
356

Xere: Towards a Natural Interoperability
between XML and ER Diagrams�

Giuseppe Della Penna, Antinisca Di Marco, Benedetto Intrigila, Igor Melatti,
and Alfonso Pierantonio

Università degli Studi di L’Aquila, Dipartimento di Informatica
{dellapenna,adimarco,intrigila,melatti,alfonso}@di.univaq.it

Abstract. XML (eXtensible Markup Language) is becoming the stan-
dard format for documents on Internet and is widely used to exchange
data. Often, the relevant information contained in XML documents needs
to be also stored in legacy databases (DB) in order to integrate the new
data with the pre–existing ones. In this paper, we introduce a technique
for the automatic XML–DB integration, which we call Xere. In particular
we present, as the first step of Xere, the mapping algorithm which allows
the translation of XML Schemas into Entity-Relationship diagrams.

1 Introduction

Over the last years, Internet related technologies had an exponential growth
and motivated a stronger demand for standards in information interchange and
treatment. As a consequence, using XML (eXtensible Markup Language) [8] as a
standard format for data and documents on Internet is becoming a commonplace.

Moreover, we are facing the shift of XML usage from its original presentation-
centric nature to a more information-centric one. A number of organizations and
individuals are using XML to exchange data that need to be stored and managed
in some way. Information is often originated directly in XML, and since XML
data are contained in files, it is usual to store them “as they are” on a filesystem.
Nevertheless, the relevant information contained in such files often needs to be
also stored in (legacy) databases. Indeed, applications that manage and mani-
pulate this information usually work on (relational) databases, and companies
want to continue to use these “legacy” applications, since adapting them to read
directly data from XML files may be too expensive and complex. This results
in an almost unavoidable duplication of data, which is often troublesome: the
association between the XML data and its image in the database is possibly not
preserved, and this may lead to consistency errors.

To face these problems, we propose a general technique, which we call Xere
(XML Entity Relationship Exchange), to assist the XML – DB integration, in a
way that alleviates the consistency problems and helps in merging the XML data
with pre–existing legacy ones. In particular, the database structures that contain
the XML data should be naturally related to the XML document structure, so
� Research partially supported by the MURST project SAHARA

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 356–371, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Xere: Towards a Natural Interoperability between XML and ER Diagrams 357

that it could be possible to transparently store XML data in databases, query the
resulting data structures, and automatically regenerate “on the fly” the source
documents from the DB content.

In this paper, we present the first step of Xere, consisting of an algorithm
that maps XML Schemas to Entity–Relationship models.

Mapping XML Schemas to the Entity–Relationship conceptual model, rather
than to the relational structures of a database, has various advantages:

– The ER diagram offers a good documentation to the DB designer and main-
tainer.

– A natural mapping to the relational model is not always possible, since the
relational model and XML Schemas are on two very different abstraction
layers. In particular, there are many constraints and optimizations that can
be only “seen” on the ER model, due to the part of structural information
which is lost in the “flat” relational model. Indeed, in the traditional database
design process, the relational model is used only in one of the last steps, very
close to the physical deployment.

– The integration with pre–existing data structures in a legacy database can
be more easily studied on a conceptual model.

We decided to adopt XML Schemas [9] rather than DTDs for a number of rea-
sons. Although, previous approaches (such as [11]) to the XML–DB integration
use DTDs to create a general mapping algorithm that is subsequently applied to
the XML documents, DTDs are being progressively replaced by XML Schemas.

Moreover, using XML Schemas is convenient since this formalism offers a bet-
ter expressiveness to describe very complex document structures. It can express
advanced concepts like generalization, type derivation and substitution, complex
type definitions and a variety of content models (such as sequence, choice, set).
XML Schemas are also strongly typed – as databases are: actually, the XML
Schema basic types are directly derived from SQL data types (see [9]), and this
helps also in the physical deployment of the database structures.

Finally, since a XML Schema is itself an XML-based formalism, it can be
processed by a variety of XML–based tools. Indeed, in this paper we also present
the prototypical implementation of our Schema to ER mapping using only XML-
related technologies and (free) tools. Note that many free tools are also available
to translate DTDs in XML Schemas [9], so our approach could indirectly handle
also DTDs.

The paper is arranged as follows. Section 2 presents the Xere mapping out-
lining how XML Schemas are translated into Entity-Relationship diagrams. In
Sect. 3 we prove the completeness and soundness of the Xere mapping algorithm.
Finally, Sect. 5 compares the work which is presented in this paper with related
works and Sect. 6 draws some conclusions and discusses future works.

2 Xere: Mapping XML Schemas into ER Diagrams

This section illustrates the Xere mapping. Since XML Schemas are also XML
documents, a running implementation of Xere is given by means of XSLT [10],

358 G. Della Penna et al.

as described in Sect. 2.2. In Sect. 2.3 we also sketch a possible optimization of
the mapping.

2.1 Mapping Algorithm

The mapping algorithm takes an XML Schema as input and creates the corre-
sponding Entity-Relationship (ER in the following) model as output.

The mapping algorithm illustrated in this section does not support all the
features of XML Schemas, because of space limitations, and we focus on a mean-
ingful subset of Schema elements.

Table 1 shows all the XML Schema elements, divided in categories, and some
of their attributes. For a complete reference on the XML Schema grammar and
its semantics, the reader can refer to [9]. The “Supported” columns in Table 1
show which elements are supported in the current implementation of the Xere
mapping. The omitted elements are not fundamental for the schema definitions.
Therefore, our current algorithm can be considered effective on most of the XML
Schemas. In the following, we describe the features recognized by the mapping
algorithm and the resulting ER structures.

Table 1. Schema elements and attributes currently supported by the Xere mapping

Category Element Supported

Particles all Yes
element Yes
choice Yes
sequence Yes
group Yes
any No

Attributes anyAttribute No
attribute Yes
attributeGroup Yes

Complex complexType Yes
types complexContent Yes

simpleContent Yes
restriction Yes
extension Yes

Simple simpleType
types list No

union

Identity unique No
constraints key Yes

keyref Yes
field Yes
selector Yes

Other schema Yes
elements notation No

Category Element Supported

Facets maxExclusive
maxInclusive
minExclusive
minInclusive
length
maxLength No
minLength
fractionDigits
totalDigits
pattern
enumeration
whiteSpace

Comments annotation
appinfo No
documentation

Schema import
combination include No

redefine

Schema minOccurs Yes
attributes maxOccurs Yes

mixed No
substitutionGroup No
default No
fixed No
nillable No

Xere: Towards a Natural Interoperability between XML and ER Diagrams 359

<element name="A">
<complexType>
<sequence>
<element name="B" type="integer"

minOccurs="0"
maxOccurs="unbounded"/>

</sequence>
</complexType>

</element>

RA−A_B

A_B

A

(0, n)

(1, n)

Content

Fig. 1. Mapping of a local element.

<element name="A">
<complexType>
<sequence>
<element ref="B"

minOccurs="b1"
maxOccurs="b2"/>

<element ref="C"
minOccurs="b3"
maxOccurs="b4"/>

</sequence>
</complexType>

</element>

(b ,b)3 4

RA−B RA−C

A

B C

(1, n) (1, n)

(b ,b)1 2

Position Position

Fig. 2. Mapping of a sequence model.

<element name="A">
<complexType>
<choice minOccurs="b1"

maxOccurs="b2">
<element ref="B"

minOccurs="b3"
maxOccurs="b4"/>

<element ref="C"
minOccurs="b5"
maxOccurs="b6"/>

</choice>
</complexType>

</element>

(b ,b)1 2

(1, 1)

(b ,b)5 6(b ,b)3 4

(1, n) (1, n)

A

A_Choice_1

R_B−B

_B

B

R_C−C

_C

C

A−A_Choice_1R

Position Position

Fig. 3. Mapping of a choice model.

360 G. Della Penna et al.

<element name="A">
<complexType>
<sequence minOccurs="b1"

maxOccurs="b2">
<element ref="B"

minOccurs="b3"
maxOccurs="b4"/>

<element ref="C"
minOccurs="b5"
maxOccurs="b6"/>

</sequence>
</complexType>

</element>

RA−A_Seq_1

(b ,b)3 4
(b ,b)5 6

Position Position

A_Seq_1

A

(b ,b)1 2

(1, 1)

B C

RA_Seq_1−B RA_Seq_1−C

(1, n) (1, n)

Fig. 4. Mapping of a sequence model with occurrence constraints using an auxiliary
entity.

Elements. Each element becomes an entity. The entity name is obtained from
the element name considering its nesting (see “Element nesting” below). The
element primary key is chosen using the following rules:
1. if the schema explicitly defines a key (using the xs:key construct1) for

the element, that key is used as its primary key. Note that the keys de-
fined using the xs:key construct can be composite and make references
to attributes belonging to other elements (which are parents of the cur-
rent one). In this case, we are simply declaring the resulting entity as a
weak entity, so its primary key depends on some attributes of other enti-
ties that are associated with it via a parent relationship. Our algorithm
guarantees that the relation between any element and its parent exists
in the resulting ER model.

2. if the element has an attribute of type xs:ID, that attribute becomes its
primary key.

3. otherwise, the entity has not any key. Entities with no keys are secondary
entities that will never be addressed directly.

Simple elements (e.g. without attributes and child elements) have a special
“content” attribute, which holds the textual content of the element. Simple
elements may be further optimized (see Sect. 2.3).

Attributes. Element attributes are mapped to entity attributes, regardless of
their xs:use attribute value (e.g. required, implied, etc.).

Element Nesting. Elements in XML Schemas can have a scope, so e.g. we can
define elements with the same name in different types. The mapping takes
care of this situation by using local names when creating entities derived
from nested definitions. The local name is simply obtained by appending
the element name to the container’s name: for example, an element “B”
declared inside another element “A” will result in the creation of an entity
named “A B” (see Fig. 1 for an example).

1 In this paper, the xs prefix always denotes the XML Schema namespace.

Xere: Towards a Natural Interoperability between XML and ER Diagrams 361

Global Declarations and References. Elements, attributes and types can
be globally declared and then referenced by name. The algorithm handles
both situations.
– global types are inline expanded where referenced.
– global elements are created once (as entities) and referenced when

needed.
– global attributes are copied in any entity that references them.

Complex Types. All kind of complex types are recognized. Types derived by
extension from other complex or simple types are expanded and the final type
is obtained merging all the types in the derivation hierarchy. Types derived
by restriction are handled as natural by rewriting the entire complex type
with appropriate restrictions.

Content Models. All content models (i.e. sequence, choice, all) are recog-
nized. The mapping is designed to be as natural as possible. Content children
can be either elements or other content models. In general, all the content
children are created applying recursively the mapping algorithm and then
attached to the content owner using relations. Note that, in our ER models,
relations are oriented: this means that we can always say that a particular
relation exits from an entity (the “parent”) and is directed to another en-
tity (the “child”). Moreover, since these relations represent a parent–child
relationship in the XML Schema, their cardinalities are (1,1) on the parent
side, unless different occurrence constraints are explicitly defined, and (1, n)
on the child side, since children with the same content from different XML
instance documents may be merged and attached to many parents for data
optimization purposes. The particular mapping for each content model is
described in the following paragraphs.

Sequence Models. All the content children are linked to the model owner
using relations. The sequence relative positions of child elements are ex-
pressed in the ER diagram by adding a position attribute to these
relations (see Fig. 2 for an example). Note that this “extra” attribute
actually expresses an implicit attribute of the XML Schema: indeed, the
choice of a sequence content model implies an ordering on the informa-
tion represented by the model children.

Choice Models. The choice model is translated using the generalization
construct of ER diagrams. An auxiliary entity is attached to the model
owner with an appropriate relation, and is specialized in as many other
auxiliary entities as the content children are. The reason for adding the
auxiliary entities is that we need the corresponding relations to store
the cardinality constraints. Finally, the actual content model children
are linked to the corresponding auxiliary entity using a relation. If a
child has occurrence constraints, we add to the corresponding relation a
position attribute to keep track of the occurrences ordering (see Fig. 3
for an example). Note that the ER generalization construct may not
be always semantically consistent with the choice XML Schema content
model. However, the generalization, used in the particular way explained

362 G. Della Penna et al.

above, is the only construct that allows to maintain at least the “mutual
exclusion” semantics of the choice model in the ER diagram.

All Models. The all model is realized similarly to the sequence model,
without keeping track of the children position in the sequence.

Elements xs:group are used to import frequently used content models. The
algorithm expands them inline anywhere they are referenced. The expanded
content models are recursively processed using the previously described rules.

Occurrence Constraints. Occurrence constraints in content model children
are mapped to relation cardinalities in the ER model. As already said, a
special attribute position is added to the relations to keep track of the
occurrences ordinal position in choice and sequence content models. If the
occurrence constraint is placed on a sequence model, an auxiliary entity and
a relation are created to store the corresponding cardinality (see Fig. 4).
Note that the role of auxiliary entities is only to provide a more natural way
to map the Schema to the ER diagram. Most of the times, these temporary
entities are discarded when reducing the ER schema to a relational schema.

Key Definitions and Key References. Key definitions are mapped as entity
primary keys. Key references are translated by executing the two following
steps:
1. the attribute corresponding to the xs:field part of the key reference is

removed from its entity.
2. a relation, with the same name of the removed attribute, is created from

the referring entity to all the entities containing the attributes that com-
pose the key. The cardinalities of this relation are (1,1) on the side of
the entity with the removed attribute and (1, n) on the other sides.

Finally, the ER model is completed by creating an additional entity, conven-
tionally called document, that has a single attribute called name. This entity
is associated through a relation to the entity representing the XML document
root. In this way, we can distinguish the elements of each different document
stored in our data base.

2.2 An XSLT Implementation of the Mapping

In this section we briefly introduce a prototype implementation of most of the
Xere mapping algorithm described in Sect. 2, with the exception of primary keys,
key references, attribute and element groups.

We implemented the algorithm using a XSLT [10] transformation stylesheet
that can be used and tested on possibly any platform using an XSLT interpreter.

The output of the transformation is another XML document describing the
resulting ER model with a very simple markup containing the following elements:

– <entity name=’foo’> declares an entity of the ER diagram called foo.
– <attribute name=’foobar’ type=’atype’> inside an <entity> or

<relation> element, declares an attribute of that entity or relation with
the specified name and type.

Xere: Towards a Natural Interoperability between XML and ER Diagrams 363

– <relation name=’foobar’ from=’foo’ to=’bar’

card=’n1,m1-n2,m2’> declares a relation, called foobar, between the
two named entities foo and bar, with the given cardinality (n1,m1 and
n2,m2 are the cardinalities of the foo and bar entities in the relation,
respectively).

– <specialization base=’foo’> defines a generalization having foo as its
base (most general) entity. All the children of the <specialization> ele-
ment are possible specializations of the base.

The complete implementation of the mapping algorithm outlined here, to-
gether with the XML Schema of the language used to represent the ER models,
can be found in [3]. Moreover, it is possible to try the algorithm online at the
url http://dellapenna.univaq.it/xere/.

2.3 Optimizations on the Algorithm

Many optimizations can be applied to the mapping algorithm described in
Sect. 2.1. We decided to remove these optimizations from the first release of
the algorithm, since they may make the resulting ER diagram more complex
and difficult to understand.

We may suggest two major optimization to the current Xere mapping algo-
rithm:

– Optimizations based on cardinalities and simple types may decrease the num-
ber of entities created by the algorithm. For example, an element with a sim-
ple type may be safely translated in an attribute (possibly with cardinality)
if it is contained in another entity and has “reasonably low” occurrence con-
straint. However, this optimization should be carefully validated by domain
experts not to alter the diagram semantics.

– Element groups are expanded inline in the current mapping. Therefore, the
group content becomes a nested content model, and this may lead to the
creation of many different instances of the same set of entities. To optimize
this process, we may create a temporary entity called, say, GroupX and
connect the group content model to it. Then, any reference to that group
could be translated into a simple relation to the GroupX entity, thus saving
much space. This transformation is semantically consistent since elements
are grouped when they have a fixed semantics that is shared among several
different content models.

3 Soundness and Completeness of the Xere Mapping

The Xere mapping algorithm described in Sect. 2 covers the main XML Schema
elements, as shown in Table 1. There are some secondary elements and constructs
we decided to not include in the first version of the Xere algorithm, since they
are not fundamental for the schema definitions. Therefore, our current algorithm
can be considered effective on most of the current XML schemas.

http://dellapenna.univaq.it/xere/

364 G. Della Penna et al.

In this section we sketch the completeness and soundness proofs for the cur-
rent Xere algorithm.

Proposition 1 (Xere Mapping Completeness). The Xere mapping algo-
rithm is complete w.r.t. the given subset of the W3C XML Schema Specification
[9].

Proof. By analyzing the meta–schema given in [9], we can see that the meta–
schema is built recursively from the base elements described in Table 1. The
Xere algorithm is well-defined on all the base elements shown in Table 1. These
base elements are translated in ER entities. The algorithm is in turn recursive,
so it can go down through the schema definition, translating the parent–child
relations in ER relations. ��

To prove the soundness of the Xere mapping we show that, given any XML
document valid w.r.t. a particular schema, we can store the document content as
an instance of the ER model generated by the Xere algorithm and then rebuild
that document (or an equivalent instance) from that ER model instance.

In other words, we can represent XML documents as instances of the ER
model created by the Xere mapping for the corresponding schema, so that the
document identity is preserved.

Definition 1 (Document Identity). We say that two XML documents D1

and D2 with the same schema S are identical (or that they have the same iden-
tity) iff they have

– The root elements of D1 and D2, namely R1 and R2, are the same (i.e. they
have the same tag).

– The two root elements R1 and R2 have the same attributes with the same
values. Attribute order is not considered. Attribute values should be expanded
w.r.t. their defaults, as described in S.

– If R1 and R2 have a simple content, then the contents are identical.
– If R1 and R2 have a complex content, then there exists a bijective mapping

between the children of R1 and R2, so that the document fragments corre-
sponding to related children are in turn identical. In addition, if R1 and R2

have a sequence model (declared in the schema), then the bijective mapping
must also preserve the child positions: the first child of R1 is mapped into
the first child of R2, and so on.

Proposition 2 (Xere Mapping Soundness). The Xere mapping algorithm
preserves the XML documents identity.

Proof. Since the Xere algorithm is recursive, the soundness proof will be given
by induction on the XML documents structure.

The simplest XML document is composed by a single element, possibly with
attributes and a textual content. In an XML Schema, such element would be
declared with a schema fragment like that shown in Fig. 5a.

Xere: Towards a Natural Interoperability between XML and ER Diagrams 365

<xs:element name=”E”>
 <xs:complexTyple>
 <xs:simpleContent>
 <xs:extension base=”xs:string”>
 <xs:attribute name=”a1" type=”xs:string”/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

<E a1= ”v” > txt </E>

a1
content

a1=v
content=txt

(a) (b)

E

E

XERE

(c)

instance instance

Fig. 5. Mapping of a simple element.

The Xere algorithm would translate this schema fragment creating an entity
called E with two attributes, content and a1, which correspond to the element
textual content and to the element attribute a1, respectively (see Fig. 5b).

An instance of the given schema is <E a1=‘‘v’’>txt</E>. This instance
is mapped on the ER model as an instance of the entity E, where the entity
attributes content and a1 are assigned to the values txt and v, respectively (see
Fig. 5c).

From the other end, given an instance of the ER model described above, we
map it to an XML document instance by creating an element with the same
name of the entity, i.e. E, and assign it the textual content given by the content
attribute, if it exists. Then we add an attribute to the element for each other
attribute of E, and assign it with the corresponding value (see Fig. 5c).

For the ER model instance generated above, we would rebuild exactly the
source XML <E a1=‘‘v’’>txt</E>.

Now we describe how content models are mapped. We inductively suppose
that we can store and retrieve any XML subtree, and show how the content
models (all, sequence, choice) are mapped.

A basic sequence model is declared by the schema fragment shown in Fig. 6a,
where M1, M2, . . . , Mn can be element declarations (or references) or nested content
models.

The Xere algorithm would translate this schema fragment creating an entity
called E, recursively building the ER sub–diagrams corresponding to M1, M2,
. . . , Mn, and connecting these sub–diagrams to E with n relations. The created
relations have a position attribute that specifies the sequence position of the
corresponding sub–diagram (see Fig. 6b). Note that, by induction hypothesis,
we can always build the required sub–diagrams.

An instance of the given schema is <E><E1>...</E1>...<En>...</En></E>,
where the subtrees E1, . . . , En are valid w.r.t. the respective schema fragments
M1, . . . , Mn. This instance is mapped on the ER model instance by

366 G. Della Penna et al.

<xs:element name=”E”>
 <xs:complexTyple>
 <xs:sequence>
 M1
 . . .
 Mn
 </xs:sequence>
 </xs:complexType>
</xs:element>

<E>
 <E1> . . . </E1>
 . . .
 <En> . . . </En>
</E>

XERE

(a) (b)

(c)

E

RE-M1 RE-Mn

. . .

E

RE-M1 RE-Mn

. . .

position=n

position=1

E1 En

M1 Mn

position

instance instance

Fig. 6. Mapping of a sequence model.

1. first recursively creating the instances of the ER sub–diagrams corresponding
to E1, . . . , En;

2. then, an instance of the ER entity E is created and the relations are set to
associate this instance with the sub–diagrams of E1, . . . , En. Each relation
instance has an attribute position that is set to the ordinal position of the
corresponding sequence child E1, . . . , En (see Fig. 6c).

On the other hand, given an instance of the ER model described above, we
map it to an XML document instance by creating an element with the same
name of the root entity, i.e. E, and recursively rebuilding the XML subtree
corresponding to the n sub–diagrams associated to E with the n relations. Then,
we insert these subtrees in the root element E using the order given by the
position attribute on the relations (see Fig. 6c).

For the model instance generated in the example above, we would rebuild
exactly the source XML <E><E1>...</E1>...<En>...</En></E>.

A basic choice model is declared by the schema fragment shown in Fig. 7a,
where M1, M2, . . . , Mn can be element declarations (or references) or nested content
models.

The Xere algorithm would translate this schema fragment creating an entity
called E and recursively building the ER sub–diagrams corresponding to to M1,
M2, . . . , Mn. A temporary entity T is created and associated with E using a
relation RE−T , and n other temporary entities T M1, . . . , T Mn are attached
as specializations of T . Finally, the roots of the sub–diagrams for M1, M2, . . . , Mn
are attached to the corresponding temporary entities T M1, . . . , T Mn using
an appropriate relation (see Fig. 7b).

An instance of the given schema is <E><Ei>...</Ei></E>, where the subtree
Ei is valid w.r.t. the respective schema fragment Mi. This instance is mapped on

Xere: Towards a Natural Interoperability between XML and ER Diagrams 367

<xs:element name=”E”>
 <xs:complexTyple>
 <xs:choice>
 M1
 . . .
 Mn
 </xs:choice>
 </xs:complexType>
</xs:element>

<E>
 <Ei> . . . </Ei>
</E>

XERE

(a) (b)

(c)

E

RT_M1-M1

. . .M1 Mn

position

T_M1 T_Mn

RE-T

T

RT_Mn-Mn

E

RT_Mi-Mi
Position=i

RE-T

T_Mi

Ei

instance instance

Fig. 7. Mapping of a choice model.

the ER model by first recursively creating the instance of the ER sub–diagram
corresponding to Ei. Then, an instance of the ER entity E is created and the
relation R is set to associate this instance with the sub–diagram of Ei, implicitly
choosing the corresponding specialization of T (see Fig. 7c).

From the other end, given an instance of the ER model described above, we
map it to an XML document instance by creating an element with the same
name of the root entity, i.e. E, and recursively rebuilding the XML subtree
corresponding to the specialized sub–diagram associated to E with the relation
R. Then, we insert this subtree in the root element E (see Fig. 7c).

For the model instance generated in the example above, we would rebuild
exactly the source XML <E><Ei>...</Ei></E>.

The all content model is mapped exactly as the sequence model, with the
exception of the position attribute that is not created and ignored during the
document storing and retrieval. Therefore, the all model mapping is even simpler
than the sequence model mapping. ��

Although we only give here a sketch of the inductive soundness proof, we
think it should be enough to ensure the soundness of the Xere approach.

4 An Example

In this section we briefly show an application of our mapping algorithm and the
obtained results. The Schema we used, shown in Figure 8, defines the structure

368 G. Della Penna et al.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">
<!--Global Types: we skip the part where the global types "full_name_type",

"name_type","authors_type","keywords_type","relatedwords_type" and
where the global elements "family","middle" and "first" were defined-->

<!--Root Element-->
<xs:element name="issue">
<xs:complexType><xs:sequence>
<xs:element name="editor" type="name_type"/>
<xs:element name="articles"><xs:complexType><xs:sequence>
<xs:element ref="article" maxOccurs="unbounded"/>
</xs:sequence></xs:complexType></xs:element>

</xs:sequence></xs:complexType>
</xs:element>
<xs:element name="article"><xs:complexType><xs:all>
<xs:element name="title" type="xs:string"/>
<xs:element name="authors" type="authors_type"/>
<xs:element name="summary">
<xs:complexType><xs:choice>
<xs:element ref="keywords"/>
<xs:element ref="related_words"/>

</xs:choice></xs:complexType></xs:element></xs:all>
<xs:attribute name="category" type="xs:string"/>
</xs:complexType></xs:element>
<xs:element name="author" type="full_name_type"/>
<xs:element name="keywords"><xs:complexType><xs:complexContent>

<xs:extension base="keywords_type"/>
</xs:complexContent></xs:complexType></xs:element>
<!--We skip the definition of "related_words", that is similar to the

"keywords" definition above-->
</xs:schema>

Fig. 8. XML Schema code for the journal issue example.

of a journal issue. We run on this Schema the stylesheet mentioned in Section
2.2 and the ER model resulting is shown in Figure 9.

Let us highlight the two most interesting parts of this Schema:

– the articles definition (exemplifying the sequence model);
– the summary definition (exemplifying the choice model)

that determined the generation of the shaded areas in Figure 9. Note that, since
the articles element is nested in the issue element definition, the correspond-
ing entity is labelled issue articles in the generated ER diagram. For the
same reason, the summary element nested inside the article element generates
an entity labelled article summary.

5 Related Works

Most of the related works are dealing with some kind of translation from XML to
database systems. As stated in Sect. 2, current approaches make use of DTDs and
directly map them on relational schemas. Therefore, we were not able to found
other techniques directly comparable with ours. In this section we list general

Xere: Towards a Natural Interoperability between XML and ER Diagrams 369

issue

author article_summary

article

issue_articles

article_title

first middle family

_keywords _related_words

keywords related_words

keywords_words related_words_words

issue_editor

R1 R2

R3
R4

R5

R16

R7 R8

R15 R16

R13 R14

R9
R10 R11

(1,1)

(1,n)

(1,n)

(1,n)

(1,n)

(1,n)

(1,1)(1,1)

(1,n)
(1,n) (1,1)

(1,1)

(1,n)

(1,1)
(1,1)

(1,n)

(1,1)

(1,n)

(0,1)

(1,n)

(1,1)

(1,n)

(1,1) (1,1)

(1,1)(1,1)

(1,n)

(1,n) (1,n)

(1,n)

article_authorsR6

(1,n)

(1,n)

(1,n)

Category

Content Content Content

Content

ContentContent

article_summary_choice1

R12

(1,1)

(1,1)

document

R0

(1,1)

(1,1)

Position
Position

Position

Position

Position Position

Name

Fig. 9. The ER Model diagram for the journal issue example.

related work about XML–DBMS mapping. Note that many papers in this field
still address SGML as the standard formalism for the definition of structured
documents, so they actually talk about SGML–DBMS mappings. However, since
XML is a subset of SGML, the SGML–DBMS mapping techniques explained in
these papers also apply to XML.

There are two main approaches to designing relational database schemas for
XML documents. The first approach, namely the structure-mapping approach,
create relational schemas based on the structure of XML documents (deduced
from their DTD, if available). Basically, with this approach a relation is created
for each element type in the XML documents, [2,1], and a database schema is
defined for each XML document structure or DTD. This is the approach we
used in the Xere algorithm. Using ER as the target model, we can optimize the
transformation and merge the obtained schemas with legacy DBMS structures.

370 G. Della Penna et al.

More sophisticated mapping methods have also been proposed, where database
schemas are designed based on detailed analysis of DTDs, [7].

In the model-mapping approach, a fixed database schema is used to store the
structure of all XML documents. Basically, this kind of relational schema stores
element contents and structural rules of XML documents as separate relations.
Early proposals of this approach include, [12], or the “edge approach”, [4], in
which edges in XML document trees are stored as relational tuples. A more
recent research using this approach is [11], that also defines an efficient method
to query this kind of structure.

In both the approaches above, XML documents are decomposed into frag-
ments and distributed in different relations. Obviously, these decomposition ap-
proaches have drawbacks – it takes time to restore the entire or a large subportion
of the original XML documents. A simple alternative approach, supported in al-
most all the XML-enabled RDBMS (e.g. Oracle, SQL Server, etc.), is to store the
entire text of XML documents in a single database attribute as a CLOB (Char-
acter Large Object). On the other hand, this approach does not allow queries on
the document structure using SQL (since all the document is stored in a single
field), and the search for a particular document node always implies loading all
the XML text and searching using regular expression- or XPath-based engines.

Moreover, since SGML (Standard Generalized Markup Language), [5], was a
predecessor of XML, there were several studies on the management of structured
documents even before XML emerged, [6]. These methods can roughly be clas-
sified into two categories: a database schema designed for documents with DTD
information and a storage of documents without any information about DTDs.
The latter approaches are capable of storing well-formed XML documents that
do not have DTDs. For both approaches, queries on XML documents are con-
verted into database queries before processing. First, there are simple methods
that basically design relational schemas corresponding to every element declara-
tion in a DTD, [2,1]. Other approaches design relational schemas by analyzing
DTDs more precisely. An approach to analyze DTD and automatically convert it
into relational schemas is proposed in [7]. In this approach, a DTD is simplified
by discarding the information on the order of occurrence among elements.

6 Conclusions and Future Work

In this paper, we presented the first step of the Xere methodology, namely a rule-
based process to translate an arbitrary XML Schema to an Entity–Relationship
diagram in a natural way. This mapping is shown to be sound and complete
w.r.t. document identity and XML Schema definition, respectively.

The mapping is denoted as natural since it preserves all hierarchical relations
defined by a XML Schema. Essentially, the mapping is able to retain all the
structure defined by a XML Schema encoding it in the relations and entities of
the generated ER diagram. We intend to further investigate this compatibility
property as, we believe, it will lead to a homomorphism definition.

Xere: Towards a Natural Interoperability between XML and ER Diagrams 371

In this work, we introduced only the first step of the Xere technique. Next
efforts will be devoted to achieve the complete interoperability between XML and
relational databases. This requires a translation of ER schemas into relational
models and a procedure which allows one to transparently store and retrieve
XML documents in the databases created using the Xere technique.

References

1. Abiteboul, S., Cluet, S., Christophides, V., Milo, T., Moerkotte, G., and Siméon,
J. 1997. Querying documents in object databases. Int. J. Dig. Lib. 1, 1, 5–19.

2. Christophides, V., Abiteboul, S., Cluet, S., and Scholl, M. 1994. From structured
documents to novel query facilities. SIGMOD Rec. 23, 2 (June), 313–324.

3. Della Penna, G., Di Marco, A., Intrigila B., Melatti, I., Pierantonio, A. 2002.
Towards the expected interoperability between XML and ER diagrams. Technical
Report TRCS/G0102, Department of Computer Science, University of L’Aquila.

4. Florescu,D. and Kossmann, D. 1999. Storing and querying XML data using an
RDMBS. IEEE Data Eng. Tech. Bull. 22, 3, 27–34.

5. ISO. 1986. Information processing—Text and office systems—Standard General
Markup Language (SGML). ISO-8879.

6. Navarro,G. and Baeza-Yates, R. 1997. Proximal nodes: A model to query document
databases by content and structure. ACM Trans. Inf. Syst. 15, 4, 400–435.

7. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., Dewitt,D.J., and Naughton,
J.F. 1999. Relational databases for querying XML documents: Limitations and
opportunities. In Proceedings of the 25th International Conference on Very Large
Data Bases (VLDB, Edinburgh, Scotland, Sept. 7-10). Morgan Kaufmann, San
Mateo, CA, 302–314.

8. World Wide Web Consortium. 1998. eXtensible Markup Language (XML) 1.0.
http://www.w3.org/TR/1998/REC-xml-19980210

9. World Wide Web Consortium. 2001. XML Schema.
http://www.w3.org/XML/Schema

10. World Wide Web Consortium. 2001. The eXtensible Stylesheet Language (XSL).
http://www.w3.org/Style/XSL/

11. Yoshikawa, M. and Amagasa, T. 2001. XRel: A Path-Based Approach to Storage
and Retrieval of XML Documents Using Relational Databases. ACM Transactions
on Internet Technology, 1, 110-141

12. Zhang, J. 1995. Application of OODB and SGML techniques in text database: an
electronic dictionary system. SIGMOD Rec. 24, 1 (Mar.), 3–8.

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/XML/Schema
http://www.w3.org/Style/XSL/

	Xere: Towards a Natural Interoperability between XML and ER Diagrams*
	Introduction
	Xere: Mapping XML Schemas into ER Diagrams
	Mapping Algorithm
	An XSLT Implementation of the Mapping
	Optimizations on the Algorithm

	Soundness and Completeness of the Xere Mapping
	An Example
	Related Works
	Conclusions and Future Work

