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Abstract. One source of complexity in the µ-calculus is its ability to
specify an unbounded number of switches between universal (AX) and
existential (EX) branching modes. We therefore study the problems of
satisfiability, validity, model checking, and implication for the universal
and existential fragments of the µ-calculus, in which only one branch-
ing mode is allowed. The universal fragment is rich enough to express
most specifications of interest, and therefore improved algorithms are
of practical importance. We show that while the satisfiability and va-
lidity problems become indeed simpler for the existential and universal
fragments, this is, unfortunately, not the case for model checking and
implication. We also show the corresponding results for the alternation-
free fragment of the µ-calculus, where no alternations between least and
greatest fixed points are allowed. Our results imply that efforts to find a
polynomial-time model-checking algorithm for the µ-calculus can be re-
placed by efforts to find such an algorithm for the universal or existential
fragment.

1 Introduction

In model checking, we reason about systems and their properties by reasoning
about formal models of systems and formal specifications of the properties [5].
The algorithmic nature of model checking makes it fully automatic, convenient
to use, and attractive to practitioners. At the same time, model checking is very
sensitive to the size of the formal model of the system and the formal specifica-
tion. Commercial verification tools need to cope with the exceedingly large state
spaces that are present in real-life designs. One of the most important develop-
ments in this area is the discovery of symbolic methods [2,27]. Typically, sym-
bolic model-checking tools proceed by computing fixed-point expressions over
the model’s set of states. For example, to find the set of states from which a
state satisfying some predicate p is reachable, the model checker starts with the
set y of states in which p holds, and repeatedly adds to y the set EXy of states
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that have a successor in y. Formally, the model checker calculates the least fixed
point of the expression y = (p ∨ EXy).

Such fixed-point computations are described naturally in the µ-calculus [21],
which is a logic that contains the existential and universal next modalities EX
and AX, and the least and greatest fixed-point quantifiers µ and ν. The µ-
calculus is an extremely general modal logic. It is as expressive as automata on
infinite trees, and it subsumes most known specification formalisms, including
dynamic logics such as PDL [13] and temporal logics such as LTL and CTL� [7,
8] (see [18] for a general result). The alternation-free fragment of the µ-calculus
(AFMC, for short) [12] has a restricted syntax that does not allow the nesting
of alternating least and greatest fixed-point quantifiers, which makes the evalu-
ation of expressions very simple [6]. The alternation-free fragment subsumes the
temporal logic CTL.

Four decision problems arise naturally for every specification formalism: the
satisfiability problem (given a formula ϕ, is there a model that satisfies ϕ?)
checks whether a specification can be implemented, and algorithms for deciding
the satisfiability problem are the basis for program synthesis and control [3,29,
30]; the validity problem (given ϕ, do all models satisfy ϕ?) checks whether the
specification is trivially satisfied, and is used as a sanity check for requirements
[25]; the model-checking problem (given a formula ϕ and a model M , does M
satisfy ϕ?) is the basic verification problem; and the implication problem (given
two formulas ϕ and ψ, is ϕ→ ψ valid?) arises naturally in the context of modular
verification, where it must be shown that a module satisfies a property under an
assumption about the environment [23,28].

The satisfiability, validity, and implication problems for the µ-calculus are all
EXPTIME-complete [1,13] (since the µ-calculus is closed under negation, it is
easy to get EXPTIME completeness for the validity and implication problems by
reductions to and from the satisfiability problem). The model-checking problem
for the µ-calculus was first considered in [12], which described an algorithm with
complexity O((mn)l+1), where m is the size of M , n is the size of ϕ, and l is the
number of alternations between least and greatest fixed-point quantifiers in ϕ.
In [11], the problem was shown to be equivalent to the nonemptiness problem
for parity tree automata, and thus to lie in NP ∩ co-NP. Today, it is known that
the problem is in UP ∩ co-UP [19]1, and the best known algorithm for µ-calculus
model checking has a time complexity of roughly O(mn

l
2 ) [20,26,31], which is

still exponential in the number of alternations. The precise complexity of the
problem, and in particular, the question whether a polynomial time solution
exists, is a long-standing open problem.

In this paper we study the complexity of the four decision problems for the
existential and universal fragments of the µ-calculus. The existential fragment
consists of formulas where the only allowed next modality is the existential one
(EX), and the universal fragment consists of formulas where the only allowed
next modality is the universal one (AX). We consider µ-calculus in positive

1 The class UP is a subset of NP, where each word accepted by the Turing machine
has a unique accepting run.
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normal form, thus the strict syntactic fragments are also semantic fragments —
there is no way of specifying an existential next in the universal fragment without
negation, and vice versa. Both sublogics induce the state equivalence similarity
(mutual simulation) [15], as opposed to bisimilarity, which is induced by the
full µ-calculus [16]. The existential and universal fragments of the µ-calculus
subsume the existential and universal fragments of the branching-time logics
CTL and CTL∗. For temporal logics, the universal and existential fragments
have been studied (see, e.g., [23]). As we specify in the table in Figure 1, the
satisfiability, validity, and implication problems for the universal and existential
fragments of CTL and CTL∗ are all easier than the corresponding problems for
the full logics [9,13,23,33]. On the other hand, the model-checking complexities
for the universal and existential fragments of CTL and CTL� coincide with the
complexities of the full logics, and the same holds for the system complexities of
model checking (i.e., the complexities in terms of the size of the model, assuming
the specification is fixed. Since the model is typically much bigger than the
specification, system complexity is important) [4,24].

In contrast to CTL and CTL�, it is possible to express in the µ-calculus un-
bounded switching of AX and EX modalities. Such an unbounded switching is
an apparent source of complexity. For example, the µ-calculus can express the
reachability problem on And-Or graphs, which is PTIME-complete, while the
reachability problem on plain graphs (existential reachability), and its universal
counterpart, are NLOGSPACE-complete. Accordingly, the system complexity of
the model-checking problem for the µ-calculus is PTIME-complete, whereas the
one for CTL and CTL� is only NLOGSPACE-complete [12,17,24]. By removing
the switching of modalities from the µ-calculus, one may hope that the algo-
rithms for the four decision problems, and model checking in particular, will
become simpler. Since most specifications assert what a system must or must
not do in all possible futures, the universal fragment of the µ-calculus is ex-
pressive enough to capture most specifications of interest. Also, the problem of
checking symbolically whether a model contains a computation that satisfies an
LTL formula is reduced to model checking of an existential µ-calculus formula.
Hence, our study is not only of theoretical interest —efficient algorithms for the
universal and existential fragments of the µ-calculus are of practical interest.

We determine the complexities of the four decision problems for the univer-
sal and existential fragments of the µ-calculus, as well as for the corresponding
alternation-free fragments. Our results are summarized in Figure 1. All the com-
plexities in the figure, except for the NP∩co-NP result for MC, ∃MC , and ∀MC
model checking are tight. It turns out that the hope to obtain simpler algorithms
for the universal and existential fragments is only partially fulfilled. We show
that while the satisfiability and validity problems become easier for the existen-
tial and universal fragments, both the model-checking and implication problems
stay as hard as for the full µ-calculus (or its alternation-free fragment). In par-
ticular, our results imply that efforts to find a polynomial time model-checking
algorithm for the µ-calculus can be replaced by efforts to find polynomial time
model-checking algorithms for the universal or existential fragment. Note that
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the picture we obtain for the µ-calculus and its alternation-free fragment does
not coincide with the picture obtained in the study of the universal and exis-
tential fragments of CTL and CTL�, where the restriction to the universal or
existential fragments makes also the implication problem easier.

Satisfiability Validity Implication Model checking system complexity
CTL� 2EXPTIME 2EXPTIME 2EXPTIME PSPACE NLOGSPACE
∀CTL� PSPACE PSPACE EXPSPACE PSPACE NLOGSPACE
∃CTL� PSPACE PSPACE EXPSPACE PSPACE NLOGSPACE
CTL EXPTIME EXPTIME EXPTIME PTIME (linear) NLOGSPACE
∀CTL PSPACE co-NP PSPACE PTIME (linear) NLOGSPACE
∃CTL NP PSPACE PSPACE PTIME (linear) NLOGSPACE
MC EXPTIME EXPTIME EXPTIME NP ∩ co-NP PTIME
∀MC PSPACE co-NP EXPTIME NP ∩ co-NP PTIME
∃MC NP PSPACE EXPTIME NP ∩ co-NP PTIME
AFMC EXPTIME EXPTIME EXPTIME PTIME (linear) PTIME
∀AFMC PSPACE co-NP EXPTIME PTIME (linear) PTIME
∃AFMC NP PSPACE EXPTIME PTIME (linear) PTIME

Fig. 1. Summary of known and new (in italics) results

One key insight concerns the size of models for the existential and universal
fragments of the µ-calculus. We prove that the satisfiability problem for the
existential fragment of µ-calculus is in NP via a linear-size model property. This
is in contrast to the full µ-calculus, which has only an exponential-size model
property [22]. This shows that extending propositional logic by the EX modality
and fixed-point quantifiers does not make the satisfiability problem harder. On
the other hand, a similar extension with AX results in a logic for which the
linear-size model property does not hold, and whose satisfiability problem is
PSPACE-complete.

A second insight is that, in model-checking as well as implication problems,
the switching of EX and AX modalities can be encoded by the boolean con-
nectives ∨ and ∧ in combination with either one of the two modalities and
fixed-point quantifiers. Let us be more precise. The model-checking problem for
the µ-calculus is closely related to the problem of determining the winner in
games on And-Or graphs. The system complexity of µ-calculus model check-
ing is PTIME-hard, because a µ-calculus formula of a fixed size can specify
an unbounded number of switches between universal and existential branching
modes. In particular, the formula µy.(t∨EXAXy) specifies winning for And-Or
reachability games, and formulas with alternations between least and greatest
fixed-point quantifiers can specify winning for And-Or parity games. One would
therefore suspect that the universal and existential fragments of the µ-calculus,
in which no switching between branching modes is possible, might not be suffi-
ciently strong to specify And-Or reachability. Indeed, in [11] the authors define
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a fragment L2 of the µ-calculus which explicitly bounds the number of switches
between both AX and EX modalities and ∧ and ∨ boolean operators. This frag-
ment is as expressive as extended CTL� [11], and it cannot specify reachability
in And-Or graphs (the system complexity of model checking is NLOGSPACE-
complete). However, in model checking as well as implication problems, we can
consider models in which the successors of a state are labeled in a way that
enables the specification to directly refer to them. Then, it is possible to re-
place the existential next modality by a disjunction over all successors, and it
is possible to replace the universal next modality by a conjunction that refers
to each successor. More specifically, if we can guarantee that the successors of
a state with branching degree two are labeled by l (left) and r (right), then the
existential next formula EXy can be replaced by AX(l→ y)∨AX(r → y), and
the universal next formula AXy can be replaced by EX(l ∧ y) ∧ EX(r ∧ y).
While these observations are technically simple, they enable us to solve the open
problems regarding the complexity of the universal and existential fragments of
the µ-calculus.

2 Propositional µ-Calculus

The propositional µ-calculus (MC, for short) is a propositional modal logic aug-
mented with least and greatest fixed-point quantifiers [21]. Specifically, we con-
sider a µ-calculus where formulas are constructed from Boolean propositions
with Boolean connectives, the temporal modalities EX and AX, as well as least
(µ) and greatest (ν) fixed-point quantifiers. We assume without loss of generality
that µ-calculus formulas are written in positive normal form (negation is applied
only to atomic propositions). Formally, given a set AP of atomic propositions
and a set V of variables, a µ-calculus formula is either:

– true, false, p, or ¬p, for p ∈ AP ;
– y, for y ∈ V ;
– ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are µ-calculus formulas;
– AXϕ or EXϕ, where ϕ is a µ-calculus formula;
– µy.ϕ or νy.ϕ, where y ∈ V and ϕ is a µ-calculus formula.

We say that the variable y is bound in µy.ϕ and νy.ϕ. A variable is free if it is not
bound. A sentence is a formula that contains no free variables. We refer to AX
and EX as the universal and existential next modalities, respectively. For a µ-
calculus formula ϕ, define the size |ϕ| of ϕ as the size of the DAG representation
of ϕ.

The universal µ-calculus (∀MC , for short) is the fragment of the µ-calculus in
which the only next modality allowed is the universal one. Dually, the existential
µ-calculus (∃MC , for short) is the fragment in which the only next modality
allowed is the existential one. Note that since µ-calculus formulas are written
in positive normal form, there is no way to specify existential next in ∀MC by
negating universal next.
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A µ-calculus formula is alternation-free if, for all y ∈ V , there are respectively
no occurrences of ν (µ) on any syntactic path from an occurrence of µy (νy) to an
occurrence of y. For example, the formula µx.(p∨ µy.(x∨EXy)) is alternation-
free, and the formula νx.µy.((p ∧ x) ∨ EXy) is not. The alternation-free µ-
calculus (AFMC , for short) is the subset of the µ-calculus that contains only the
alternation-free formulas. We also refer to the universal and existential fragments
of AFMC , and denote them by ∀AFMC and ∃AFMC , respectively.

A µ-calculus formula is guarded if for all y ∈ V , all occurrences of y that are
in a scope of a fixed-point quantifier λ ∈ {µ, ν} are also in a scope of a next
modality which is itself in the scope of λ. For example, the formula µy.(p∨EXy)
is guarded, and the formula EXµy.(p∨ y) is not. We assume that all µ-calculus
formulas are guarded. As proved in [24], every µ-calculus formula can be linearly
translated to an equivalent guarded one, thus we do not lose generality with our
assumption.

The semantics of µ-calculus formulas is defined with respect to Kripke struc-
tures. A Kripke structure K = 〈AP,W,R,w0, L〉 consists of a set AP of atomic
propositions, a set W of states, a total transition relation R ⊆W ×W , an initial
state w0 ∈ W , and a labeling L : W → 2AP that maps each state to the set of
atomic propositions true in that state.

Given a Kripke structure K = 〈AP,W,R,w0, L〉 and a set {y1, . . . , yn} of
free variables, a valuation V : {y1, . . . , yn} → 2W is an assignment of subsets
of W to the variables in {y1, . . . , yn}. For a valuation V, a variable y, and a
set W ′ ⊆ W , denote by V[y ← W ′] the valuation mapping y to W ′, and y′ to
V(y′) for all y′ �= y. A formula ϕ with atomic propositions from AP and free
variables {y1, . . . , yn} is interpreted over the structure K as a mapping ϕK from
valuations to 2W . Thus, ϕK(V) denotes the set of states that satisfy ϕ under the
valuation V. The mapping ϕK is defined inductively as follows:

– trueK(V) = W and falseK(V) = ∅.
– For p ∈ AP , let pK(V) = {w ∈W | p ∈ L(w)} and (¬p)K(V) =
{w ∈W | p �∈ L(w)}.

– (ϕ1 ∧ ϕ2)K(V) = ϕK1 (V) ∩ ϕK2 (V).
– (ϕ1 ∨ ϕ2)K(V) = ϕK1 (V) ∪ ϕK2 (V).
– (AXϕ)K(V) = {w ∈W | ∀w′. if (w,w′) ∈ R then w′ ∈ ϕK(V)}.
– (EXϕ)K(V) = {w ∈W | ∃w′.(w,w′) ∈ R and w′ ∈ ϕK(V)}.
– (µx.ϕ)K(V) =

⋂ {W ′ ⊆W | ϕK(V[x←W ′]) ⊆W ′}.
– (νx.ϕ)K(V) =

⋃ {W ′ ⊆W |W ′ ⊆ ϕK(V[x←W ′])}.
By the Knaster-Tarski theorem, the required fixed-points always exist. For a
sentence, no valuation is required. For a state w ∈W of the Kripke structure K,
and a sentence ϕ, we write K, w |= ϕ iff w ∈ ϕK.

3 Satisfiability and Validity

The satisfiability problem for a µ-calculus sentence ϕ is to decide whether there
is a Kripke structure K and a state w in it such that K, w |= ϕ. The validity
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problem is to decide whether K, w |= ϕ for all K and w. Note that ϕ is satisfiable
iff ¬ϕ is not valid. The satisfiability and validity problems for µ-calculus and
its alternation-free fragment are EXPTIME-complete [1,13]. In this section we
study the satisfiability and validity problems for the universal and existential
fragments.

For a ∀MC formula ϕ, let [ϕ] denote the linear-time µ-calculus formula [21]
obtained from ϕ by omitting all its universal path quantifiers. It is easy to see
that ϕ is satisfiable iff [ϕ] is satisfiable. Indeed, a model for [ϕ] is also a model
for ϕ, and each path in a model for ϕ is a model for [ϕ]. Since the satisfiabil-
ity problem for the linear-time µ-calculus and its alternation-free fragment is
PSPACE-complete [32], so is the satisfiability problem for ∀MC and ∀AFMC .

Theorem 1. The satisfiability problem for ∀MC and ∀AFMC is PSPACE-
complete.

Since both ∃MC and ∃AFMC subsume propositional logic, the satisfiability
problem for these logics is clearly hard for NP. We show that the satisfiability
problem is in fact NP-complete. To show membership in NP, we prove a linear-
size model property for ∃MC .

Lemma 1. Let ϕ be a formula of ∃MC . If ϕ is satisfiable, then it has a model
with at most O(|ϕ|) states and O(|ϕ|) transitions.

Proof. The proof is similar to the one used in [23] to show a linear-size model
property for ∃CTL. We proceed by induction on the structure of ∃MC formulas.
With each ∃MC formula ϕ, we associate a set Sϕ of models (Kripke structures)
that satisfy ϕ. We define Sϕ by structural induction. The states of the models in
Sϕ are labeled by both the atomic propositions and the variables free in ϕ. We
use Sϕ1 → Sϕ2 to denote the set of models obtained by taking a model M1 from
Sϕ1 , a model M2 from Sϕ2 , adding a transition from the initial state of M1 to
the initial state of M2, and fixing the initial state to be the one of M1. We use
Sϕ1 ∩∗ Sϕ2 to denote the set of models obtained by taking a model M1 from Sϕ1

and a model M2 from Sϕ2 , such that M1 and M2 agree on the labeling of their
initial states, fixing the initial state to be the initial state of M1, redirecting
transitions to the initial state of M2 into the initial state of M1, and adding
transitions from the initial state of M1 to all the successors of the initial state
of M2. Finally, we use Sϕ(#) ↓, where # is an atomic proposition not in AP , to
denote the set of models obtained from a model in Sϕ(#) by adding transitions
from states labeled by # to all the successors of the initial state, and removing
# from the labels of states. We can now define Sϕ as follows. Note that we do
not consider the case where ϕ = x, for x ∈ V , as we assume that ϕ is a sentence.

– Strue is the set of all one-state models over AP .
– Sfalse = ∅.
– Sp, for p ∈ AP , is the set of all one-state models over AP in which p holds.
– S¬p, for ¬p ∈ AP , is the set of all one-state models over AP in which p does

not hold.
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– Sϕ1∨ϕ2 = Sϕ1 ∪ Sϕ2 .
– Sϕ1∧ϕ2 = Sϕ1 ∩∗ Sϕ2 .
– SEXϕ1 = Strue → Sϕ1 .
– Sµx.ϕ1(x) = S

ϕ1(ϕ1(false)).
– Sνx.ϕ1(x) = Sϕ1(#∧(ϕ1(true))) ↓.

For example, if AP = {p}, and ϕ = νx.ϕ1(x) with ϕ1(x) = EX(p ∧ x) ∧
EX(¬p∧ x), then ϕ1(#∧ (ϕ1(true))) = EX(p∧#∧EXp∧EX¬p)∧EX(¬p∧
# ∧ EXp ∧ EX¬p), and Sϕ contains the two models obtained from the model
M1 described in the figure below by labeling the initial state by either p or ¬p.
Also, if AP = {p, q} and ϕ = EXp ∧ (µy.q ∨ (p ∧ EXy)), then Sϕ contains the
models obtained from the models M2 and M3 described below by completing
labels of p or q that are left unspecified.

M1

pp ¬p

p ¬p p ¬p

q

M2

p q

p

M3

The models in Sϕ are “economical” with respect to states that are required
for satisfaction of formulas that refer to the strict future. For example, the initial
state of models in SEXϕ1 has a single successor that satisfies ϕ1, and models in
Sµy.ϕ(y) that do not satisfy ϕ(false) in the initial state, are required to satisfy
ϕ(false) in a successor state.

It is not hard to prove, by induction on the structure of ϕ, that each model
in Sϕ has O(|ϕ|) states and O(|ϕ|) transitions. We now prove, by an induction
on the structure of ϕ, the following two claims.

1. For every model M ∈ Sϕ, we have that M satisfies ϕ.
2. For every model M that satisfies ϕ, there is a model M ′ ∈ Sϕ such that M

and M ′ agree on the labeling of their initial states.

Note that Claim (2) implies that if ϕ is satisfiable, then Sϕ is not empty. Thus,
the two claims together imply that if ϕ is satisfiable, then it has a satisfying
model in Sϕ, which is guaranteed to be of size linear in |ϕ|.

The proof for ϕ of the form true, false, p, ¬p, ϕ1 ∨ ϕ2, and ϕ1 ∧ ϕ2 is easy.
For the other cases, we proceed as follows.

Let ϕ = EXϕ1. By the induction hypothesis, all models in Sϕ1 satisfy ϕ1.
Hence, (1) follows immediately from the definition of Sϕ. To see (2), consider a
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model M that satisfies ϕ. Since Strue is the set of all one-state models over AP ,
it contains a model M ′ that agrees with M on the labeling of their initial states.

Let ϕ = µx.ϕ1(x). By the semantics of µ-calculus, a model that satisfies
ϕ1(ϕ1(false)), satisfies ϕ as well. Hence, (1) follows immediately from the defi-
nition of Sϕ. To see (2), consider a model M that satisfies ϕ. This means that
for some i > 0, the model M satisfies ϕi1(false). We construct a model M ′ that
satisfies ϕ1(ϕ1(false)) and agrees with M on the label of the initial state. Let #
be a proposition not in AP , and consider the formula ϕ1(# ∧ ϕi−1

1 (false)). The
model M can be attributed by # to satisfy ϕ1(#∧ϕi−1

1 (false)). Moreover, since
ϕ is guarded, the initial state of M is attributed by # only if there is a self loop
in the initial state. Such a self loop can be unwound, so we can assume that the
initial state of M is not attributed by #. Since ϕ is satisfiable, so is ϕ1(false),
and so there is a model N of ϕ1(false). The structure M ′ is obtained from M
by replacing all states attributed by # with N (i.e., all transitions leading into
a state attributed by # are redirected to the initial state of N). Then, M ′ is a
model of ϕ1(ϕ1(false)), and agrees with M in the labeling of the initial states.

Let ϕ = νx.ϕ1(x). By the semantics of µ-calculus, a model M satisfies ϕ iff
M satisfies ϕi1(true), for all i ≥ 0. Consider a model M ∈ Sϕ. By the definition of
Sϕ, the model M satisfies ϕ1(true), and the states attributed # satisfy ϕ1(true)
as well. Since ϕ1(true) is existential, the states attributed # continue to satisfy
ϕ1(true) after the new edges are added. In fact, it is not hard to see that after
the new edges are added, the states attributed # also satisfy ϕ1(#). Thus, for all
i ≥ 1, the model M can be unfolded (i− 1) times to show M satisfies ϕi1(true),
and we are done. To see (2), let M be a model of ϕ and let # be a proposition
not in AP . Then, M satisfies ϕ1(ϕ1(true)), and it can be attributed by # to
satisfy ϕ1(# ∧ ϕ(true)). As in the previous case, since ϕ is guarded, we can
ensure that this leaves the labeling of the initial state unchanged, possibly after
unwinding a self loop in the initial state. In addition, adding transitions from
states attributed by # to all successors of the initial state, leaves the label of
the initial state unchanged, and thus results in a model in Sϕ that agrees with
M on the labeling of their initial states. ��

Note that the µ-calculus with both universal and existential next modalities
has only an exponential-size model property (there is a µ-calculus sentence ϕ
such that the smallest Kripke structure that satisfies ϕ is of size exponential in
|ϕ|). Thus, the linear-size model property crucially depends on the fact that the
only next modality that is allowed is the existential one. The linear-size model
theorem shows that the satisfiability problem for ∃MC and ∃AFMC is in NP.

Theorem 2. The satisfiability problem for ∃MC and ∃AFMC is NP-complete.

Since a formula ϕ is satisfiable iff ¬ϕ is valid, and since negating an ∃MC
formula results in a ∀MC formula and vice versa, the following theorem is an
immediate corollary of Theorems 1 and 2.

Theorem 3. The validity problem is co-NP-complete for ∀MC and ∀AFMC ,
and is PSPACE-complete for ∃MC and ∃AFMC .
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4 Model Checking

The model-checking problem for the µ-calculus is to decide, given a Kripke struc-
ture K and a µ-calculus formula ϕ, the set of states in K that satisfy ϕ. In this
section we study the model-checking problem for the universal and existential
fragments of the µ-calculus. We show that in contrast to the case of satisfiabil-
ity, the model-checking problem for the restricted fragments is not easier than
the model-checking problem for the µ-calculus, and the same is true for the
alternation-free fragments.

The model-checking problem for the µ-calculus is closely related to the prob-
lem of determining the winner in games on And-Or graphs. We first review here
some definitions that will be used in the reduction of the model-checking problem
for the full µ-calculus to the model-checking problem for the fragments. A two-
player game graph is a directed graph G = 〈V,E〉, with a partition Ve ∪Vu of V .
The game is played between two players, player 1 and player 2. A position of the
game is a vertex v ∈ V . At each step of the game, if the current position v is in Ve,
then player 1 chooses the next position among the vertices in {w | 〈v, w〉 ∈ E}.
Similarly, if v ∈ Vu, then player 2 chooses the next position among the vertices
in {w | 〈v, w〉 ∈ E}. The game continues for an infinite number of steps, and
induces an infinite path π ∈ V ω. The winner of the game depends on different
conditions we can specify on words in V ω. The simplest game is reachability.
Then, the winning condition is some vertex t ∈ V , and player 1 wins the game
if π eventually reaches the vertex t. Otherwise, player 2 wins. A richer game is
parity. In parity games, there is a function C : V → {0, . . . , k − 1} that maps
each vertex to a color in {0, . . . , k − 1}. Player 1 wins the parity game if the
maximal color that repeats in π infinitely often is even.

A strategy for player 1 is a function ξ1 : V ∗ × Ve → V such that for all
u ∈ V ∗ and v ∈ Ve, we have ξ1(u · v) ∈ {w | 〈v, w〉 ∈ E}. A strategy for player 2
is defined similarly, as ξ2 : V ∗ × Vu → V . For a vertex s ∈ V , and strategies
ξ1 and ξ2 for player 1 and player 2, respectively, the outcome of ξ1 and ξ2 from
s, denoted π(ξ1, ξ2)(s), is the trace v0, v1, . . . ∈ V ω such that v0 = s and for all
i ≥ 0, we have vi+1 ∈ ξ1(v0 . . . vi−1, vi) if vi ∈ Ve, and vi+1 ∈ ξ2(v0 . . . vi−1, vi) if
vi ∈ Vu. Finally, a vertex s ∈ V is winning for player 1 if there is a strategy ξ1
of player 1 such that for all strategies ξ2 of player 2, the outcome π(ξ1, ξ2)(s) is
winning for player 1. When G has an initial state s, we say that player 1 wins
the game on G if s is winning for player 1 in G.

We start by considering the system complexity of the model-checking prob-
lem for the universal and existential fragments of the µ-calculus; that is, the
complexity of the problem in terms of the model, assuming the formula is fixed.
As discussed in Section 1, the system complexity of AFMC model checking is
PTIME-complete, and hardness in PTIME [17] crucially depends on the fact that
an AFMC formula of a fixed size can specify an unbounded number of switches
between universal and existential branching modes. As we prove in Theorem 4
below, the setting of model checking enables us to trade an unbounded number
of switches between universal and existential branching modes by an unbounded
number of switches between disjunctions and conjunctions. The idea is that in
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model checking, unlike in satisfiability, we can consider models in which the
successors of a state are labeled in a way that enables the formula to directly
refer to them. Then, it is possible to replace the existential next modality by a
disjunction over all successors, and it is possible to replace the universal next
modality by a conjunction that refers to each successor.

Theorem 4. The complexity and system complexity of ∀AFMC (so, also of
∃AFMC ) model checking is PTIME-complete.

Proof. Membership in PTIME follows from the linear time algorithm for AFMC
[6]. For hardness, we reduce the problem of deciding a winner in a reachability
game to model checking of a ∀AFMC formula of a fixed size. Since one can
model check a specification ϕ by checking ¬ϕ and negating the result, the same
lower bound holds for ∃AFMC .

Deciding reachability in two-player games is known to be PTIME-hard al-
ready for acyclic graphs with branching degree two, where universal and exis-
tential vertices alternate, and both s and t are in Ve [14]. Given a bipartite and
acyclic game graph G = 〈V,E〉 with branching degree two, a partition of V
to Ve and Vu, and two vertices s and t in Ve, we construct a Kripke structure
K = 〈AP,W,R,w0, L〉 and a formula in ∀AFMC such that K, w0 |= ϕ iff player 1
wins the reachability game on G from state s and with target t.

We do the proof in two steps. First, we transform the graph G to another
graph G′, with some helpful properties, and then we construct the Kripke struc-
ture K from G′. Essentially, in G′ each universal vertex is a left or right successor
of exactly one existential vertex. Formally,G′ = 〈V ′, E′〉, where V ′ = Ve∪V ′u, and
V ′u and E′ are defined as follows. Let Ee = E∩(Ve×Vu) and Eu = E∩(Vu×Ve).
Recall that each vertex in Ve has two successors. Let Ee = Ele∪Ere be a partition
of Ee so that for each v ∈ Ve, one successor vl of v is such that 〈v, vl〉 ∈ Ele and
the other successor vr of v is such that 〈v, vr〉 ∈ Ere . Note that a vertex u may be
the left successor of some vertex w1 and the right successor of some other vertex
w2; thus Ele(w1, u) and Ere (w2, u). The goal of G′ is to prevent such cases.

– V ′u ⊆ Vu×{l, r}×Ve is such that (v, l, w) ∈ V ′u iff (w, v) ∈ Ele and (v, r, w) ∈
V ′u iff (w, v) ∈ Ere . Thus, each edge 〈w, v〉 ∈ Ee contributes one vertex (v, l, w)
or (v, r, w) to V ′u. Intuitively, visits to the vertex (v, l, w) correspond to visits
to v in which it has been reached by following the left branch of w, and
similarly for (v, r, w) and right.

– E′e = {〈v, (vl, l, v)〉 : 〈v, vl〉 ∈ Ele} ∪ {〈v, (vr, r, v)〉 : 〈v, vr〉 ∈ Ere}. Also,
E′u = {〈(v, d, w), u〉 : 〈v, u〉 ∈ Eu}, and E′ = E′e ∪ E′u.

The size of G′ is linear in the size of G. Indeed |V ′| = |Ve| + |Ee| and |E′| =
|E′e|+ |E′u| ≤ |Ee|+ 2|Eu|. It is not hard to see that player 1 can win the game
in G iff he can win in G′. Note that the branching degree of G′ remains two.
The construction of G′ ensures that the two successors of an existential vertex
v can be referred to unambiguously as the left or the right successor of v.

The graph G′ = 〈V ′, E′〉, together with s and t, induces the Kripke structure
K = 〈AP, V ′, E′, s, L〉 described below. The set of atomic propositions AP =
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{t, l}. For readability, we also introduce the shorthand r for ¬l.The proposition
t holds in (and only in) the state t, and the propositions l and r hold in the left
and right successor respectively for an existential node. Thus l ∈ L(〈v, l, w〉) and
r ∈ L(〈v, r, w〉). Finally, let ϕ be the ∀AFMC formula µy.t ∨ (AX(¬l ∨AXy) ∨
AX(¬r ∨ AXy)). It is now easy to see that player 1 can win the reachability
game for t from s in G′ iff K, s |= ϕ. ��

Theorem 5. The model-checking problem for ∀MC (so, also for ∃MC ) is as
hard as the model-checking problem for the µ-calculus.

Proof. The idea is similar to the proof of Theorem 4, only that instead of talking
about winning a reachability game, we talk about winning a parity game [10], to
which and from which µ-calculus model checking can be reduced [11]. Without
loss of generality, we assume that existential and universal vertices alternate
(the game graph is bipartite), and each node has exactly two successors. We also
assume that each vertex in Vu has the same color as the incoming existential
nodes (otherwise, we can duplicate nodes and get an equivalent game with this
property). We assume that each vertex of G is labeled by the color C(v), thus we
can refer to G as a Kripke structure with AP = {0, . . . , k − 1}: the proposition
i holds at vertex v iff C(v) = i. From [10], player 1 wins the parity game G at
an existential vertex s ∈ Ve iff

G, s |= λk−1xk−1 . . . µx1.νx0. (
∨

i∈[0...(k−1)]

(i ∧ EXAXxi)),

where λn = ν if n is even, and λn = µ if n is odd.
The formula above uses both universal and existential next modalities. By

transforming G to a Kripke structure K as in the proof of Theorem 4, we can use
left and right labels to vertices in the graph and use only one type of branching
mode. Formally, let K be the Kripke structure induced by G. Then, player 1
wins the parity game in G at a node s iff

K, s |= λk−1xk−1 . . . µx1.νx0. (
∨

i∈[0...(k−1)]

(i ∧ ((AX(¬l ∨AXxi)) ∨ (AX(¬r ∨AXxi)))

��

If the syntax of the µ-calculus is equipped with next modalities parameterized
by action labels, then the above result follows immediately, because there is no
distinction between existential and universal next modalities. Our proof shows
that the result follows even if no such labeling is available.

5 Implication

The implication problem for a logic asks if one specification logically implies an-
other specification; formally, given formulas ϕ and ψ of the logic, if the formula
ϕ → ψ is valid. It arises naturally in modular verification [23,28], where the
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antecedent of the implication is the assumption about the behavior of a com-
ponent’s environment, and the consequent is a guarantee about the behavior
of the component. For logics closed under negation, the implication problem is
equivalent to validity: a formula ϕ is valid iff true → ϕ. Thus, the implication
problem for the µ-calculus is EXPTIME-complete. However, for the existential
and universal fragments of the µ-calculus, this is not the case: the implication
problem combines both universal and existential formulas, and is more general
than satisfiability or validity.

Theorem 6. The implication problem for ∃MC and ∃AFMC (so, also for ∀MC
and ∀AFMC ) is EXPTIME-complete.

Proof. For formulas ϕ1 and ϕ2 of ∃MC , we have that ϕ1 → ϕ2 iff the formula
ϕ1∧¬ϕ2 is not satisfiable. Membership in EXPTIME follows from the complexity
of the satisfiability problem for the µ-calculus. Note that ¬ϕ2 is a formula of
∀MC , thus we cannot apply the results of Section 3.

To prove hardness in EXPTIME, we do a reduction from the satisfiability
problem of AFMC , proved to be EXPTIME-hard in [13]. Given an AFMC for-
mula ψ, we construct a formula ϕA of ∀AFMC and a formula ϕE of ∃AFMC
such that the conjunction ϕ = ϕE ∧ϕA is satisfiable iff ψ is satisfiable. For sim-
plicity, we assume that ψ is satisfied iff it is satisfied in a tree of branching degree
two. Note that while our assumption does not hold for all AFMC formulas, the
EXPTIME-hardness of the satisfiability problem for AFMC holds already for
such formulas, which is sufficiently good for our goal here.

Intuitively, the formula ϕE would require the states of models of ϕ to be
attributed by directions so that at least one successor is labeled by l and at least
one successor is labeled by r. In addition, ϕA would contain a conjunct that
requires each state to be labeled by at most one direction. Thus, states that are
labeled by l cannot be labeled by r, and vice versa. Then, the other conjunct of
ϕA is obtained from ψ by replacing an existential next modality by a disjunction
over the successors of a state.

Formally, the formula ϕE = νy.EX(l ∧ y) ∧ EX(r ∧ y) requires each state
(except for the initial state) to have at least two successors, labeled by different
directions, and the formula ϕ1

A = νy.((¬l) ∨ (¬r)) ∧AXy requires each state to
be labeled by at most one direction.

Then, the formula ϕ2
A is obtained from ψ by replacing a subformula of the

form EXθ by the formula AX(r∨θ)∨AX(l∨θ). We show that for every ψ such
that ψ is satisfiable iff it is satisfiable in a model of branching degree two, we
have that ψ is satisfiable iff ϕE ∧ ϕ1

A ∧ ϕ2
A is satisfiable. First, if ψ is satisfiable,

then there is a tree of branching degree two that satisfies it. This tree can be
attributed with l and r so that it satisfies the formula ϕE ∧ϕ1

A∧ϕ2
A, by labeling

the left successor of each node with {l,¬r} and the right successor of each node
with {¬l, r}. On the other hand, assume that the formula ϕE ∧ ϕ1

A ∧ ϕ2
A is

satisfiable in a model M . The subformula ϕE ∧ϕ1
A guarantees that each state of

M has at least one successor that is not labeled l and at least one successor that
is not labeled r. Accordingly, each subformula of the form AX(r∨θ)∨AX(l∨θ)
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is satisfied in a state w of M iff w has a successor that satisfies θ, thus w satisfies
EXθ. Hence, the model M also satisfies ψ. ��

The above proof constructs, given a formula ϕ of the µ-calculus, two formulas
ϕE and ϕA such that ϕE is an existential formula, ϕA is a universal formula,
and ϕ is satisfiable iff ϕE ∧ ϕA is satisfiable. However, one cannot in general
construct formulas ϕE and ϕA such that ϕE ∧ ϕA is equivalent to ϕ. This can
be proved considering two states of a Kripke structure that are similar, but not
bisimilar, and the formula of µ-calculus that distinguishes them.

Note that the implication problem for ∀CTL� and ∃CTL� is EXPSPACE-
complete [23], and hence easier than the satisfiability problem for CTL�, which
is 2EXPTIME-complete. The above construction does not work for ∃CTL�, as
the formula ϕE used to label the states of a model by directions specifies an
unbounded number of unfoldings of the structure. On the other hand, the number
of unfoldings expressible by an ∃CTL� formula is bounded by the size of the
formula; thus, the formula ϕE does not have an equivalent formula in ∃CTL�.

6 Discussion

We studied the complexity of the satisfiability, validity, model-checking, and
implication problems for the universal and existential fragments of the µ-calculus
and its alternation-free fragment. We proved that the linear-size model property,
which is known for ∃CTL, holds also for ∃MC . Interestingly, the property does
not hold for ∃CTL�, which is less expressive than ∃MC . Thus, the picture we
obtain for ∃MC and ∃AFMC is different than the one known for ∃CTL� and
∃CTL. For the universal fragments ∀MC and ∀AFMC , the picture does agree
with the one known for ∀CTL� and ∀CTL, and the complexity of the satisfiability
problem coincides with the complexity of the linear-time versions of the logics
(obtained by omitting all universal path quantifiers).

We showed how labeling of states with directions makes the model-checking
and implication problems for the universal and existential fragments as hard
as for the full logics. While such a labeling is straightforward in the case of
model checking, it is not always possible for implication. Indeed, in the case of
CTL� and CTL, formulas cannot specify a legal labeling, making the implication
problem for ∀CTL� and ∃CTL� strictly easier than the implication problem for
CTL�, and similarly for CTL. In contrast, we were able to label the directions
legally using a ∀AFMC formula, making the implication problems for ∀MC and
∃MC as hard as the one for MC, and similarly for the alternation-free fragments.
Another way to see the importance of the fixed-point quantifiers is to observe
that the implication problems for Modal Logic (µ-calculus without fixed-point
quantifiers) and its universal and existential fragments are co-NP-complete.

Finally, the equivalence problem for a logic asks, given formulas ϕ and ψ,
if the formula ϕ ↔ ψ is valid. The equivalence problem for the µ-calculus is
EXPTIME-complete, by easy reductions to and from satisfiability. This gives
an EXPTIME upper bound for the equivalence problem for ∃MC and ∀MC .
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By a reduction from satisfiability or validity (whichever is harder), we also get
a PSPACE lower bound. However, the exact complexity for the equivalence
problem for the universal and existential fragments of the µ-calculus remains
open (also for the alternation-free fragments).

The gap above highlights the difficulty in studying the universal and existen-
tial fragments of the µ-calculus. It is easy to see that in all formalisms that are
closed under complementation (in particular, full MC), equivalence is as hard
as satisfiability. Indeed, ϕ and ψ are equivalent iff (ϕ ∧ ¬ψ) ∨ (ψ ∧ ¬ϕ) is not
satisfiable. When a formalism is not closed under complementation, equivalence
is not harder than implication, and is not easier than satisfiability or validity,
whichever is harder. In the case of CTL, for example, it is easy to see that the
equivalence problems for ∀CTL and ∃CTL are PSPACE-complete, as implica-
tion has the same complexity as satisfiability or validity (whichever is harder).
The same holds for word automata: if we identify the existential fragment with
nondeterministic automata, and the universal fragment with universal automata,
then in both cases the language-containment problem (the automata-theoretic
counterpart of implication) has the same complexity as the harder one of the
nonemptiness and universality problems (the automata-theoretic counterparts
of satisfiability and validity). Once we do not allow fixed-point quantifiers, the
same holds for the µ-calculus: the equivalence problem for Modal Logic and its
universal and existential fragments is co-NP-complete, as the co-NP-hardness of
the implication problem applies already for the validity problem. So, in all the
cases we know, except for the universal and existential fragments of CTL� and
the µ-calculus and its alternation-free fragment, the above immediate upper and
lower bounds do not induce a gap, and the exact complexity of the equivalence
problem is known.
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