

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 52–66, 2003.
© Springer-Verlag Berlin Heidelberg 2003

An Overall System Design Approach Doing
Object-Oriented Modeling to Code-Generation for

Embedded Electronic Systems

Clemens Reichmann1, Markus Kühl2, and Klaus D. Müller-Glaser1

1 Laboratory for Information Processing Technology (ITIV)
University of Karlsruhe,

Engesserstr.5, 76128 Karlsruhe, Germany
{Reichmann,Mueller-Glaser}@itiv.uni-karlsruhe.de

http://www.itiv.uni-karlsruhe.de
2 Research Center for Information Technology,

Haid-und-Neu-Str. 10-14, 76128 Karlsruhe, Germany
Kuehl@FZI.de

 http://www.fzi.de

Abstract. In this paper a new approach for an overall system design is pre-
sented. It supports object-oriented system modeling for software components in
embedded systems in addition to time-discrete and time-continuous modeling
concepts. Our approach provides structural and behavioral modeling with front-
end tools and simulation/emulation with back-end tools. The UML metamodel
is used for storing CASE data in a MOF object repository and XMI (XML
Metadata Interchange format) is used to interchange this data with UML-CASE-
tools. The CASE tool chain we present in this paper supports concurrent engi-
neering including versioning and configuration management. It provides adap-
tors for the tools MATLAB/Simulink/Stateflow1 and ARTiSAN Real-Time
Studio2 as well as an importer/exporter of UML/XMI. Utilizing the Unified
Modeling Language notation for an overall system design cycle, the focus of
this paper lies on the subsystem coupling of heterogeneous systems and on a
new code generation approach.

1 Introduction

The design of embedded electronic systems has changed due to a broad introduction of
the object-orientation paradigm. It is also characterized by rapidly increasing com-
plexity and shorter product cycles today.

1 MATLAB/Simulink/Stateflow is registered trademark of Mathworks, Inc.
2 Real-Time Studio is registered trademark of ARTiSAN Software Tools, Inc.

An Overall System Design Approach Doing Object-Oriented Modeling 53

With the introduction of the Unified Modeling Language (UML) as a standard [6]
and well-accepted notation for software design, the object-orientation paradigm is
more and more accepted and supported in commercial CASE tools.

These facts are results of a trend towards increasing use of more software compo-
nents in typical embedded system applications. Systems in automotive applications
tend to have numerous software subsystems, event-driven subsystems and often a
control subsystem in the time-continuous domain. These systems usually perform
tasks like diagnosis, self-calibration, encrypted data-communication, and even data-
base-oriented system processing.

A commonly used approach to handle system complexity in the system design pro-
cess is called concept-oriented rapid prototyping3 [1,2]. Concept-oriented rapid
prototyping defines a way for the fast conversion of an executable specification, which
captures the requirements by using modeling techniques for state-event, time-
continuous, and software modeling, into a functional prototype. This prototype mainly
serves to clarify system goals and must support a widespread range of hardware inter-
faces. It uses automatic code generation based on CASE tools like
MATLAB/Simulink, ASCET-SD4 or Statemate5, and powerful, general-purpose, ex-
tensible hardware. The cost of rapid prototyping hardware is not critical, as the hard-
ware is not specific and can be reused for different prototypes.

Up to now concept-oriented rapid prototyping was influenced by tools for Com-
puter-Aided Systems Engineering (CASE) using the state chart theory (modeling of
hierarchical finite-state-machines) or control systems engineering using block dia-
grams. In the past much effort was spent to improve design tools for a better integra-
tion of state charts and block diagrams. Current requirements in embedded systems
design shift the attention from a pure state chart and block diagram approach to a more
software-oriented view, which is captured by modern CASE tools in Software Engi-
neering domain. A major problem, common to all commercial software CASE tools,
is a lack of support for control systems engineering whereas modeling of time-discrete
or state-oriented systems is well supported. Therefore, development of mixed-domain
systems with both time-discrete and time-continuous subsystems and additional soft-
ware components is not a continuous design process today. Thus there is a need to
unify the description of the model to a single notation based on one metamodel to
enable an overall design technique. Furthermore the integration of the domain-specific
parts in terms of code generation, data and message exchange, task distribution, model
versioning, user management and automated transformation between the domains is
important. In our work the designer has the possibility to model in different modeling
domains (time-discrete, time-continuous, software) and notations, which are trans-
ferred to one metamodel. This is done to achieve an executable specification running
on a rapid prototyping platform.

In the following section we will summarize the related work for concept-oriented
rapid prototyping (see Sect. 2). We will introduce the metamodel used in our approach

3 Not captured in this paper: architecture and implementation rapid prototyping (RP)
4 ASCED-SD is a registered trademark of ETAS GmbH
5 Statemate is a registered trademark of i-Logix, Inc.

54 C. Reichmann, M. Kühl, and K.D. Müller-Glaser

in Sect. 3. Section 4 will present our universal object-oriented modeling approach
for embedded electronic systems. Then, in Sect. 5 our current work to provide a
subsystem coupling technique on model-layer combined with a new automatic code
generation approach (see Sect. 6) will be introduced. Afterwards, GeneralStore, our
client/server CASE tool integration platform for mixed-domains and concurrent
engineering, is described. Finally, Sect. 8 discusses results and offers a conclusion
of the topic.

2 Related Work

Commercial solutions that support object-oriented modeling of embedded electronic
systems are rare. Today, a wide range of CASE tools for object-oriented analysis and
design is available mainly supporting pure software modeling. Software CASE tools
for embedded systems modeling are often new to market. Only three well known
CASE tools support object-oriented analysis and design using UML notation in addi-
tion to time-discrete modeling (e.g. state charts): ARTiSAN Real-Time Studio, i-
Logix Rhapsody, and Rational Rose Realtime are tools explicitly classified for this
domain.

A major drawback of those CASE tools is the lack of modeling concepts for control
system engineering. For an overall system design users will have to include source-
code as external C-code into these CASE environments. This approach is expensive
and very rigid. Communication between both modeling domains (software to time-
discrete/ -continuous system parts) is done via source code coupling. In large-scale
systems, changing the system architecture during the development process is very
susceptible to errors. Therefore, model-based coupling of software components and
time-discrete/continuous system parts is desirable.

3 Metamodel

In our approach the whole system is described as an instance of one particular meta-
model in one notation. This model has to cover all three domains: time-discrete, time-
continuous, and software. The Unified Modeling Language (UML) is an Object Man-
agement Group (OMG) standard [6] which we use as system notation and metamodel.
It is a widely applied industry standard to model object-oriented software. The abstract
syntax, well-formedness rules, Object Constraint Language (OCL), and informal se-
mantic descriptions specify UML.

The UML specification provides XML Metadata Interchange format (XMI) [8] to
enable easy interchange of metadata between modeling tools and metadata repositories
in distributed heterogeneous environments. XMI integrates three key industry stan-
dards: the eXtensible Markup Language (XML), a W3C standard, the UML, and the
Meta Object Facility (MOF) [7], an OMG metamodeling standard which is used to
specify metamodels.

An Overall System Design Approach Doing Object-Oriented Modeling 55

One key aspect of UML is the four layered metamodeling architecture for general
purpose manipulation of metadata in distributed object repositories (see Fig. 1) which
makes it suitable for our universal object-oriented modeling approach. Each layer is an
abstraction of the underlying layer with the top layer (M3) at the highest abstraction
level. On the M-1 layer, which is not part of the 4-layer architecture, there is the exe-
cution code of the program. The M0 layer is comprised of the information that we
wish to describe (the data). This is the source code in different languages, e.g. JAVA
or C++. On the model layer (M1) there is the meta-data of the M0 layer, the so-called
model. Object-oriented software is typically described on the M1 layer as a UML
model. The metamodel on the M2 layer consists of descriptions that define the struc-
ture and semantics of meta-data (e.g. the UML model). These are the metamodels, e.g.
UML 1.3, UML 1.4, and define the language respectively notation for describing dif-
ferent kinds of data (M1). Finally on the M3 layer there is the meta-meta-model. MOF
is used to describe meta-models and define their structure and semantic. It is an ob-
ject-oriented language for defining meta-data. MOF is self-describing. In other words,
MOF uses its own metamodeling constructs.

M3 layerMOF

M1 layerUML ModelStatemate Model Simulink Model

M2 layerUML 1.3 UML 1.4
Blockdiagram

according to Simulink
Statechart

according to Harel

M0 layerC++ Sourcecode C Sourcecode JAVA Sourcecode

M-1 layerBIN program/OPCODE/BYTECODE on target

M3 layerMOF

M1 layerUML ModelStatemate Model Simulink Model

M2 layerUML 1.3 UML 1.4
Blockdiagram

according to Simulink
Statechart

according to Harel

M0 layerC++ Sourcecode C Sourcecode JAVA Sourcecode

M-1 layerBIN program/OPCODE/BYTECODE on target

Fig. 1. 4-layer metamodeling architecture

XMI was partially influenced by the ideas for a tool-independent CASE data inter-

change format called CDIF [3], which was based on entity-relationship (ER) descrip-
tions. CDIF addresses the problem of model data interchange between CASE tools.

Without a standardized interchange format for integrating more than one CASE
tool, proprietary import/export filters must support the exchange of model data. In
addition, new interfaces have to be implemented for tool integration. XMI is supported
in a wide range of industry applications. In the machine tool domain for example,
STEP, a standard for the exchange of product definition/model data, will be compati-
ble with XMI in the future.

56 C. Reichmann, M. Kühl, and K.D. Müller-Glaser

In the current version 1.4 of the UML standard it is possible to completely inter-
change model information. Nevertheless, it is not yet possible to interchange the
graphical views of the model in terms of diagrams, which will be supported in the
forthcoming UML 2.0.

4 Integration on Model Level

When we capture current requirements in the design process of embedded real-time
systems it is necessary to handle time-continuous, time-discrete, and software de-
sign techniques. Besides the problem of using a large number of description nota-
tions/methods, an enormous amount of design data has to be handled. Another prob-
lem in many commercial CASE tools is the lack of concurrent engineering support.
Only a project file based datastore is offered that can be edited only by one user at a
time.

To couple different notations of the domains, transformation rules are necessary.
In our approach we support different notations used by various CASE tools to
model in specialized domains. The designer will choose the best tool/notation for a
sub-problem and integrate the solution into the UML top-level metamodel. The
software domain is modeled in UML therefore no transformation is needed. In the
time-discrete domain the UML provides a notation but with the lack of well defined
semantics. Here we use the semantics of David Harels concurrent hierarchical state
charts [12] implemented in the CASE tool Statemate. It has an XMI interface and
can interchange the time-discrete model with our integration platform GeneralStore
(see Sect. 7).

The main difficulty when using different description domains in a complex em-
bedded systems design is the integration of control subsystems. There are two pos-
sible solutions to overcome this problem:

1. Integration of the time-continuous subsystem using the reverse engineering

mechanism of modern CASE tools for software engineering. This case is called
“subsystem coupling on source code level”. One major problem here is that the
control subsystem is shown as a black box subsystem encapsulated inside a class
with the loss of information for other designers (see top of Fig. 2).

2. A bidirectional transformation rule (see bottom of Fig. 2) enables the synchroni-
zation of the time-continuous subsystem to a representation in the UML notation
that uses simple object- and class diagrams (see left of Fig. 3). With an auto-
mated CASE tool-coupling layer, this transformation is reversible. This tech-
nique is called “subsystem coupling on model-layer”.

An Overall System Design Approach Doing Object-Oriented Modeling 57

Dataflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Dataflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Signalflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/z

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Dataflow

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Transformation
Rule

Transformation
Rule

Dataflow

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Transformation
Rule

Transformation
Rule

Signalflow

Code

Transformation
Rule

Structure Behavior
1/z

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Model2Model
Transformation

Transformation
Rule

Dataflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Dataflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Signalflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/z

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Dataflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Dataflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Dataflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Signalflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/z

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Dataflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Signalflow

Code

Transformation
Rule

Transformation
Rule

Code

Transformation
Rule

Structure Behavior
1/z

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Integration

Dataflow

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Transformation
Rule

Transformation
Rule

Dataflow

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Transformation
Rule

Transformation
Rule

Signalflow

Code

Transformation
Rule

Structure Behavior
1/z

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Model2Model
Transformation

Transformation
Rule

Dataflow

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Transformation
Rule

Transformation
Rule

Dataflow

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Transformation
Rule

Transformation
Rule

Dataflow

Code

Transformation
Rule

Structure Behavior
1/s

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Transformation
Rule

Transformation
Rule

Signalflow

Code

Transformation
Rule

Structure Behavior
1/z

Structure Behavior
Model

Trans-
formation

Code

UML, OOA/OOD

Model2Model
Transformation

Transformation
Rule

Fig. 2. Subsystem coupling on source-code level (top) and on model level (below)

P T 1_S ubS ys tem

S pecification E lements

Realization E lements

" P T 1_ in" .Inpor t .B lock : Inpor t .B lock

" P T 1_ out" : Outpor t .B lock

" S um" .S um.B lock : S um.B lock" S um" .L ine : L ine

" P T 1_S ubS ys tem" .S ys tem : S ys tem

" Integr ator 1" .Integr ator .B lock : Integr ator .B lock

" P T 1_ in" .L ine : L ine

" Integr ator 1" .L ine : L ine

" Gain1" .Gain.B lock : Gain.B lock

" Gain1" .L ine : L ine

UML Blockdiagram

Fig. 3. Transformation of a block diagram to UML

Being more transparent the second approach is the more suitable way for a conven-
ient integration of both modeling domains. Figure 3 shows a small footprint of the
design process, which is formed by a so-called bidirectional transformation rule. Sim-
plified, blocks in the block diagram are translated to objects in the UML metamodel.
Connections represented by lines are also UML objects. The hierarchy in the block
diagram is achieved by UML subsystems and links between objects. Parameters of the

58 C. Reichmann, M. Kühl, and K.D. Müller-Glaser

blocks are slots on objects. The classifications of objects are classes whereas links are
instances of associations. These elements are located in a separate UML package. This
transformation rule is the result of a long-term scientific project at the Laboratory for
Information Processing Technology (ITIV) at the University of Karlsruhe. We have
currently developed a CASE tool integration environment (GeneralStore, see [4,5] and
Sect. 7) that provides the necessary underlying design process support that will be
introduced next.

5 Design Process

From our point of view the design process starts with object-oriented analysis using an
UML CASE tool where we model use-cases to catalog the requirements. Then each
requirement of the system specification is translated to a scenario modeled with a
message sequence chart, state machine, or activity diagram. Non-functional require-
ments are modeled as OCL6 constraints or added as comments. By doing so an initial
class model is automatically introduced.

At the next step the developer arranges the class model in various class diagrams.
These diagrams have to be refactored. Generalizations are identified and similar
classes have to be combined. Dependencies and associations are revealed. With these
steps the so-called analysis-model is achieved. This first analysis model is not in the
main focus of our work but illustrate the overall process.

The model of the embedded system then has to be divided in parts, where each part
is mentioned as a software component, a subsystem in the control-domain, or a state
chart in the time-discrete domain (see Fig. 4).

" controlDomain" .S ys tem
Realization E lements

" AB S " .S ubS ys tem.B lock
Realization E lements

" Cruis e control" .S ubS ys tem.B lock
+getP arameter()
+getS ignal()
+s etP arameter()
+s etS ignal()

S pecification E lements

Realization E lements

" dis tance control" .S ubS ys tem.B lock

S pecification E lements

Realization E lements

informationDomain

dis creteDomain

Fig. 4. Different domains as UML subsystems

6 Object Constrain Language an OMG standard

An Overall System Design Approach Doing Object-Oriented Modeling 59

Developers of different domains automatically select different notations and meta-
models to describe the problem of the subsystem when using best fitting CASE tools.
The integration platform GeneralStore applies automated transformations on these
notations to convert them to the top-level UML metamodel (see Sect. 4).

Specialists in control system design use their notations (block diagrams) and tools
(e.g. MATLAB/Simulink) to model in their domain. For integration with the overall
system the control subsystem is transformed to the UML metamodel and vice versa.
Thus we have a white box integration of the model in UML notation (compare Fig. 3
and Fig. 5 right).

" controlDomain" .S ys tem

mdlClas s es

control s ys tem

E xecut ionF r amewor k

+ex ecute()
+ini t()

Mes s ageContr ol ler

E CU 1

s ignals

par ameter

execution

+controlS ystemS ignals

inspection

+controlS ystemParameter

adapt

implementsdeployed on

" Cruis e control" .S ubS ys tem.B lock

+getP arameter()
+getS ignal()
+s etP arameter()
+s etS ignal()

S pecification E lements

Realization E lements

" Cr uis eCont rolGain" .Gain.B lock : Gain.B lock

Gain = " 1"
S atur ateOnInteger Over flow = on

" Cr uis e contr ol" .S ys tem : S ys tem

" Dis cr ete-T ime\nIntegr ator " : Dis cr eteIntegr ator .B lock

" S um" .S um.B lock : S um.B lock

" toGo" .Outpor t.B lock : Outpor t.B lock

" pos it ion" .Inpor t.B lock : Inpor t.B lock

parameterS etter : Mes s ageContr oller

acess(S ystem) acess(Gain)

black-box coupling white-box coupling

Fig. 5. Control system in UML view: black-box coupling (left) and white-box coupling (right)

Specialists in the software domain can model their subsystem and the interface to

the control-domain in UML (see Fig. 5). In UML we can model the task distribution
(see bottom part of Fig. 6), scheduling and message exchange of the heterogeneous
system. In Fig. 5 there is the component control system, which is running on the elec-
tronic control unit ECU1. This component encapsulates the control domain, or more
exactly its implementation. The parameter interface (see Fig. 5 left) allows manipula-
tion to the parameters of the control system, whereas the signals interface provides
access to the internal state of the control system, e.g., for diagnostic reasons. The exe-
cution interface is used for scheduling and task allocation of the control domain. The
component is the black-box view of the control system.

In addition the designer can use the white box view (see Fig. 5 right) of the control
system to model the access to the signals or parameters explicitly or in a generic way.
On the right hand side of Fig. 5 the object parameterSetter has access to the parameter
Gain of CruiseControlGain, which corresponds to the block Gain in the block diagram
(see Fig. 3).

60 C. Reichmann, M. Kühl, and K.D. Müller-Glaser

continous T as k : E xecutionF r amewor k

" dis tance contr ol" .S ys tem : S ys tem " Cr uis e contr ol" .S ys tem : S ys tem" AB S " .S ys tem : S ys tem

E xecutionF r amewor k

+ex ecute()
+init()

S ys tem

Fig. 6. Class diagram of execution modeling (top) and modeling task distribution (bottom)

The shown design pattern for domain coupling is based on an automatically gener-
ated wrapper of the control and time-discrete domain. This is done by inspection of the
generated code of the supported commercial code generators. The wrapper is gener-
ated on UML model level and is transformed to code with our code generator (see
Sect. 6) during code generation phase. The control domain wrapper provides access to
parameters and signals. The other partitions are built with commercial generators and,
as stated before, the whole system is generated to get an executable specification.

Although there are state machines in the UML metamodel, the semantic is not
completely specified. But for an executable specification we absolutely need well-
defined semantics of state charts. To solve this problem designers use the Harel state
chart semantics [12] implemented in the CASE tool Statemate or Rhapsody in C to
model the time-discrete subsystem. The coupling of the time-discrete model to the
other domains is accomplished using a design pattern similar to the control-domain
described above.

Now we can run the generated system on the RP7 target. Usually, real systems will
not fulfill the expected tasks completely at the first try. To find errors we use model
monitoring. Test cases are modeled in UML, generated by our code generator, and run
in a unit test mode on the target. After recording the whole scenario of the failed test
case it can be shown in the UML model offline when the user is stepping through it.

6 Code Generation

There are highly efficient commercial code generators on the market. In safety critical
systems certificated code generators have to be used to fulfill the requirements. The
GeneralStore (GS) platform allows partitioning the whole system into subsystems to
invoke different domain specific code generators.

7 Rapid Prototyping

An Overall System Design Approach Doing Object-Oriented Modeling 61

For control-systems there are commercial code generators like Target Link8,
Embedded Coder9 or ECCO10. In the time-discrete domain we utilize the code gen-
erator of Statemate11 (Rhapsody in MicroC). In software domain commercial code
generators only generate the stubs of the static UML model while behavioral func-
tionality has to be implemented by the software engineer.

 As we focus on a completely generated executable specification it is necessary
to generate code of the overall model. Therefore we provide a code generator as a
GS plug-in to enable structural and behavioral code generation directly from a UML
model. The body specification is done formally in the Method Definition Language
(MeDeLa). Which is an abstract action language based on Java syntax. Our tem-
plate code generator is using the Velocity engine to generate Java or C++ source
code. Velocity is an Apache open source project focused on HTML code genera-
tion. It provides macros, loops, conditions, and callbacks to the data model business
layer.

The different domains have interactions, e.g., signal inspection, adoption of con-
trol system parameters at runtime or sending messages between time-discrete and
software artifacts. There should be one scheduler on each ECU12 as many commer-
cial code generators provide a specific scheduling mechanism. Integration of these
different frameworks on one ECU is error prone. In our approach these design tasks
could be modeled in UML with assistance of MeDeLa as outlined in Sect. 5. After-
wards our code generator renders the specified glue (interactions between domains).
We provide a highly flexible modeling process, which is supported by an integration
platform described in the following section.

7 Client/Server Architecture for CASE

To keep the system model manageable for designers, CASE tool integration is nec-
essary. In [1,2] an open design environment based on CDIF for the development of
mechatronic systems was presented. Many of the experiences from this project
influence our current work.

After the design of prototypes during the last two years the focus of our current
work is on a so-called Integration Platform GeneralStore (GS). The setup of the GS
follows a 3-tier architecture well known in the software engineering domain. On the
lowest layer (database layer) a commercial object-relational database management
system ORACLE13 respectively MySQL14 was selected. On the business-layer we

8 From dSPACE GmbH
9 From Mathworks, Inc.
10 From ETAS GmbH
11 From i-Logix, Inc.
12 Electronic Control Unit
13 ORACLE is registered trademark of ORACLE Corporation
14 MySQL is an open source project: see www.msql.com

62 C. Reichmann, M. Kühl, and K.D. Müller-Glaser

provide user authentication, transaction management, object versioning, and con-
figuration management.

For managing CASE data, GS supports UML as its metamodel (see Sect. 2). GS
uses MOF as its database scheme for storing UML artifacts. Inside the database layer
an abstraction interface keeps GS independent from the given database.

Fig. 7. Architecture of integration platform (GeneralStore)

On the business layer of GS the mediator pattern [11] is used to keep the CASE tool

integration simple and its adaptor uniform. The transformations for specific notations
supported by CASE tools are implemented in plug-ins (see top of Fig. 7). The code
generation plug-ins (Embedded Coder and Rhapsody in MicroC) controls the trans-
formation to the source code. Their wrapper generators are automatically building the
interface in the UML model (see Fig. 7 in the middle).

While interim objects enclose MOF elements, the CASE adaptor (see class GSTool
in Fig. 8) stays thin and highly reusable. Another reason for using interim objects on
the business layer is because of object identity to handle object versioning and con-
figuration management. To visualize these circumstances, an example is taken where a
unique identification number is added to a subsystem block from the time-continuous
system domain. After the block is checked out from the repository, a designer moves
this subsystem to another hierarchy layer. Despite the fact that it is the same com-
pound object, the system controller in the time-discrete system part keeps track of this
link because of the subsystem identification number.

An Overall System Design Approach Doing Object-Oriented Modeling 63

Fig. 8. Plug-in architecture of GeneralStore

On the presentation layer GS provides three principal CASE tool adapters:

• MATLAB/Simulink/Stateflow was selected for the control system design
domain and the integration is done using the proprietary model file.

• Generic and specialized XMI importer/exporter filter of *.xmi15 files.
• And the COM16 based integration of ARTiSAN Real-Time Studio. The tool

was selected because of its focus on embedded real time systems.

Both CASE tools are bidirectional linked to the GS architecture. For model man-

agement and CASE tool control, GS offers a system hierarchy browser (compare
Fig. 9). Since the internal datamodel representation of GS is UML, GS offers a system
browser for all UML artifacts of the current design. Due to the large amount of MOF
objects (for example: the transformed PT1 subsystem needs about 10,000 XMI enti-
ties), GS offers design domain specific hierarchy browsers, e.g., a system/subsystem
hierarchy view for structural or time-continuous design or a package hierarchy view
for software design.

8 Conclusion

The introduced universal object-oriented modeling approach supports the concurrent
development of electronic systems in all design phases. We showed how heterogene-
ous system descriptions could work as integrated parts of an object repository based-
Client/Server CASE tool environment. Based on an object diagram representation,

15 XML file based
16

 Microsoft Component Object Model

64 C. Reichmann, M. Kühl, and K.D. Müller-Glaser

Fig. 9. GeneralStore’s MATLAB, Coder, and ARTiSAN UML plug-in

time-continuous subsystems and software components can be modeled using one sin-
gle description style. A direct linkage between different description domains is possi-
ble on an abstract model level. While transforming all subsystem parts to an uniform
object notation, adding additional model information to time-continuous blocks will
enable system designers to start with system simulation early in the design process.

Embedded electronic systems can be subdivided in time-discrete, time-continuous
and software domain. Each domain uses its specific notation. A highly flexible design
process was described to integrate those notations, which are supported by CASE
tools, to one UML model. The glue between the domains is modeled in UML. Finally
the overall system is transformed to source code with the assistance of commercial
code generators in addition to our UML code generator.

An often-needed feature and simultaneously a drawback of project file-based
CASE tools (e.g. Rhapsody, Simulink/Stateflow) is the lack of CASE tool assisted
concurrent engineering. Using the presented CASE tool backend GeneralStore to-
gether with MATLAB/Simulink, an interim project file is created each time a designer

An Overall System Design Approach Doing Object-Oriented Modeling 65

checks out a part of the model. This is possible at any specific model hierarchy point.
The checked out subsystem hierarchy becomes protected. Other designers still have
read access to the last version of this subsystem and can obtain read/write access to
other subsystems in the time-continuous hierarchy.

One major drawback of using UML/MOF from XMI as a metamodel for system
description is the deficiency of a standardized graphical representation for class and
object diagrams. Up to now, this is one of the most requested topics for UML 2.0 and
the next XMI generation. On the other side, using XMI and the UML metamodel for
the description of embedded systems enables model exchange with other CASE tools.
Today, at least 10 software CASE tools on the market can handle XMI descriptions
from the information point of view (import of a model without graphical description).

9 Outlook

Future work has to focus on the definition of a tailored design process and the integra-
tion of CASE tools for requirements management (e.g. DOORS17). On the back-end
side of our development environment simulation and emulation of system models is
going to be supported.

We will examine the integration of further modeling tools to estimate the saved in-
tegration effort using UML/MOF. Especially for large systems of different design
domains, our universal object-oriented modeling approach for the design of embedded
electronic systems based on MOF will show its advantages.

Furthermore it is planned to work on enhanced modeling of operations in UML for
code generation, e.g., collecting information from activity charts, object collaboration
diagrams, and state charts.

It is also considered to enable modeling for reconfigureable hardware components,
e.g. FPGA18s that means creating VHDL code from an UML model.

References

1. A. Burst; M. Wolff; M. Kühl; K.D. Müller-Glaser: A Rapid Prototyping Environment for
the Concurrent Development of Mechatronic Systems, ECEC, Erlangen, Germany, 1998.

2. A. Burst; M. Wolff; M. Kühl; K.D. Müller-Glaser: Using CDIF for Concept-Oriented
Rapid Prototyping of Electronic Systems, RSP, Leuven, Belgium, 1998.

3. EIA / CDIF Technical Committee: CDIF / CASE Data Interchange Format. EIA Interim
Std. EIS / IS-106–112, 1994.

4. M. Kühl; C. Reichmann; B. Spitzer; K.D. Müller-Glaser: Universal Object-Oriented Mod-
eling for Rapid Prototyping of Embedded Electronic Systems, RSP, Monterey, USA, 2001.

17 DOORS is registered trademark of Quality System & Software, Inc.
18 FPGA: field programmable logic array

66 C. Reichmann, M. Kühl, and K.D. Müller-Glaser

5. M. Kühl; C. Reichmann; K.D. Müller-Glaser: Universal Object-Oriented Modeling with
ARTiSAN Rts and MATLAB/Simulink, ARTiSAN User Conference 2001, London, UK,
2001.

6. Object Management Group: OMG / Unified Modeling Language (UML) V1.4, 2001.
7. Object Management Group: OMG / Meta Object Facility (MOF) V1.4, 2001.
8. Object Management Group: OMG / XML Metadata Inter-change (XMI) V1.0, 2000.
9. B.P. Douglass: Doing Hard Time – Developing Real-Time Systems with UML, Objects,

Frameworks, and Patterns. Addison-Wesley, 1999.
10. M. Fowler: Refactoring - Improving the Design of Existing Code. Addison-Wesley, 1999.
11. E. Gamma et al.: Design Patterns – elements of reusable object-oriented software; Addi-

son-Wesley, 1994.
12. David Harel: Statecharts: a visual formalism for complex systems. Science of Computer

Programming 8 (1987,3), 231–274

	An Overall System Design Approach Doing Object-Oriented Modeling to Code-Generation for Embedded Electronic Systems
	1 Introduction
	2 Related Work
	3 Metamodel
	4 Integration on Model Level
	5 Design Process
	6 Code Generation
	7 Client/Server Architecture for CASE
	8 Conclusion
	9 Outlook

