ) = p, which means that the possibility
of λ according to (4) is at least p. Clearly, (4) cannot be larger than p, since this
would imply the existence of a tree τ which assigns x0 the label λ and whose
edges all have possibility degrees larger than d. This tree therefore contains a
path ρ whose leaf node is labeled with λ and such that π(ρ) > p, a contradiction
to the definition of ρ∗. Therefore, the possibility of λ according to (4) is also
given by d. ✷

Using the classification scheme outlined above, a single estimated class label
λ0 as predicted by an ordinary decision tree is replaced by a prediction in the
form of a possibility distribution πL over the set of labels. This distribution is
normalized in the sense that maxλ∈L πL(λ) = 1. Note that the label λ∗0 with
πA(λ∗0) = 1 is unique unless there is an exact equivalence G(Sη, αı) = G(Sη, α)
for a node η and two attributes αı �= α. If λ∗0 is unique, it is just the label
predicted by the classical approach to decision tree induction.

The distribution πA reflects the uncertainty related to the classification: λ∗0 is
the most plausible classification and will generally be chosen if a definite decision
must be made. However, there might be further possible candidates as well, and
the related possibility degrees indicate the reliability of λ∗0. Formally, reliability
is reflected by the necessity degree of λ0, given by 1 − maxλ
=λ∗

0
πL(λ): If there

is at least one other label with a rather high degree of possibility, the situation
is ambiguous. A classification (on the basis of a decision tree) might then be
rejected. More generally, one might take action on the basis of a set-valued
prediction including the maximally plausible labels, or take this set as a point
of departure for the acquisition of further information.

The approach proposed here is related to other extensions of decision tree
learning. Especially, the idea of option decision trees [3,9], which also provide a
compact representation of a class of candidate decision trees, is worth mentioning
in this connection. There are, however, some important differences between the
two methods. For example, the outcomes at an option node are combined to a
unique choice, e.g. by means of a majority vote. As opposed to this, our approach
considers different choices with different degrees of possibility.

4.2 Alternative Aggregation Procedures

Consider a meta-tree T and let P = Px0 denote the class of paths ρ in T that
are matched by the new query x0 (where x0 matches a path if it satisfies all tests
αı(x0) = uı along that path). In agreement with the common max-min calculus
of possibility theory we have defined the possibility of a path ρ = (η1, . . . , ηk) as

πP (ρ) .= min
1≤ı<|ρ|

poss((ηı, ηı+1)), (8)
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where poss((ηı, ηı+1)) denotes the possibility degree assigned to the edge
(ηı, ηı+1). Moreover, the possibility of a label λ was determined as

πL(λ) .= max
ρ∈P : l(ρ)=λ

πP (ρ), (9)

where l(ρ) is the label of ρ’s leaf node (max ∅ = 0 by definition). The minimum
in (8) and the maximum in (9) are special types of aggregation operators. In
fact, the minimum actually serves as a kind of conjunctive aggregation function,
whereas the maximum is a special type of disjunctive operator.

These aggregation functions can be replaced by more general operators,
namely by a generalized (logical) conjunction, called a t-norm, and a generalized
disjunction called a t-conorm. A t-norm is a binary operator ⊗ : [0, 1]2 → [0, 1]
which is commutative, associative, monotone increasing in both arguments and
which satisfies the boundary conditions x ⊗ 0 = 0 and x ⊗ 1 = x. An associ-
ated t-conorm is defined by the mapping (α, β) �→ 1 − (1 − α) ⊗ (1 − β). As
can be seen, ⊗ = min is a special t-norm with associated t-conorm ⊕ = max.
Other important operators include the product ⊗P : (α, β) �→ αβ with related
t-conorm ⊕P : (α, β) �→ α + β − αβ and the Lukasievicz t-norm ⊗L : (α, β) �→
max{0, α+ β − 1} with related t-conorm ⊕L : (α, β) �→ min{1, α+ β}.

Replacing min and max by a t-norm ⊗ and a t-conorm ⊕ yields

πP (ρ) .=
⊗

1≤ı<|ρ|
poss((ηı, ηı+1)), (10)

πL(λ) .=
⊕

ρ∈P : l(ρ)=λ

πP(ρ). (11)

As opposed to max and min, which are in agreement with the interpretation
of possibility distributions as generalized constraints, most other operators are
compensatory. For example, the possibility of a path is completely determined by
its weakest edge according to (8), whereas several strong edges might compensate
for this edge when using (10). Likewise, a label supported by several moderately
possible paths might be preferred to a label supported by one very plausible path
when using an operator such as the probabilistic sum ⊕P : (α, β) �→ α+β−αβ.

Note that the label λ∗0 estimated by an ordinary decision tree τ will always
have a possibility degree of πA(λ∗0) = 1 in the possibilistic extension. In fact, the
path ρ in τ which is matched by x0 has a possibility degree of 1 in the meta-
tree T . Thus, πA(λ∗0) = 1 follows immediately from α⊕1 = 1 which holds true for
every t-conorm ⊕ and all 0 ≤ α ≤ 1. Now, however, it may happen that a label λ
is also regarded as fully possible, even though there is no completely plausible
path (classification sequence) that yields λ as a label. For example, suppose λ
to be supported by at least  paths ρ with possibility πP(ρ) ≥ 1/. When using
the Lukasievicz t-conorm as an aggregation, one then obtains πA(λ) = 1.

5 Lazy Decision Tree Learning

Needless to say, a generalized (possibilistic) decision tree T as outlined in Sec-
tion 4 can become quite awkward. In fact, passing from an ordinary tree to a
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possibilistic tree might easily result in a doubling or trebling of the (average)
branching factor.

In this connection, the idea of a lazy decision tree learner as outlined in [8] is
quite interesting: In classical decision tree learning, test attributes are chosen so
as to minimize the average impurity of the children of a node, thereby supporting
the overall objective of maximizing average performance. However, a decision
tree thus induced might not be optimally adapted to a specific query x0. For
example, the entropy of the child relevant for x0 might well increase, even though
the average entropy decreases. Lazy decision tree induction applies the idea of
lazy learning [1] to decision trees. Roughly speaking, only a single path of an
imaginary decision tree is generated, namely the path which is matched by the
query x0. This allows for selecting the test attributes in a manner which is most
favorable for the specific instance x0.5

More precisely, the method proposed in [8] – called LazyDT by the authors –
works as follows: As usual, the complete set of training samples, S, is assigned
to the root of the tree. A node η becomes a leaf (answer node) if all associated
samples Sη belong to the same class or if all attributes have already been used
along the path from the root to η. Otherwise, the sample Sη associated with
η is split according to the values of an attribute. As an evaluation measure for
attributes α, a modified version G∗ of the information gain (1) is proposed:
Firstly, G∗ is computed for the sub-sample Su with u = α(x) alone, not as a
weighted average over all sub-samples. Secondly, the instances at a node η are
weighted such that each class has equal weight, which means that the parent
node has maximal entropy (see [8] for a justification of this approach). Once
having identified an optimal attribute α∗, the procedure is called recursively for
the sub-sample Sα∗(x0).

Apart from conceptual advantages in comparison to classical decision tree
learning, this approach is interesting in our context since it avoids the generation
of a complete (meta-)tree: Even though the individual path generated by the
lazy learner becomes a “possibilistic path”, that is an ordinary tree, within our
approach, it can be handled much more efficiently than a meta-tree.

The possibilistic version of LazyDT – call it PLazyDT – performs in the
same way as the original approach, with the following exceptions: At a node
η, a degree of possibility πA(α) is derived for all (still available) attributes α.
This is done as in Section 4, using a normalized version of the G∗ measure.
Then, one successor node ηα is defined for each attribute α ∈ A∗

η. The sub-
sample assigned to ηα is the set of samples 〈x, λx〉 ∈ Sη such that α(x) = α(x0).
While generating a path ρ, the possibility degrees πA(α) (assigned to edges of
that path) are accumulated using the minimum operator or, more generally, a
t-norm as proposed in Section 4.2. When reaching the leaf node of ρ, one thus
obtains a predicted label l(ρ) along with a possibility degree πP(ρ). Finally, the
possibility πL(λ) of a label λ is obtained by combining the possibility degrees of
all paths ρ with l(ρ) = λ, using the maximum or an alternative t-conorm.

5 Note that a lazy learner needs to store all observations.
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6 Experimental Results

As already explained above, the label estimated by an ordinary decision tree is
also fully supported by the possibilistic generalization. Thus, the two approaches
will principally yield the same final decisions. A difference can only occur if
the distribution πA assigns full support to several labels. We shall turn to this
aspect in Section 6.3 below. Still, the main motivation underlying the possibilistic
approach is the idea of indicating the uncertainty related to a decision. This point
will be investigated in Section 6.2.

In this section, we restrict ourselves to the lazy versions of decision tree
induction, as we obtained quite similar results for the classical approaches (apart
from the runtime of the algorithms).

6.1 Experimental Setup: Generation of Synthetic Data

An individual experiment is parameterized by the number of attributes, k, the
number of labels, m, the size of the training sample, n, and a complexity pa-
rameter γ:

– An underlying “true” decision tree τ is generated at random. This is done
in a recursive manner by starting with the root of the tree and flipping a
(biased) coin to decide whether the current node is an inner node or a leaf.6

The probability of a node to become an inner node is specified by a fixed
parameter 0 < γ < 1 (the larger γ, the more complex the tree will be on
average). Here, we restrict ourselves to binary trees, i.e. we only consider
binary attributes. Once a leaf node has been generated, it is assigned a class
label at random.7 Likewise, inner nodes are assigned attributes.

– A random sample is generated based on a uniform distribution over the
instance space. The sample is labeled using the decision tree τ .

– Decision trees τ1 and τ2 are induced, respectively, by LazyDT and
PLazyDT based on the random sample.

– A new query x0 is generated at random and classified by the two trees,
which yields an estimation λ∗1 = τ1(x0) and a possibilistic prediction πA with
related decision λ∗2 = arg maxλ∈L πA(λ). The correct label is λx0 = τ(x0).

6.2 Representation of Uncertainty

To capture the aspect of uncertainty representation, let p1 denote the expected
degree of possibility assigned by πL to the correct label λx0 given that this label
is not predicted (λ∗2 �= λx0). Moreover, let p2 denote the expected possibility of
the most possible incorrect label λ �= λx0 given that the decision is correct, that
is 1 minus the degree of necessity of λx0 . Ideally, p1 is large and p2 is small:
Wrong decisions are accompanied by a large degree of uncertainty, reflected by
6 The root is never a leaf.
7 We pay attention that not all successors of a node do have the same label.
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considerable support of the actually correct label (and hence a low degree of
necessity for λ∗2), whereas correct decisions appear reliable at the same time.

We have derived approximations to these expected values by taking averages
over 10,000 experiments. The table below shows results (r denotes the classifica-
tion rate) for different setups with k = 6, γ = 0.8. For PLazyDT we used max
and min as aggregation operators, the function (5) with c = 1/3 for assigning
basic possibility degrees, and the threshold ∆ = 0 in (6).

m = 2 m = 3 m = 4
n r p1 p2 r p1 p2 r p1 p2
10 0.720 0.700 0.423 0.632 0.653 0.381 0.581 0.533 0.249
20 0.784 0.810 0.363 0.742 0.754 0.336 0.649 0.717 0.244
30 0.838 0.871 0.331 0.762 0.814 0.261 0.734 0.726 0.192
40 0.855 0.886 0.265 0.799 0.839 0.214 0.786 0.767 0.162

As can be seen, the reliability of a prediction is reflected extremely well by the
possibilistic estimation. As it was to be expected, both the classification rate
and the quality of the possibility distribution (as indicated by p1, p2) increase
with sample size (as already explained above, the larger p1 and the smaller p2,
the better the quality of the distribution). For other setups (values k, γ) the
results were qualitatively very similar. We do not present them here for reasons
of space.

6.3 Classification Performance

One may obtain πA(λ) = 1 for several labels λ ∈ L when making use of more
general t-norms and t-conorms. In such a case, there are different options to
make a final decision. Here, we simply choose one among these labels at random.
The following results were again derived for k = 6, γ = 0.8, using the t-norm
(α, β) �→ αβ and the related t-conorm (α, β) �→ α + β − αβ (r1 and r2 denote
the classification rate for LazyDT and PLazyDT, respectively).

m = 2 m = 3 m = 4
n r2 r1 r2 r1 r2 r1
10 0.731 0.707 0.646 0.652 0.587 0.556
20 0.797 0.792 0.711 0.708 0.675 0.656
30 0.851 0.812 0.760 0.757 0.734 0.730
40 0.864 0.844 0.808 0.782 0.789 0.776

As can be seen, PLazyDT is slightly superior, though – as it was to be expected –
the difference in classification performance is not very significant. We obtained
quite similar results for several real-world data sets from the UCI repository
which are, again for reasons of space, not presented here. These results confirm
that aggregating over possible models might indeed be better than completely
relying on the supposedly optimal one.
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7 Concluding Remarks

Inductive reasoning based on Ockham’s razor or, more generally, on heuristic
principles is always afflicted with uncertainty. The major concern of the method
proposed in this paper is to capture this type of uncertainty, which appears to be
non-probabilistic by nature. Therefore, our formalization employs the alternative
framework of possibility theory (flexible constraints). Let us mention that a
related possibilistic formalization has already been developed for the heuristic
principle underlying instance-based learning [6].

Of course, one might deplore the lacking of a sound theoretical basis for the
possibilistic approach. It should be noted, however, that the same remark already
applies to the underlying heuristic principle itself. In fact, what we introduced
here is an alternative formalization of Ockham’s razor which – according to our
opinion – extends the original version in a reasonable way. As the experimental
results confirm, the possibilistic approach represents the reliability of a prediction
in a thorough way and may even (slightly) improve classification performance.

Apart from the uncertainty connected to inductive inference one usually has
to cope with other types of uncertainty as well, such as e.g. noisy data. Extending
the method proposed here by combining these different types of uncertainty is
one of the challenges for future work.
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