
Automatic Model Driven Animation of SCR
Specifications

Angelo Gargantini1 and Elvinia Riccobene2

1 C.E.A.– Università di Catania
a.gargantini@unict.it

2 Dipartimento di Matematica e Informatica – Università di Catania
riccobene@dmi.unict.it

Abstract. This paper introduces automatic model driven animation, a novel ap-
proach to validate requirements specifications. This approach, here applied to SCR
specifications, is based on graphical animation. Automatic model driven anima-
tion consists in automatically deriving scenarios from requirements specifications;
these scenarios are used to animate critical system behaviors through a graphical
interface. Animation is useful at the very early stages of systems development to
better understand models and requirements, to gain confidence that specifications
capture informal requirements, and to detect faults. We introduce a technique, ex-
ploiting model checkers, to automatically generate animation sequences starting
from requirements specifications, and we present a prototype tool for the genera-
tion and animation of scenarios.

1 Introduction

Many methods, techniques, and tools are continuously proposed to analyze, validate, and
verify formal specifications. Several methods deal especially with validation of formal
specifications. The validation activity can be summarized by the well known question
“Are we building the right system?” and it consists in checking whether the system, as
specified, meets the user needs. Techniques for validation include scenarios generation,
development of prototypes, simulation, and also testing [17,7]. These techniques can
help designers and customers to better understand models and requirements, to gain
confidence that specifications capture informal requirements, and to detect faults in
specifications as early as possible with limited effort. Validation should precede the
application of more expensive and accurate methods, like formal requirements analysis
and formal verification of properties [8], that should be applied only when designers
have enough confidence that specifications are correct. To be effective, the validation
activity should be supported by tools easy to use and requiring minimum user effort.

This paper introduces automatic model driven animation as a novel approach to
validate requirements specifications. This approach, here applied to SCR (Software Cost
Reduction) specifications [13], is useful at the very early stages of systems development,
and it is based on graphical animation (hereinafter briefly called animation) [10,16,19].
Animation basically consists of simulation, providing the user with a graphical interface
suitable to show the state of the system by means of icons, buttons, panels, slides, and
so on. An animator might be a prototype ad hoc developed or a simulator endowed with

M. Pezzè (Ed.): FASE 2003, LNCS 2621, pp. 294–309, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Automatic Model Driven Animation of SCR Specifications 295

a complex graphical interface. A prototype tool for animation of SCR specifications, is
described in this paper.

Animation offers several advantages. Mainly, through animation designers better un-
derstand the requirements specification and can find failures and faults. For customers,
looking at the real behavior shown by the animator is better than reading mathemati-
cal or logical formulas modeling the system behavior (normally customers do not like
mathematical formalisms). Customers can ignore in which notation the specification has
been written and they do not need to learn new (formal) languages.

Animation, especially as proposed in this paper, does not require skills, ingenuity
and expertise as those required by heavy formal methodologies like theorem proving.
However, animation cannot prove that a specification is correct, but it can only uncover
faults [21]. For this reason, it is very similar to testing.

The main problem of animation is the selection of system behaviors to animate. We
distinguish three main ways for selecting scenarios:

1. user driven animation: users (customers or designers) “play” with the animator and
check whether the specification meets customers needs or not. Users select inputs,
regardless the specification, by means of buttons, slides, and graphical elements;
outputs are computed according to the specification (that acts as oracle) and shown by
means of other graphical elements. Except for the graphical interface, this approach
is very similar to the classical simulation.

2. random animation: inputs are randomly generated taking into account only their
specified constraints. Outputs are computed according to the specification and shown
through the graphical animator. In this case, the user observes the system behavior
and judges its correctness. This approach is proposed in [22].

3. model driven animation: inputs are selected starting from requirements specifica-
tions in a systematic way, either manually or automatically. The former is similar
to case 1, but the specification is used as guideline. The latter is the new approach
proposed in this paper.

In any of these three animation approaches, the judgment of the specification correctness
is left to the human; however, the effort required substantially differs, and model driven
animation is more efficient than user driven or random animation for several reasons. By
animation, designers gain confidence that the specification is correct only if the model
has been extensively simulated and enough scenarios have been checked. Therefore,
performing a good selection of critical scenarios, that can uncover specification faults, is
crucial. Since random animation produces a huge amount of scenarios, the careful review
of all the behaviors is time consuming. Furthermore, only few generated scenarios are
able to expose critical faults.

In user driven, as well as in manual model driven animation, designers have the re-
sponsibility to cover all the critical behaviors. Since selection is carried out by hand, they
risk to leave out some particular cases and choose only a small subset of all the specified
behaviors. The manual selection of scenarios is, therefore, expensive and error-prone,
especially in user driven animation, where specifications are not used as guidelines.

Automatic model driven animation, here introduced, has the advantage to automati-
cally derive scenarios from specification, and to assure the animation of all the critical



296 A. Gargantini and E. Riccobene

behaviors according to the requirements. It does not require great user skill and ingenuity
and is an effective approach for model validation.

Besides selection of critical scenarios, another critical issue is the actual graphical
animation of the generated scenarios. This requires a tool endowed with a graphical
animator panel that reproduces the look and feel of the real system under animation.
This verisimilar environment is of great help to customers: they do not have to learn a
new environment (like a new tool or IDE or interface), they do not watch variable values
only by means of digits or strings (like in debuggers), they do not have to query system
state by typing commands, and they do not need to guess the meaning of the values in
terms of system behaviors. To be effective, animator panels must be constructed and
modified rapidly, accurately, and cheaply. They do not have to be efficient, complete,
portable, or robust and they do not have to use the same hardware, software, or imple-
mentation language as the delivered system. An animator panel should have two kinds
of components: static components, as background images, logo, and frames, that do not
change their aspect during simulation, and dynamic graphical components that change
their aspect (color, size, or shape) according to variable changes, showing the system
evolution. In this way, the user can watch the system as he/she were just in front of the
real system. A real example of animator panel for SCR can be found in [11], where a
complex graphical front-end of a simulator is developed to simulate an aircraft cockpit.
In this work, we also present the software architecture of an animator tool endowed with
an animator panel compliant with these requirements.

The paper is organized as follows. Section 2 introduces the formal method SCR
and proposes a case study we will use to illustrate the novel approach and the animator
prototype.Automatic animation for SCR specifications is presented in Sect. 3.We explain
how to automatically compute from SCR specifications scenarios assuring the animation
of all the critical behaviors. Section 3.3 introduces an interesting variant of automatic
model driven animation, called animation on demand. In Sect. 4, a prototype tool for
automatic animation of SCR specifications is presented. Related work is discussed in
Sect. 5, while conclusions and future work are presented in Sect. 6.

2 Software Cost Reduction Technique

The Software Cost Reduction (SCR) [13] is a set of techniques for designing software
systems developed by David Parnas and researchers from U.S. Naval Research Labora-
tory (NRL). SCR offers several automated techniques, supported by a tool set [11], for
detecting errors in software requirements specifications, including an automated consis-
tency checker to detect missing cases and other application-independent errors [14]; a
simulator to symbolically execute the specification to ensure that it captures the users
intent; and a model checker to detect violations of critical application properties [1].

2.1 The Formal Method

The SCR model represents the environmental quantities that the system monitors and
controls as monitored and controlled variables. The environment nondeterministically
produces a sequence of input events, where an input event signals a change in some



Automatic Model Driven Animation of SCR Specifications 297

Table 1. Condition, event, and mode table format

Modes Conditions

m1 c1,1 c1,2 ... c1,p

... ... ... ... ...
mn cn,1 cn,2 ... cn,p

varCi v1 v2 ... vp

Modes Event

m1 e1,1 e1,2 ... e1,p

... ... ... ... ...
mn en,1 en,2 ... en,p

varEi v1 v2 ... vp

Old Mode Event New mode

m1 e1,1 m̄1,1

... e1,p1 m̄1,p1

... ... ..

mn en,1 m̄n,1

en,pn m̄n,pn

Condition table Event table Mode table

monitored quantity. The system, represented in the model as a state machine, begins
execution in some initial state and then responds to each input event in turn by changing
state and by possibly producing one or more output events, where an output event is a
change in a controlled quantity.An assumption of the model is that at each state transition,
exactly one monitored variable changes value. To concisely capture the system behavior,
SCR specifications may include two types of internal auxiliary variables: terms, and
mode classes whose values are modes. Mode classes and terms often capture historical
information. In the SCR model, a system is represented as a 4-tuple, (S, S0, Em, T),
where S is the set of states, S0 ⊆ S is the initial state set, Em is the set of input events, and
T is the transform describing the allowed state transitions [14]. Usually, the transform
T is deterministic, i.e. a function that maps an input event and the current state to a new
state. To construct T , SCR composes smaller functions, each derived from the two kinds
of tables in SCR requirements specifications, event tables and condition tables. These
tables describe the values of each dependent variable, that is, each controlled variable,
mode class, or term. Tables have the typical format shown in Table 1. A condition table
specifies that the value of the variable varCi is vk if the boolean condition cj,k holds in
mode mj . An event table specifies that the variable varEi takes value vk when event ej,k
happens in mode mj . Mode tables are a variant of event tables and specify the behavior
of mode class: if mode has value mj and event ej,k happens, then mode becomes m̄j,k.
The SCR model requires the entries in each table to satisfy certain “consistency” and
“completeness” properties. These properties guarantee that all of the tables describe total
functions [14]. Tabular notation, with an intuitive semantics, facilitates the practical use
in industrial applications.

In SCR, a state is a function that maps each variable in the specification to a value, a
condition is a predicate defined on a system state, and an event is a predicate defined on
a pair of system states implying that the value of at least one state variable has changed.
When a variable changes value, we say that an event “occurs". The expression “@T(c)
WHEN d” represents a conditioned event, which is defined by

@T(c) WHEN d def= ¬c ∧ c′ ∧ d

where the unprimed conditions c and d are evaluated in the current state and the primed
condition c′ is evaluated in the next state. The expression “@T(c)” means ¬c ∧ c′, while
“@F(c)” means c ∧ ¬c′.



298 A. Gargantini and E. Riccobene

2.2 An SCR Case Study: The Safety Injection System (SIS)

Case study of this paper is the SCR specification of a system called the Safety Injection
System (SIS), a simplified version of a control system for safety injection in a nuclear
plant [5], which monitors water pressure and injects coolant into the reactor core when the
pressure falls below some threshold. The system operator may override safety injection
by turning a “Block” switch to “On" and may reset the system after blockage by setting
a “Reset" switch to “On".

To specify the SIS requirements in SCR, we represent the SIS inputs with the mon-
itored variables WaterPres, Block, and Reset and the single SIS output with a con-
trolled variable SafetyInjection. The specification also includes two internal auxil-
iary variables, a mode class Pressure, an abstract version of WaterPres, and a term
Overridden which indicates when safety injection has been overridden. The Mode
Table 2 specifies the value of Pressure and the Event Table 3 specifies the value of
Overridden. The Condition Table 4 specifies the behavior of SafetyInjection. A
constant Low = 900 defines the threshold that determines when WaterPres is in an
unsafe region, while a constant Permit = 1000 determines when the pressure is high
and the system cannot be overridden.

Since tables specify the function T of transformation from the current state to the next
one, they represent operational or functional requirements. Besides these requirements,
SCR model introduces system properties in terms of events and conditions that must be
true in every state. These properties are safety requirements and represent the declarative
requirements of the system. We exploit this distinction in Sect. 3. For SIS, the property
“if pressure becomes too low, safety injection does not turn on if the system is blocked”

Table 2. Mode table defining the Mode Class Pressure of SIS

Old Mode Event New mode

TooLow @T(WaterPres ≥ Low) Normal
Normal @T(WaterPres ≥ Permit) High

@T(WaterPres < Low) TooLow
High @T(WaterPres < Permit) Normal

Table 3. Event table for term overridden

Pressure Events

High false @F(Pressure=High)
TooLow, @T(Block=On) @T(Pressure=High) OR
Normal WHEN Reset = Off @T(Reset = On)

Overridden True False

Table 4. Condition table for controlled variable SafetyInjection

Pressure Conditions

TooLow Overridden not Overridden
Normal, High true false

SafetyInjection Off On



Automatic Model Driven Animation of SCR Specifications 299

is a safety requirement expressed in SCR as:

@T(WaterPres < Low)WHEN Block = On ∧ Reset = Off → SafetyInjection′ = Off
(1)

i.e. if the water pressure falls below Low and Block is On and Reset is Off, then Safety
Injection is Off in the next state. This property has been proved in [12].

3 Automatic Model Driven Animation

In this section, we tackle automatic model driven animation for SCR specifications.
Figure 1 shows the process of generation and animation of critical scenarios. Animation
goals, each representing a critical system behavior to animate, are systematically derived
from SCR specifications in an automatic way. Scenarios achieving the animation goals
are computed by exploiting the counter example generation of model checkers. Finally,
animation sequences are animated by means of a simulator endowed with an animator
panel. In Sect. 4, we describe the animation of critical scenarios for SIS by means of an
animator prototype.

ANIMATOR PANEL

SIMULATOR

SCR SPEC

animation sequences
USER

observe

(model checker)

ANIMATOR

animation goals

Animation sequence 
GENERATOR

Fig. 1. Automatic model driven animation

3.1 Animation Goals

An animation goal is a formula that represents a particular behavior or property to
animate. Formally, an animation goal is a predicate over a state or over a pair of states:
the current one and the next one. To animate an animation goal a, we have to find a
valid state sequence that ends with a state (or a pair of states) where a becomes true.
We call this sequence of states animation sequence or animation scenario. For example,
if the animation goal a is “WaterPres > 500”, we have to find a sequence of values
for monitored variables such that the system reaches a state where WaterPres becomes
greater than 500. Note that the notion of animation goal is very similar to test goal or test
predicate as presented in [6,9], as well animation sequence is similar to test sequence.



300 A. Gargantini and E. Riccobene

For SCR specifications, we distinguish (as explained in Sect. 2) between require-
ments that refer to safety properties of the system, and functional requirements that are
specified by tables and refer to the operation of the system. In the following, we explain
how to derive animation goals in a systematic and automatic way from both safety prop-
erties and functional requirements. Note that this distinction is useful for the sake of
clarity, but it would not be necessary, since functional requirements could be rewritten
as properties.

Property Driven. Animation goals can be generated from safety requirements, and the
corresponding animation sequences are useful to animate the system showing certain
situations in which those requirements acquire particular importance.

We assume that safety requirements are formalized in Disjunctive Normal Form
(DNF)1. Given a requirement R =

∨n
i=1 Ci, we define an animation goal ai for each

conjunct Ci, i=1...n, as follows.

Definition 1. Given a property R =
∨n

i=1 Ci, we define animation goals for R, all the n

formulas ai
def
=

∧
j �=i ¬Cj , i=1...n

The animation goal ai requires that all the conjuncts of R, except Ci, are false. Since R
requires that at least a conjunct is true, the animation of ai shows the behavior leading
to a state where only Ci becomes true. For example, if the requirement R is A ∨ B, we
derive two animation goals: the first one is ¬B, leading to a state where only A is true,
and the second one is ¬A, leading to a state where only B is true. If the requirement R
has form A → B, then it can be rewritten as ¬A∨B, and the two animation goals for R
are: A and ¬B. The animation sequence for the first animation goal leads the system to a
state s where A becomes true and allows the user to check the validity of the implication,
i.e. if B also holds in s. The animation sequence for ¬B leads the system to a state s
where B is false and allows to check if also A is false in s.

Example 1. Consider the property: WaterPres < Low → Pressure = TooLow. The
two animation goals for this property allow to animate a scenario leading to a state where
WaterPres becomes less than Low in order to check that Pressure is equal to TooLow,
and a scenario leading to a state where Pressure is not equal to TooLow to check if
WaterPres is not less than Low.

Example 2. The two animation goals for the property (1) at page 299 are:

@T(WaterPres < Low) WHEN Block = On ∧ Reset = Off,
SafetyInjection′ �= Off

1 A logical formula in DNF consists of a disjunction of conjunctions where no conjunction
contains a disjunction. The generic format for a formula in DNF is

∨n
i=1 Ci. It is always

possible to write a requirement in DNF. For example, the requirement (A ∨ B) ∧ C can be
rewritten in DNF as (A ∧ C) ∨ (B ∧ C).



Automatic Model Driven Animation of SCR Specifications 301

Remark 1. Since animation is used at the early stages of the system development, when
heavier methods (like theorem proving) have not been applied yet to prove that the
system satisfies a safety property R, one goal of animation is to find behaviors where
R is not satisfied. Each animation goal aj for R requires that all the conjuncts, except
Cj , are false. Since R requires that at least a conjunct is true, R holds if Cj is true in
the final state of the animation sequence for aj . Otherwise, the animation sequence has
uncovered a fault in the specification.

Functional Requirements Driven. Animation goals can be derived from the next state
relation as specified by SCR tables. One animation goal is introduced for each cell in each
table with the aim to separately animate the behavior specified by such cell. Formally,
with reference to the notation given in Table 1, we introduce the following definitions.

Definition 2. Given a condition table, for each condition cj,k not equal to false, j =

1...n, k = 1...p, the animation goal for cj,k is the formula aj,k
def
= Mode = mj ∧ cj,k

Definition 3. Given an event table, for each event ej,k not equal to false, j = 1...n, k

= 1...p, the animation goal for ej,k is the formula aj,k
def
= Mode = mj ∧ ej,k

Definition 4. Given a mode table, for each event ej,k not equal to false, j = 1...n, k =

1...pj , the animation goal for ej,k is the formula aj,k
def
= Mode = mj ∧ ej,k

For each condition in condition tables, the animation goal has the aim of animating a
scenario ending with a state where such condition is true, and, for each event in event
and mode tables, a scenario ending with a state where such event occurs.

Example 3. The 5 animation goals for event table 3 defining Overridden are:
Pressure = High ∧ @F(Pressure=High),
Pressure = Normal ∧ @T(Block=On) ∧ Reset=Off,
Pressure = TooLow ∧ @T(Block=On) ∧ Reset=Off,
Pressure = Normal ∧ (@T(Pressure=High) ∨ @T(Reset=On)),

Pressure = TooLow ∧ (@T(Pressure=High) ∨ @T(Reset=On))

3.2 Generation of Animation Sequences

For automatic scenario generation, we use the method proposed in [6,9] which exploits
the model checkers Spin [15] or SMV [20] and, in particular, their ability to generate
counter examples. The method consists in the following steps. First, we encode the
SCR specification in the language of the model checker (Spin or SMV) following the
technique described in [1]; then, for each animation goal ai, we compute the animation
sequence that covers ai by trying to prove with the model checker the trap property
¬ai. If the model checker finds a state where ¬ai is false, it stops and prints as counter
example a state sequence leading to that state. This sequence is the animation sequence
for ai. Note that the generation of animation sequences is totally automatic.



302 A. Gargantini and E. Riccobene

Infeasible Animation Sequences. The model checker always terminates and one of
the following three situations occurs. The best case is when it stops finding that the
trap property is false, and, therefore, the counter example to cover the animation goal is
generated.

The second case happens when the model checker explores the whole state space
without finding any state where the trap property is false, and, therefore, it proves ¬ai.
In this case, we say that the animation goal is infeasible or not animable. It is designer’s
responsibility to check whether this situation is due to a fault in the specification or not.

In the third case, the model checker terminates without exploring the whole state
space and without finding a violation of the trap property, and, therefore, without pro-
ducing any counter example (generally because of the state explosion problem). In this
case, the user does not know if either the trap property is true (i.e. the animation goal is
infeasible) but too difficult to prove, or it is false but a counter example is too hard to
find. When this case happens, our method simply warns the designer that the animation
goal has not been covered, but it might be feasible. The use of abstraction to reduce
the likelihood of such cases is under investigation. The possible failure of our method
should not surprise: the problem of finding an animation sequence that covers a particu-
lar predicate is undecidable. Nevertheless, in our experience the third case is quite rare:
for our case study it never happened.

Model Checking Limits and Benefits. Model checking applies only to finite mod-
els. Therefore, our method works for SCR specifications having variables with finite
domains. However, this limitation does not preclude the application of our approach
to models with infinite domains, thanks to abstraction techniques as described in [12].
Moreover, since model checkers perform exhaustive state space (possibly symbolic) ex-
ploration, they fail when the state space becomes too big and intractable. This problem
is known as state explosion problem and represents the major limitation in using model
checkers. Note, however, that we use the model checker not as a prover of properties we
expect to be true, but to find counter examples for trap properties we expect to be false.
Therefore, our method does generally require a limited search in the state space and not
an exhaustive state exploration.

Besides all these limits, the complete automaticity of the model checker allows to
compute animation sequences without any human interaction.

3.3 Automatic Animation on Demand

Animation on demand is a particular variant of automatic model driven animation. This
approach is pictured in Fig. 2.

In animation on demand, the user requires the animation of a particular behavior sup-
plying the animation goal identifying such behavior, while the entire animation sequence
is automatically computed starting from the model, as described in Sect. 3.2.

In Sect. 3 we have defined animation goals as predicates over the current and possibly
the next state. They are derived from safety requirements or from conditions and events
inside SCR tables. In animation on demand, the user can introduce new animation goals
that can be complex temporal logic formulas expressing properties not only on the current



Automatic Model Driven Animation of SCR Specifications 303

ANIMATOR

SPEC

GENERATOR 

animation sequence

animation goal

USER

Animation Sequence

observe

Fig. 2. Animation on demand

and next state but on a temporal sequence of events or conditions. We, therefore, extend
the definition of animation goals allowing animation goals stated as CTL (Computational
Tree Logic) or LTL (Linear Temporal Logic) formulas2.

As an example, consider the case in which the user wants to simulate the following
scenario: system is not reset, then eventually the pressure of the water passes the Permit
bound, then eventually it falls below Low, and then eventually the user blocks the safety
injection. Formally, the animation goal is the sequence of the following four conditions
and events:

1. Reset = Off

2. @T(WaterPres > Permit)

3. @T(WaterPres < Low)

4. @(Block = On)

This sequence can be translated in CTL as:

(2) Reset= Off & EF(WaterPres > Permit

& EF(WaterPres < Low & EF(Block = On)))

being EF the CTL operator eventually in the future3.
Once the user has written a particular animation goal, the model checker computes

the animation sequence (if it exists) exploiting the use of the trap property (the negation
of the animation goal) and the counter example generation. For example, SMV finds the
counter example shown in Table 5 for the trap property of (2). The four conditions and
events of the animation goal are written in bold.

Animation on demand is based on human interaction with the animator; however,
differently from the user driven approach, users do not have to build the complete se-
quence of inputs, but just describe the scenario by an abstract logical formula. The model
checker generates the animation sequence that satisfies the animation goal and the user
animates the sequence to check if the behavior is correct. The drawback of this approach
is that it requires some user skills in formulating a scenario as CTL or LTL formula. For
this reason, the possibility of graphically building CTL or LTL formulas would be very
useful (see Sect. 5).

2 SMV is able to prove CTL formulas, while Spin uses LTL.
3 The animation goal may contain other CTL temporal operators in order to state more complex

formulas which are not necessary linear sequence of events and conditions.



304 A. Gargantini and E. Riccobene

Table 5. Animation sequence for(2)

state 1: initial state
SafetyInjection = On
Permit = 1000
Low = 900
Block = Off
Reset = On
WaterPres = 2
Pressure = TooLow
Overridden = 0

state 2: SIS is reset
Reset = Off

state 3:
WaterPres = 5
...
WaterPres increases

...
state 95: Pressure Permitted
SafetyInjection =Off
WaterPres = 1001
Pressure = Permitted
...
WaterPres decreases

...
state 96: Pressure TooLow
SafetyInjection = On
WaterPres = 998
Pressure = TooLow

state 97: SIS is blocked
Block = On
Overridden = 1
SafetyInjection =Off

4 An Animator Tool

In this section, we describe the general architecture of a prototype tool we have realized
for automatic graphical animation of SIS. The tool architecture is depicted in Fig. 3.

We distinguish three main components of the animator:

1. the Tests Generator Tool: following user requests, it generates scenarios exploiting
the model checkers and stores them in a repository; it is described in [6,9]

2. the Animator client: it retrieves generated scenarios and drives the animator service
by providing the scenario to animate (i.e. the values of variables);

3. the Animator service: it shows the system status and the system behavior by means
of a graphical animator panel.

Animator client and service have a three layers architecture. At communication level,
client and server communicate through a CORBA ORB. At control level, the animator
client controller and the animator server controller manage their graphical interfaces,
start the processes, and connect and register themselves with the ORB. At GUI level, the
animator client controls the animator through the control panel depicted in Fig. 4. The

Repository
Scenario 

show var change

Animator service 

ORB

select scenario

Animator client

set var value

COMMUNICATION

level

CONTROL level

generated
scenarios

Control Panel

Tests Generator Tool

Animator (SIS) Panel GUI level

Animator client
Controller Controller

Animator server

Fig. 3. Tool architecture



Automatic Model Driven Animation of SCR Specifications 305

Fig. 4. Control panel

Animation of: @T(WaterPres<Low)when Block =On and Reset =Off

Animation of: Pressure = TooLow and @T(Reset=On)

Fig. 5. SIS animator panel

control panel provides two different ways to animate a scenario: step by step (the user
makes the animator progress by pressing the next state button) or automatically (the user
selects the time interval between two consecutive states). The user selects scenarios to
animate from a scenario repository. A graphical interface that helps the user to link table
cells and property requirements to scenarios is under development.

The GUI part of the animator service is the real graphical panel that shows the system
state and behavior. We have built the SIS panel using the standard Java graphical library
by means of the graphical form editor provided by NetBeans4.

In Fig. 5, we show the last two states for two animation goals: one for the property
1 at page 299 and one for the event Table 3 at page 298. In the first case, WaterPres
becomes less then Low, but the system is blocked and not reset, and, therefore, Safety-

4 http://www.netbeans.org

http://www.netbeans.org


306 A. Gargantini and E. Riccobene

Injection stays Off. In the second case, the system has Pressure TooLow and is reset
(Reset becomes equal to On), and, therefore, SafetyInjection becomes On.

The architecture is highly modular and makes the animator easy to change. The
animator panel can be easily substituted; this feature is relevant since each specification
requires a new animator panel to be animated. Developing new animator panels is a
matter of minutes using the form editor provided by NetBeans. Thanks to CORBA,
the animator can work in a distributed way. The animator service may run on a remote
machine, for example a computer of the customer, while the animator client would be
controlled by the designer.

5 Related Work

There exist several tools and methods for animating formal specifications. [2] uses the
B-Toolkit for animation of B specifications. The B-Toolkit presents the user a symbolic
representation of the system state and allows the invocation of specification operations.
The interface is mainly text based, and the user can perform queries and run commands by
typing suitable instructions in a text console. This approach is more similar to simulation,
because it does not exploit any graphical element. The approach presented in [16] suffers
the same limitation. [16] clearly discusses the benefits of animation in the contest of
light weight approaches to formal methods, in particular Z. The user can perform a
set of queries checking the initialization, verifying the preconditions of schema, and
performing a simple reachability property. The model checker Spin [15] has its own
simulator that provides the user with information about the system state and allows,
besides verification of properties, interactive simulation, simulation driven by counter
examples, and random simulation. Also Spin displays this information mainly in text
format. [22] proposes a random animation for Lustre specifications. Random test inputs
are generated taking into account only the constraints about the environment. Safety
requirements are checked using the generated scenarios. An AsmGofer[23] simulator
for UML state machines execution is presented in [4]. The user has to execute the state
machine and to query function values by a textual shell.

The use of a graphical domain-specific simulator for SCR is presented in [11]. SCR
simulator supports the construction of graphical front-ends, tailored to particular appli-
cations. [11] presents a front-end for a real aircraft attack specification. A pilot, instead
of entering values for monitored variables and seeing the values of the controlled ones,
interacts with the simulator and the results are presented in the graphically simulated
cockpit. A graphical simulator developed for the ASM specification of a light control
system is presented in [3]. It is based on AsmGofer and uses TCL/TK for the animator
panel.

A complex and complete graphical animator is presented in [19,18]. The authors de-
velop an animator engine called Scenebeans based on Timed Automata semantics. They
introduce behavior beans for actions and behaviors (for modeling system operations),
as well as graphical components called SceneGraphs that represent the system state. A
script language based on XML is introduced and used to build animations. Scenebeans
is a flexible general purpose framework for animations. However, the problem of anima-
tion sequence generation in not tackled. In [18], Scenebeans is applied to an air traffic



Automatic Model Driven Animation of SCR Specifications 307

control case study (Short Term Conflict Alert), and historical data are used as animation
sequences.

[21,10] present the use of the tool Possum to animate Z specifications. Graphical
interfaces using TCL/TK can be easily implemented depending on the specification to
animate. [21] presents a systematic approach to plan, document, and maintain animation
scenarios starting from Z formal specifications. The user follows some guidelines to
manually derive animation scenarios suitable to exercise the entire specification.

6 Conclusions and Future Work

In this paper we have presented automatic model driven graphical animation, a novel ap-
proach to animate requirements specification. Animation is useful to better understand
requirements and to gain confidence of correctness of their specification. Automatic
model driven animation minimizes user effort to build those scenarios able to animate
all the critical system behaviors. We have introduced an approach to automatically gen-
erate animation sequences starting from SCR requirements specifications, and we have
presented a prototype tool for the generation and animation of scenarios. In the future,
we plan to work in several directions.

We plan to define some coverage criteria that can give a measure of how extensively
the system has been animated. We plan to define new strategies to derive a greater
set of animation goals starting both from SCR tables and from requirements. The user
may want to split complex animation goals, to derive simpler animation sub goals, each
animating a more particular critical behavior5. Another interesting issue is the animation
of the else case6 for event and mode tables [6].

A requirements checker can be integrated in the animator as shown by the follow-
ing figure. It checks that all the safety requirements are never violated in animation
sequences.

REQ CHECKER

ANIMATOR

SPEC
REQUIREMENTS

Animator Seq. GENERATOR

animator sequence

USER

We plan to add the capability to graphically build complex animation goals. The
user would compose CTL or LTL formulas by selecting events and conditions from a

5 For example, the animation goal derived from event Table 3, Pressure = Normal
∧ (@T(Pressure=High) ∨ @T(Reset=On)) may be split in two different animation
sub goals: Pressure = Normal ∧ @T(Pressure=High) and Pressure = Normal ∧
@T(Reset=On).

6 No events in the table occur and the variable does not change.



308 A. Gargantini and E. Riccobene

graphical panel. We also plan to support the translation of animation goals into natural
language, in order the customer to better understand the meaning of animated behaviors.

Another important direction of future work is providing a graphical framework to
build animator panels with ease. The user would choose graphical animator elements
(buttons, lights, etc.) from a palette, connect them to specification variables, and place
them on a pane. Initially, the palette would offer only a limited set of elements, but the
user could introduce new graphical items. We plan to investigate the use of JavaBeans
for this scope.

Automatic model driven animation can be transferred to other formal specification
techniques for system behavior, e.g. to visual diagrammatic notations such as Petri nets,
Statecharts or Message Sequence Charts, provided that encodings for such notations in
the language of the model checkers exist. The definition of animation goals for such
models will be subject of future work.

Acknowledgments. We thank the anonymous referees for their constructive comments.

References

1. R. Bharadwaj and C. Heitmeyer. Model checking complete requirements specifications using
abstraction. Automated Software Engineering Journal, 6(1), Jan. 1999.

2. J. Bicarregui, J. Dick, B. Matthews, and E. Woods. Making the most of formal specification
through animation, testing and proof. Science of Computer Programming, 29(1–2):53–78,
July 1997.

3. E. Börger, E. Riccobene, and J. Schmid. Capturing requirements by abstract state machines:
The light control case study. Journal of Universal Computer Science, 6(7):597–620, July
2000.

4. A. Cavarra and E. Riccobene. Simulating UML statecharts. In R. Moreno-Diaz and
A. Quesada-Arencibia, editors, Formal Methods and Tools for Computer Science - Eurocast
2001, pages 224–227, 2001.

5. P.-J. Courtois and D. L. Parnas. Documentation for safety critical software. In Proc. 15th
Int’l Conf. on Softw. Eng. (ICSE ’93), pages 315–323, Baltimore, MD, 1993.

6. A. Gargantini and C. Heitmeyer. Using model checking to generate tests from requirements
specifications. In O. Nierstrasz and M. Lemoine, editors, Proceedings of the 7th European En-
gineering Conference and the 7th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, volume 1687 of LNCS, Sept. 6–10 1999.

7. A. Gargantini, L. Liberati, A. Morzenti, and C. Zacchetti. Specifying, validating and testing a
traffic management system in the TRIO environment. In Compass’96: Eleventh Annual Con-
ference on Computer Assurance, page 65, Gaithersburg, Maryland, 1996. National Institute
of Standards and Technology.

8. A. Gargantini andA. Morzenti. Automated deductive requirements analysis of critical systems.
ACM Transactions on Software Engineering and Methodology, 10(3):255–307, July 2001.

9. A. Gargantini and E. Riccobene. ASM-based testing: Coverage criteria and automatic test
sequence generation. Journal of Universal Computer Science, 7(11):1050–1067, Nov. 2001.

10. D. Hazel, P. Strooper, and O. Traynor. Requirements engineering and verification using
specification animation. In Thirteenth International Conference on Automated Software En-
gineering, pages 302–305. IEEE Computer Society Press, 1998.



Automatic Model Driven Animation of SCR Specifications 309

11. C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj. SCR: A toolset for specifying and
analyzing software requirements. In Proc. 10th International Computer Aided Verification
Conference, pages 526–531, 1998.

12. C. Heitmeyer, J. Kirby, Jr., B. Labaw, M. Archer, and R. Bharadwaj. Using abstraction and
model checking to detect safety violations in requirements specifications. IEEE Transactions
on Software Engineering, 24(11):927–948, Nov. 1998.

13. C. L. Heitmeyer. Software cost reduction. In J. J. Marciniak, editor, Encyclopedia of Software
Engineering, Two Volumes. John Wiley & Sons, January 2002.

14. C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency checking of
requirements specifications. ACM Transactions on Software Engineering and Methodology,
5(3):231–261, April–June 1996.

15. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, May 1997.

16. E. Kazmierczak, M. Winikoff, and P. Dart. Verifying model oriented specifications through
animation. In Asia Pacific Software Engineering Conference, pages 254–261. IEEE Computer
Society Press, 1998.

17. R. A. Kemmerer. Testing formal specifications to detect design errors. IEEE Transactions on
Software Engineering, 11(1):32–43, Jan. 1985.

18. J. Magee, J. Kramer, B. Nuseibeh, D. Bush, and J. Sonander. Hybrid model visualization in
requirements and design:A preliminary investigation. In Proceedings of the 10th International
Workshop on Software Specification and Design (IWSSD-10), Nov. 2000.

19. J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer. Graphical animation of behavior
models. In Proceedings of the 22nd International Conference on Software Engineering,
pages 499–508. ACM Press, June 2000.

20. K. L. McMillan. The SMV system. Technical report, Carnegie-Mellon University, Pittsburgh,
PA, 1992. DRAFT.

21. T. Miller and P. Strooper. Animation can show only the presence of errors, never their absence.
In Proc. of the 2001 Australian Software Engineering Conference (ASWEC 2001), pages 76–
85. IEEE Computer Society, 2001.

22. I. Parissis. A formal approach to testing lustre specifications. In 1st International IEEE
Conference on Formal Engineering Methods, Hiroshima, pages 91–100, 1997.

23. J. Schimd. Executing ASM specifications with AsmGofer.
http://www.tydo.de/AsmGofer.

http://www.tydo.de/AsmGofer

	Automatic Model Driven Animation of SCR Specifications
	Introduction
	Software Cost Reduction Technique
	The Formal Method
	An SCR Case Study: The Safety Injection System (SIS)

	Automatic Model Driven Animation
	Animation Goals
	Generation of Animation Sequences
	Automatic Animation on Demand

	An Animator Tool
	Related Work
	Conclusions and Future Work




