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Abstract. In this paper a new approach for an overall system design is pre-
sented. It supports object-oriented system modeling for software components in 
embedded systems in addition to time-discrete and time-continuous modeling 
concepts. Our approach provides structural and behavioral modeling with front-
end tools and simulation/emulation with back-end tools. The UML metamodel 
is used for storing CASE data in a MOF object repository and XMI (XML 
Metadata Interchange format) is used to interchange this data with UML-CASE-
tools. The CASE tool chain we present in this paper supports concurrent engi-
neering including versioning and configuration management. It provides adap-
tors for the tools MATLAB/Simulink/Stateflow1 and ARTiSAN Real-Time 
Studio2 as well as an importer/exporter of UML/XMI. Utilizing the Unified 
Modeling Language notation for an overall system design cycle, the focus of 
this paper lies on the subsystem coupling of heterogeneous systems and on a 
new code generation approach. 

1   Introduction 

The design of embedded electronic systems has changed due to a broad introduction of 
the object-orientation paradigm. It is also characterized by rapidly increasing com-
plexity and shorter product cycles today.  

                                                           
1 MATLAB/Simulink/Stateflow is registered trademark of Mathworks, Inc. 
2 Real-Time Studio is registered trademark of ARTiSAN Software Tools, Inc. 
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With the introduction of the Unified Modeling Language (UML) as a standard [6] 
and well-accepted notation for software design, the object-orientation paradigm is 
more and more accepted and supported in commercial CASE tools.  

These facts are results of a trend towards increasing use of more software compo-
nents in typical embedded system applications. Systems in automotive applications 
tend to have numerous software subsystems, event-driven subsystems and often a 
control subsystem in the time-continuous domain. These systems usually perform 
tasks like diagnosis, self-calibration, encrypted data-communication, and even data-
base-oriented system processing.  

A commonly used approach to handle system complexity in the system design pro-
cess is called concept-oriented rapid prototyping3 [1,2]. Concept-oriented rapid 
prototyping defines a way for the fast conversion of an executable specification, which 
captures the requirements by using modeling techniques for state-event, time-
continuous, and software modeling, into a functional prototype. This prototype mainly 
serves to clarify system goals and must support a widespread range of hardware inter-
faces. It uses automatic code generation based on CASE tools like 
MATLAB/Simulink, ASCET-SD4 or Statemate5, and powerful, general-purpose, ex-
tensible hardware. The cost of rapid prototyping hardware is not critical, as the hard-
ware is not specific and can be reused for different prototypes.  

Up to now concept-oriented rapid prototyping was influenced by tools for Com-
puter-Aided Systems Engineering (CASE) using the state chart theory (modeling of 
hierarchical finite-state-machines) or control systems engineering using block dia-
grams. In the past much effort was spent to improve design tools for a better integra-
tion of state charts and block diagrams. Current requirements in embedded systems 
design shift the attention from a pure state chart and block diagram approach to a more 
software-oriented view, which is captured by modern CASE tools in Software Engi-
neering domain. A major problem, common to all commercial software CASE tools, 
is a lack of support for control systems engineering whereas modeling of time-discrete 
or state-oriented systems is well supported. Therefore, development of mixed-domain 
systems with both time-discrete and time-continuous subsystems and additional soft-
ware components is not a continuous design process today. Thus there is a need to 
unify the description of the model to a single notation based on one metamodel to 
enable an overall design technique. Furthermore the integration of the domain-specific 
parts in terms of code generation, data and message exchange, task distribution, model 
versioning, user management and automated transformation between the domains is 
important. In our work the designer has the possibility to model in different modeling 
domains (time-discrete, time-continuous, software) and notations, which are trans-
ferred to one metamodel. This is done to achieve an executable specification running 
on a rapid prototyping platform. 

In the following section we will summarize the related work for concept-oriented 
rapid prototyping (see Sect. 2). We will introduce the metamodel used in our approach 

                                                           
3 Not captured in this paper: architecture and implementation rapid prototyping (RP) 
4 ASCED-SD is a registered trademark of ETAS GmbH 
5 Statemate is a registered trademark of i-Logix, Inc. 
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in Sect. 3. Section 4 will present our universal object-oriented modeling approach 
for embedded electronic systems. Then, in Sect. 5 our current work to provide a 
subsystem coupling technique on model-layer combined with a new automatic code 
generation approach (see Sect. 6) will be introduced. Afterwards, GeneralStore, our 
client/server CASE tool integration platform for mixed-domains and concurrent 
engineering, is described. Finally, Sect. 8 discusses results and offers a conclusion 
of the topic. 

2   Related Work 

Commercial solutions that support object-oriented modeling of embedded electronic 
systems are rare. Today, a wide range of CASE tools for object-oriented analysis and 
design is available mainly supporting pure software modeling. Software CASE tools 
for embedded systems modeling are often new to market. Only three well known 
CASE tools support object-oriented analysis and design using UML notation in addi-
tion to time-discrete modeling (e.g. state charts): ARTiSAN Real-Time Studio, i-
Logix Rhapsody, and Rational Rose Realtime are tools explicitly classified for this 
domain. 

A major drawback of those CASE tools is the lack of modeling concepts for control 
system engineering. For an overall system design users will have to include source-
code as external C-code into these CASE environments. This approach is expensive 
and very rigid. Communication between both modeling domains (software to time-
discrete/ -continuous system parts) is done via source code coupling. In large-scale 
systems, changing the system architecture during the development process is very 
susceptible to errors. Therefore, model-based coupling of software components and 
time-discrete/continuous system parts is desirable. 

3   Metamodel 

In our approach the whole system is described as an instance of one particular meta-
model in one notation. This model has to cover all three domains: time-discrete, time-
continuous, and software. The Unified Modeling Language (UML) is an Object Man-
agement Group (OMG) standard [6] which we use as system notation and metamodel. 
It is a widely applied industry standard to model object-oriented software. The abstract 
syntax, well-formedness rules, Object Constraint Language (OCL), and informal se-
mantic descriptions specify UML. 

The UML specification provides XML Metadata Interchange format (XMI) [8] to 
enable easy interchange of metadata between modeling tools and metadata repositories 
in distributed heterogeneous environments. XMI integrates three key industry stan-
dards: the eXtensible Markup Language (XML), a W3C standard, the UML, and the 
Meta Object Facility (MOF) [7], an OMG metamodeling standard which is used to 
specify metamodels. 
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One key aspect of UML is the four layered metamodeling architecture for general 
purpose manipulation of metadata in distributed object repositories (see Fig. 1) which 
makes it suitable for our universal object-oriented modeling approach. Each layer is an 
abstraction of the underlying layer with the top layer (M3) at the highest abstraction 
level. On the M-1 layer, which is not part of the 4-layer architecture, there is the exe-
cution code of the program. The M0 layer is comprised of the information that we 
wish to describe (the data). This is the source code in different languages, e.g. JAVA 
or C++. On the model layer (M1) there is the meta-data of the M0 layer, the so-called 
model. Object-oriented software is typically described on the M1 layer as a UML 
model. The metamodel on the M2 layer consists of descriptions that define the struc-
ture and semantics of meta-data (e.g. the UML model). These are the metamodels, e.g. 
UML 1.3, UML 1.4, and define the language respectively notation for describing dif-
ferent kinds of data (M1). Finally on the M3 layer there is the meta-meta-model. MOF 
is used to describe meta-models and define their structure and semantic. It is an ob-
ject-oriented language for defining meta-data. MOF is self-describing. In other words, 
MOF uses its own metamodeling constructs.    

M3 layerMOF

M1 layerUML ModelStatemate Model Simulink Model

M2 layerUML 1.3 UML 1.4
Blockdiagram

according to Simulink
Statechart 

according to Harel 

M0 layerC++ Sourcecode C Sourcecode JAVA Sourcecode

M-1 layerBIN program/OPCODE/BYTECODE on target

M3 layerMOF

M1 layerUML ModelStatemate Model Simulink Model

M2 layerUML 1.3 UML 1.4
Blockdiagram

according to Simulink
Statechart 

according to Harel 

M0 layerC++ Sourcecode C Sourcecode JAVA Sourcecode

M-1 layerBIN program/OPCODE/BYTECODE on target

 

Fig. 1. 4-layer metamodeling architecture 

 
XMI was partially influenced by the ideas for a tool-independent CASE data inter-

change format called CDIF [3], which was based on entity-relationship (ER) descrip-
tions. CDIF addresses the problem of model data interchange between CASE tools. 

Without a standardized interchange format for integrating more than one CASE 
tool, proprietary import/export filters must support the exchange of model data. In 
addition, new interfaces have to be implemented for tool integration. XMI is supported 
in a wide range of industry applications. In the machine tool domain for example, 
STEP, a standard for the exchange of product definition/model data, will be compati-
ble with XMI in the future. 
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In the current version 1.4 of the UML standard it is possible to completely inter-
change model information. Nevertheless, it is not yet possible to interchange the 
graphical views of the model in terms of diagrams, which will be supported in the 
forthcoming UML 2.0. 

4   Integration on Model Level 

When we capture current requirements in the design process of embedded real-time 
systems it is necessary to handle time-continuous, time-discrete, and software de-
sign techniques. Besides the problem of using a large number of description nota-
tions/methods, an enormous amount of design data has to be handled. Another prob-
lem in many commercial CASE tools is the lack of concurrent engineering support. 
Only a project file based datastore is offered that can be edited only by one user at a 
time. 

To couple different notations of the domains, transformation rules are necessary. 
In our approach we support different notations used by various CASE tools to 
model in specialized domains. The designer will choose the best tool/notation for a 
sub-problem and integrate the solution into the UML top-level metamodel. The 
software domain is modeled in UML therefore no transformation is needed. In the 
time-discrete domain the UML provides a notation but with the lack of well defined 
semantics. Here we use the semantics of David Harels concurrent hierarchical state 
charts [12] implemented in the CASE tool Statemate. It has an XMI interface and 
can interchange the time-discrete model with our integration platform GeneralStore 
(see Sect. 7). 

The main difficulty when using different description domains in a complex em-
bedded systems design is the integration of control subsystems. There are two pos-
sible solutions to overcome this problem: 

 
1. Integration of the time-continuous subsystem using the reverse engineering 

mechanism of modern CASE tools for software engineering. This case is called 
“subsystem coupling on source code level”. One major problem here is that the 
control subsystem is shown as a black box subsystem encapsulated inside a class 
with the loss of information for other designers (see top of Fig. 2). 

2. A bidirectional transformation rule (see bottom of Fig. 2) enables the synchroni-
zation of the time-continuous subsystem to a representation in the UML notation 
that uses simple object- and class diagrams (see left of Fig. 3). With an auto-
mated CASE tool-coupling layer, this transformation is reversible. This tech-
nique is called “subsystem coupling on model-layer”. 
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Fig. 2. Subsystem coupling on source-code level (top) and on model level (below) 
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Fig. 3. Transformation of a block diagram to UML 

Being more transparent the second approach is the more suitable way for a conven-
ient integration of both modeling domains. Figure 3 shows a small footprint of the 
design process, which is formed by a so-called bidirectional transformation rule. Sim-
plified, blocks in the block diagram are translated to objects in the UML metamodel. 
Connections represented by lines are also UML objects. The hierarchy in the block 
diagram is achieved by UML subsystems and links between objects. Parameters of the 
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blocks are slots on objects. The classifications of objects are classes whereas links are 
instances of associations. These elements are located in a separate UML package. This 
transformation rule is the result of a long-term scientific project at the Laboratory for 
Information Processing Technology (ITIV) at the University of Karlsruhe. We have 
currently developed a CASE tool integration environment (GeneralStore, see [4,5] and 
Sect. 7) that provides the necessary underlying design process support that will be 
introduced next. 

5   Design Process 

From our point of view the design process starts with object-oriented analysis using an 
UML CASE tool where we model use-cases to catalog the requirements. Then each 
requirement of the system specification is translated to a scenario modeled with a 
message sequence chart, state machine, or activity diagram. Non-functional require-
ments are modeled as OCL6 constraints or added as comments. By doing so an initial 
class model is automatically introduced. 

At the next step the developer arranges the class model in various class diagrams. 
These diagrams have to be refactored. Generalizations are identified and similar 
classes have to be combined. Dependencies and associations are revealed. With these 
steps the so-called analysis-model is achieved. This first analysis model is not in the 
main focus of our work but illustrate the overall process. 

The model of the embedded system then has to be divided in parts, where each part 
is mentioned as a software component, a subsystem in the control-domain, or a state 
chart in the time-discrete domain (see Fig. 4). 
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Fig. 4. Different domains as UML subsystems 

 

                                                           
6 Object Constrain Language an OMG standard 



An Overall System Design Approach Doing Object-Oriented Modeling         59 

 

Developers of different domains automatically select different notations and meta-
models to describe the problem of the subsystem when using best fitting CASE tools. 
The integration platform GeneralStore applies automated transformations on these 
notations to convert them to the top-level UML metamodel (see Sect. 4). 

Specialists in control system design use their notations (block diagrams) and tools 
(e.g. MATLAB/Simulink) to model in their domain. For integration with the overall 
system the control subsystem is transformed to the UML metamodel and vice versa. 
Thus we have a white box integration of the model in UML notation (compare Fig. 3 
and Fig. 5 right). 
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Fig. 5. Control system in UML view: black-box coupling (left) and white-box coupling (right) 

 
Specialists in the software domain can model their subsystem and the interface to 

the control-domain in UML (see Fig. 5). In UML we can model the task distribution 
(see bottom part of Fig. 6), scheduling and message exchange of the heterogeneous 
system. In Fig. 5 there is the component control system, which is running on the elec-
tronic control unit ECU1. This component encapsulates the control domain, or more 
exactly its implementation. The parameter interface (see Fig. 5 left) allows manipula-
tion to the parameters of the control system, whereas the signals interface provides 
access to the internal state of the control system, e.g., for diagnostic reasons. The exe-
cution interface is used for scheduling and task allocation of the control domain. The 
component is the black-box view of the control system. 

In addition the designer can use the white box view (see Fig. 5 right) of the control 
system to model the access to the signals or parameters explicitly or in a generic way. 
On the right hand side of Fig. 5 the object parameterSetter has access to the parameter 
Gain of CruiseControlGain, which corresponds to the block Gain in the block diagram 
(see Fig. 3). 
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Fig. 6. Class diagram of execution modeling (top) and modeling task distribution (bottom) 

The shown design pattern for domain coupling is based on an automatically gener-
ated wrapper of the control and time-discrete domain. This is done by inspection of the 
generated code of the supported commercial code generators. The wrapper is gener-
ated on UML model level and is transformed to code with our code generator (see 
Sect. 6) during code generation phase. The control domain wrapper provides access to 
parameters and signals. The other partitions are built with commercial generators and, 
as stated before, the whole system is generated to get an executable specification. 

Although there are state machines in the UML metamodel, the semantic is not 
completely specified. But for an executable specification we absolutely need well-
defined semantics of state charts. To solve this problem designers use the Harel state 
chart semantics [12] implemented in the CASE tool Statemate or Rhapsody in C to 
model the time-discrete subsystem. The coupling of the time-discrete model to the 
other domains is accomplished using a design pattern similar to the control-domain 
described above.  

Now we can run the generated system on the RP7 target. Usually, real systems will 
not fulfill the expected tasks completely at the first try. To find errors we use model 
monitoring. Test cases are modeled in UML, generated by our code generator, and run 
in a unit test mode on the target. After recording the whole scenario of the failed test 
case it can be shown in the UML model offline when the user is stepping through it. 

6   Code Generation 

There are highly efficient commercial code generators on the market. In safety critical 
systems certificated code generators have to be used to fulfill the requirements. The 
GeneralStore (GS) platform allows partitioning the whole system into subsystems to 
invoke different domain specific code generators.  

                                                           
7 Rapid Prototyping 



An Overall System Design Approach Doing Object-Oriented Modeling         61 

 

For control-systems there are commercial code generators like Target Link8, 
Embedded Coder9 or ECCO10. In the time-discrete domain we utilize the code gen-
erator of Statemate11 (Rhapsody in MicroC). In software domain commercial code 
generators only generate the stubs of the static UML model while behavioral func-
tionality has to be implemented by the software engineer. 

 As we focus on a completely generated executable specification it is necessary 
to generate code of the overall model. Therefore we provide a code generator as a 
GS plug-in to enable structural and behavioral code generation directly from a UML 
model. The body specification is done formally in the Method Definition Language 
(MeDeLa). Which is an abstract action language based on Java syntax. Our tem-
plate code generator is using the Velocity engine to generate Java or C++ source 
code. Velocity is an Apache open source project focused on HTML code genera-
tion. It provides macros, loops, conditions, and callbacks to the data model business 
layer. 

The different domains have interactions, e.g., signal inspection, adoption of con-
trol system parameters at runtime or sending messages between time-discrete and 
software artifacts. There should be one scheduler on each ECU12 as many commer-
cial code generators provide a specific scheduling mechanism. Integration of these 
different frameworks on one ECU is error prone. In our approach these design tasks 
could be modeled in UML with assistance of MeDeLa as outlined in Sect. 5. After-
wards our code generator renders the specified glue (interactions between domains). 
We provide a highly flexible modeling process, which is supported by an integration 
platform described in the following section. 

7   Client/Server Architecture for CASE 

To keep the system model manageable for designers, CASE tool integration is nec-
essary. In [1,2] an open design environment based on CDIF for the development of 
mechatronic systems was presented. Many of the experiences from this project 
influence our current work. 

After the design of prototypes during the last two years the focus of our current 
work is on a so-called Integration Platform GeneralStore (GS). The setup of the GS 
follows a 3-tier architecture well known in the software engineering domain. On the 
lowest layer (database layer) a commercial object-relational database management 
system ORACLE13 respectively MySQL14 was selected. On the business-layer we 

                                                           
8 From dSPACE GmbH 
9 From Mathworks, Inc. 
10 From ETAS GmbH 
11 From i-Logix, Inc. 
12 Electronic Control Unit 
13 ORACLE is registered trademark of ORACLE Corporation 
14 MySQL is an open source project: see www.msql.com 
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provide user authentication, transaction management, object versioning, and con-
figuration management. 

For managing CASE data, GS supports UML as its metamodel (see Sect. 2). GS 
uses MOF as its database scheme for storing UML artifacts. Inside the database layer 
an abstraction interface keeps GS independent from the given database. 

 
 

 

Fig. 7. Architecture of integration platform (GeneralStore) 

 
On the business layer of GS the mediator pattern [11] is used to keep the CASE tool 

integration simple and its adaptor uniform. The transformations for specific notations 
supported by CASE tools are implemented in plug-ins (see top of Fig. 7). The code 
generation plug-ins (Embedded Coder and Rhapsody in MicroC) controls the trans-
formation to the source code. Their wrapper generators are automatically building the 
interface in the UML model (see Fig. 7 in the middle). 

While interim objects enclose MOF elements, the CASE adaptor (see class GSTool 
in Fig. 8) stays thin and highly reusable. Another reason for using interim objects on 
the business layer is because of object identity to handle object versioning and con-
figuration management. To visualize these circumstances, an example is taken where a 
unique identification number is added to a subsystem block from the time-continuous 
system domain. After the block is checked out from the repository, a designer moves 
this subsystem to another hierarchy layer. Despite the fact that it is the same com-
pound object, the system controller in the time-discrete system part keeps track of this 
link because of the subsystem identification number. 
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Fig. 8. Plug-in architecture of GeneralStore 

 
On the presentation layer GS provides three principal CASE tool adapters: 

• MATLAB/Simulink/Stateflow was selected for the control system design 
domain and the integration is done using the proprietary model file. 

• Generic and specialized XMI importer/exporter filter of *.xmi15 files. 
• And the COM16 based integration of ARTiSAN Real-Time Studio. The tool 

was selected because of its focus on embedded real time systems.  
 
Both CASE tools are bidirectional linked to the GS architecture. For model man-

agement and CASE tool control, GS offers a system hierarchy browser (compare 
Fig. 9). Since the internal datamodel representation of GS is UML, GS offers a system 
browser for all UML artifacts of the current design. Due to the large amount of MOF 
objects (for example: the transformed PT1 subsystem needs about 10,000 XMI enti-
ties), GS offers design domain specific hierarchy browsers, e.g., a system/subsystem 
hierarchy view for structural or time-continuous design or a package hierarchy view 
for software design. 

 

8   Conclusion 

The introduced universal object-oriented modeling approach supports the concurrent 
development of electronic systems in all design phases. We showed how heterogene-
ous system descriptions could work as  integrated parts of an object repository  based-
Client/Server  CASE  tool  environment.  Based  on  an object diagram  representation, 
                                                           
15  XML file based 
16 

 Microsoft Component Object Model 
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Fig. 9. GeneralStore’s MATLAB, Coder, and ARTiSAN UML plug-in 

 
time-continuous subsystems and software components can be modeled using one sin-
gle description style. A direct linkage between different description domains is possi-
ble on an abstract model level. While transforming all subsystem parts to an uniform 
object notation, adding additional model information to time-continuous blocks will 
enable system designers to start with system simulation early in the design process. 

Embedded electronic systems can be subdivided in time-discrete, time-continuous 
and software domain. Each domain uses its specific notation. A highly flexible design 
process was described to integrate those notations, which are supported by CASE 
tools, to one UML model. The glue between the domains is modeled in UML. Finally 
the overall system is transformed to source code with the assistance of commercial 
code generators in addition to our UML code generator. 

An often-needed feature and simultaneously a drawback of project file-based 
CASE tools (e.g. Rhapsody, Simulink/Stateflow) is the lack of CASE tool assisted 
concurrent engineering. Using the presented CASE tool backend GeneralStore to-
gether with MATLAB/Simulink, an interim project file is created each time a designer 
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checks out a part of the model. This is possible at any specific model hierarchy point. 
The checked out subsystem hierarchy becomes protected. Other designers still have 
read access to the last version of this subsystem and can obtain read/write access to 
other subsystems in the time-continuous hierarchy. 

One major drawback of using UML/MOF from XMI as a metamodel for system 
description is the deficiency of a standardized graphical representation for class and 
object diagrams. Up to now, this is one of the most requested topics for UML 2.0 and 
the next XMI generation. On the other side, using XMI and the UML metamodel for 
the description of embedded systems enables model exchange with other CASE tools. 
Today, at least 10 software CASE tools on the market can handle XMI descriptions 
from the information point of view (import of a model without graphical description). 

9   Outlook 

Future work has to focus on the definition of a tailored design process and the integra-
tion of CASE tools for requirements management (e.g. DOORS17). On the back-end 
side of our development environment simulation and emulation of system models is 
going to be supported. 

We will examine the integration of further modeling tools to estimate the saved in-
tegration effort using UML/MOF. Especially for large systems of different design 
domains, our universal object-oriented modeling approach for the design of embedded 
electronic systems based on MOF will show its advantages. 

Furthermore it is planned to work on enhanced modeling of operations in UML for 
code generation, e.g., collecting information from activity charts, object collaboration 
diagrams, and state charts. 

It is also considered to enable modeling for reconfigureable hardware components, 
e.g. FPGA18s that means creating VHDL code from an UML model. 
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