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Abstract. Bounded model checking (BMC) is a procedure that searches
for counterexamples to a given property through bounded executions
of a non-terminating system. This paper compares the performance of
SAT-based, BDD-based and explicit state based BMC on benchmarks
drawn from commercial designs. Our experimental framework provides
a uniform and comprehensive basis to evaluate each of these approaches.
The experimental results in this paper suggest that for designs with
deep counterexamples, BDD-based BMC is much faster. For designs with
shallow counterexamples, we observe that indeed SAT-based BMC is
more effective than BDD-based BMC, but we also observe that explicit
state based BMC is comparably effective, a new observation.

1 Introduction

Model checking [CE81,QS82] is a formal technique for automatically verifying
that a finite state model satisfies a temporal property. The states in the sys-
tem may be represented explicitly as in [CE81]. Alternatively, Binary Decision
Diagrams (BDDs) [Bry86] may be used to encode the transition relation. This
approach is known as symbolic model checking [BCM+90,McM93] and has been
successfully applied in practice. However, it is computationally infeasible to ap-
ply this technique automatically to all systems since the problem is PSPACE-
complete. Bounded Model Checking (BMC) [BCRZ99,BCCZ99] is a restricted
form of model checking, where one searches for counterexamples in executions
bounded by some length k. Recent advances [BCRZ99,BCCZ99] have encoded
the bounded model checking problem as a propositional satisfiability problem
that can then be solved by a SAT-solver. Initial results appear to be promising
and show that the new generation of SAT-solvers (cf. [MSS99,MMZ+01,GN02])
can handle large designs quite efficiently. SAT-based BMC can not provide any
guarantees on the correctness of a property but it can be useful in finding coun-
terexamples. It is possible to prove that a property holds with SAT-based BMC
by computing the completeness threshold [KS02] and showing the absence of any
errors at this bound. As observed in [KS02], since this threshold may be very
large, it may not be possible to perform BMC at this bound.

This paper explores the performance of BMC with three reachability algo-
rithms: SAT, BDDs and explicit state. We used the commercial model checking
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tool COSPAN/FormalCheck, in which all three algorithms have been imple-
mented. We implemented SAT-based BMC into COSPAN by using, as a post-
processor, the Cadence SMV tool in conjunction with two SAT-solvers, BerkMin
[GN02] and zChaff [MMZ+01]. This setup guarantees that the three types of
BMC are applied uniformly to the same statically reduced model. We present
experimental results on 62 benchmarks that were carefully chosen from a set
of Cadence customer benchmarks based on a number of different criteria. We
included benchmarks where BDDs performed well and others where BDDs per-
formed poorly. Some of the benchmarks were beyond the scope of BDD-based
model checking. Most of the benchmarks were customer hardware designs but
we did include three software designs. The benchmarks are categorized according
to the result and depth of the counterexample, and we include many examples
with depth greater than 40. The properties were safety and liveness properties.

Several recent papers have compared BDD-based (bounded and unbounded)
model checking to SAT-based bounded model checking. A recent comprehensive
analysis, with respect to both the performance and capacity of BMC is presented
in [CFF+01]. They compare a BDD-based tool (called Forecast) with a SAT-
based tool (called Thunder) on 17 of Intel’s internal benchmarks. Their results
show an interesting tie between a tuned BDD-based Forecast and a default SAT-
based Thunder, which suggest that, although the running times were similar, the
time taken by experts to tune the BDD tool could be saved when the SAT-solver
is used. However, since these were fundamentally distinct tools, there was no way
to account for differences in front-end static reductions.

Our study differs from theirs in a number of key ways. First, we extended the
analysis to include the explicit state representation. We found that a random
search with the explicit state engine does about as well as SAT-based BMC
in finding shallow counterexamples, that is, counterexamples at a depth of at
most 50. Second, we focussed our study on larger depth limits. We observed
that BDD-based BMC outperforms SAT-based BMC at larger depths. Last,
our experimental framework uses the same static optimizations with all three
engines. We believe this yields a more accurate comparison and diminishes the
role that tuning the various tools played in the above work. For each of the three
algorithms default settings were used, and there was no fine tuning for respective
models. Thus, our results correspond better to what a commercial user might
see.

Another interesting study [CCQ02] compares an optimized BDD-based BMC
tool, called FBV, to SAT-based BMC with the NuSMV tool. Their results are
similar to ours, in that, they find that the BDD approach scales better with
increasing bounds. The key differences are that their analysis did not include the
explicit state approach and they only considered safety properties. Moreover, we
conducted our experiments with a larger and more varied set of benchmarks.

Over the last several years there has been considerable intent to compare
the performance of unbounded BDD-based model checking versus SAT-based
BMC. In [BCRZ99] they report that BMC with SAT-solvers, SATO [Zha97]
and GRASP [MSS99], significantly outperformed the BDD-based CMU SMV
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on 5 control circuits from a PowerPC microprocessor. Similar results were ob-
served in [BCCZ99], where they found that SAT-based BMC with SATO and
PROVE [Bor97] outperformed two versions of CMU SMV on benchmarks that
were known to perform poorly with BDDs. SAT-based BMC, using SAT-solvers
GRASP and CAPTAIN PROVE [SS98], was found to be better in [BLM01] than
unbounded model checking with CMU SMV in the verification of the Alpha chip.
The results reported in [Str00] showed that a tuned GRASP was able to out-
perform IBM’s BDD-based model checker RuleBase in 10 out of 13 benchmarks.
A new SAT-based method proposed in [BC00] was compared with unbounded
BDD-based model checking with VIS [BHSV+96] on two benchmarks: an in-
dustrial telecommunications benchmark and an arbiter. They found that VIS
did better on the arbiter while the SAT-based approach did better on the other
benchmark. In [VB01], twenty-eight different SAT-solvers and one BDD-based
tool were compared on a number of faulty versions of two microprocessor de-
signs. The results show that zChaff outperforms the BDD-based tool and all the
others SAT-solvers.

Our work differs from those mentioned above in a number of important ways.
In addition to the differences already mentioned with regard to [CFF+01] above,
a key difference is these authors’ comparison of SAT-based BMC with unbounded
BDD-based model checking, which we believe is not a good basis for comparing
the two representations. In this paper, we show that BDD-based BMC has several
advantages over SAT-based BMC. Our implementation of BDD-based BMC,
unlike its SAT counterpart, can produce a positive answer if all the reachable
states have been encountered at the depth checked. In addition, our experiments
indicate that BDD-based BMC appears to be more successful at deeper depths.
Our study includes both safety and liveness properties. The previous work either
did not consider liveness properties or did not distinguish between safety and
liveness properties.

The goal of this work was to provide a uniform and comprehensive basis for
comparing BMC with three different representation: SAT, BDDs and explicit
state. The trends observed in our study can be summarized as follows:
– SAT-based BMC is better than BDD-based BMC for finding shallow coun-

terexamples.
– Random explicit state is as effective as SAT-based BMC in finding short

counterexamples for safety properties but SAT-based BMC is better at find-
ing the liveness counterexamples.

– Neither technique is better than BDDs in finding deep counterexamples.
– SAT-based BMC seems to be a consistent performer and completed in most

cases.
– All three approaches seem fairly effective in proving the absence of coun-

terexamples of length k. However, the BDD-based approach has two clear
advantages. First, determining that a property holds is possible with BDDs,
but not with SAT or random explicit state. Next, the BDD-based approach
seems to scale better at larger depths than the two approaches. Both the
explicit state and SAT engines perform rather well at the smaller depths but
do not fare as well as the depth increases.
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– The SAT-solver BerkMin appears to be better suited for BMC and outper-
forms zChaff quite significantly.

The paper is organized as follows. Section 2 describes our experimental frame-
work, Section 3 presents our results and Section 4 summarizes our findings.

2 Experimental Framework

For our experiments we used the commercial model checking tool FormalCheck
[HK90]. COSPAN, the verification engine of FormalCheck, was used for BMC
with BDDs and with the explicit state approach. For SAT-based BMC, COSPAN
was used to perform static reductions on the model and Cadence SMV [McM99],
used as a post-processor, was used to do the SAT BMC. Cadence SMV has an
interface to both BerkMin and zChaff. In this way the static reductions were
applied in an uniform manner, for all three engines. These reductions include lo-
calization reduction [Kur94], constant propagation, equivalent code elimination,
predicate simplification, resizing and macroization of combinational variables.

2.1 BDD-Based BMC

COSPAN’s BDD-based BMC, for safety properties, is done by doing Reachability
analysis for k steps. In the case of liveness properties, the bounded reachability
analysis is done first and then a bad cycle detection check is done on the reachable
states. Therefore, BDD-based BMC with a depth k terminates when one of the
following conditions holds:

– all paths of length k have been explored,
– an error state (i.e. a counterexample) is reached, or
– all the reachable states have been explored (i.e. a fix-point has been reached).

The implementation uses a sifting-based dynamic re-ordering scheme. This
BDD-based BMC implementation has two advantages over SAT-based BMC.
First, it is possible to verify that a property holds if the fix-point is reached
within the specified depth. Second, the length of the counterexample produced
is independent of the depth checked and is guaranteed to be the shortest one.
In SAT-based BMC, the counterexample produced will be of the same length as
the depth checked.

2.2 Explicit State BMC

We used COSPAN for BMC with the explicit state engine. BMC was imple-
mented through a command that “kills” all transitions after the depth limit k is
reached. COSPAN allows a user to set the value of k through the command line.
In order to deal with the large number of input values per state that are possible
in commercial models, we used a random search of the state space for coun-
terexamples, as supported by COSPAN’s explicit state search engine. Thus, we
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attempt to find counterexamples in some randomly chosen executions of length
k. However, this process may miss executions and thus counterexamples.

We feel justified in comparing this random explicit state approach to the other
two approaches since BMC is generally used to find counterexamples in contrast
to proving that a property holds. The ability to use a random search is an
advantage of the explicit state engine that we have exploited rather successfully.

2.3 SAT-Based BMC

For SAT-based BMC, we used Cadence SMV, as a post-processor to COSPAN, in
conjunction with two state-of-the-art SAT-solvers: zChaff [MMZ+01] and Berk-
Min [GN02]. Cadence SMV implements many of the standard optimizations like
bounded cone of influence and “BDD sweeping” [KK97] for tuning the per-
formance of SAT-based BMC. We used a translator to convert the statically
optimized programs (and properties) written in the input language of COSPAN
(S/R) into the input format of SMV. The translator also translates counterexam-
ples found by SMV back into the COSPAN format, and hence into the original
HDL format via the FormalCheck interface. We found that the time to do the
translations was not significant (usually a few seconds).

2.4 Benchmarks

The designs used are FormalCheck customer benchmarks that had some/all of
the following characteristics.

– We chose benchmarks with deep counterexamples. The length of the coun-
terexamples in the benchmarks varied from 3 up to 1152.

– We chose examples where BDDs performed poorly and others where BDDs
performed well.

– The number of state variables in the designs varied from 11 up to 1273.
– We included software designs.
– We used both safety and liveness properties.

Informally, a safety property specifies that something “bad” never happens
during an execution. The safety properties were of the following form: Always
x, Never x, After x Never y, After x Always y, and After x Always y Unless z.
Liveness properties state that something “good” eventually happens; the liveness
properties we checked were of the following form: Eventually x, After x Eventually
y and After x Eventually y Unless z. Most of the benchmarks contained only a
single property to check but some were conjunctions of multiple properties.

We organized the 62 benchmarks into three groups. The first group (Group1)
consisted of benchmarks where the property failed in at most 30 steps. The
second group (Group2) had benchmarks that failed in more than 30 steps. The
final group (Group3) had benchmarks where the property passed. The length of
the counterexamples in the first two groups were already known (in most of the
cases they were found using unbounded BDD-based model checking). All the
experiments were run on Sun SPARC machines with 2 Gigabytes of memory.
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3 Experimental Results

We ran each benchmark with FormalCheck default options with the BDD, SAT
and random explicit state engines. Furthermore, we ran both the SAT-solvers,
BerkMin and zChaff, on all the benchmarks.

In this Section, we analyze the results obtained. In the random explicit state
approach, we ran a maximum of three random runs, increasing the number of
inputs checked on each run from 50/state to 100/state and finally 500/state.
If a counterexample was found we reported the time taken up to that point;
otherwise we reported the cumulative time taken for all three runs.

Table 1. Results for benchmarks with counterexamples of length at most 30.

Benchmark BDD SAT Exp. State
name type depth stvars time zChaff Berkmin time result
A1 S 3 152 122.4 128.9 17.4 0 F
A2* S 4 111 29.6 13.5 13.3 -
A3 S 4 172 - 155.9 152.8 4.8 F
A4 L 5 92 61.8 3.6 3.6 -
A5 S 7 1109 - 54.5 46.4 695.4 F
A6 L 7 171 - 311.4 736.1 -
A7 S 7 62 4.5 4.1 1.6 0.1 F
A8 S 13 83 - 17.5 15.5 4 F
A9* S 15 78 187.2 13909.7 807.4 114.4 F
A10 L 15 80 25.5 1.7 1.4 -
A11 S 16 125 41.8 34.3 21.7 2 F
A12 S 16 58 1856.5 492.5 259.7 0.3 NC
A13 S 16 455 35.3 20.2 12.3 1.2 F
A14 S 20 132 16.1 29.4 15.1 0.6 F
A15 S 20 92 99.3 106.9 7 0.1 NC
A16* S 21 23 79.7 1.5 0.8 -
A17 S 21 115 - 3.5 3 97.7 F
A18 S 22 73 3477.5 3.5 2.4 -
A19 L 23 93 197.4 2.7 3.5 -
A20 S 23 102 34.5 34.4 22.4 1492.9 F

3.1 Benchmarks with Shallow Counterexamples

Group1 contained benchmarks that had properties that failed in at most 30
steps. Table 1 summarizes our results. The first column specifies the name of the
benchmark, the second column is the type of property, the third is length of the
counterexample and the fourth column is the number of state variables in the
design. The next three columns give the time taken in seconds with BDDs and
the SAT-solvers zChaff and BerkMin respectively. The last two columns give the
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time taken for explicit state and the final result returned by the explicit state
engine, “F” indicates a counterexample was found and “NC” indicates that a
counterexample was not found in any of the three runs. We used a timeout of
30,000 seconds and is depicted as a “-” in the tables. Memory exhaustion is
shown as “m/o”. The symbol “*” next to the benchmark name indicates that it
is a software design.

Fig. 1. Time taken for SAT BMC versus Random Explicit State on Group1 bench-
marks. X-axis: benchmarks ordered by increasing depth, Y-axis: run time in seconds.

The most interesting observation in Group1 was that random explicit state,
when it did finish, did extremely well, outperforming both the BDD and SAT
engines on 8 out of the 16 safety benchmarks. The explicit state engine, however,
did not find any counterexamples for the liveness properties. The SAT engine
did better on 12 of the 20 benchmarks and did better than the BDD engine on
all but one (A9). It also did better than the other two engines on all 4 liveness
properties. The plot in Figure 1 shows that, while explicit state and SAT BMC
are comparable, SAT-based BMC is more consistent.

3.2 Benchmarks with Deep Counterexamples

In Group2, where the length of the counterexamples varied from 34 up to 1152,
we found the results to be quite different. Table 2 summarizes our results. The
explicit state engine only completed successfully on 3 of the 17 benchmarks. The
SAT engine did quite well up to a depth of 60 and outperformed the other engines
on all 7 benchmarks. The BDD engine significantly outperformed the other two
engines on the deeper counterexamples. This can be seen rather clearly in Figure
2 which shows that BDD-based BMC does better on all of the benchmarks that
had counterexamples of length greater than 60, namely those numbered 8 and
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Table 2. Results for benchmarks with counterexamples of length greater than 30.

Benchmark BDD SAT Exp. State
name type depth stvars time zChaff Berkmin time result
B1 S 34 184 1843.2 6.7 3.6 -
B2 S 41 457 - 2418 1760.4 -
B3* S 41 43 - 13.3 3.2 -
B4 L 52 1273 122.3 10.9 8.2 43.1 NC
B5 S 54 366 3699.4 422.5 89.3 -
B6 S 54 195 44.1 4206.7 37.7 -
B7 L 60 44 3026 58.5 14.7 -
B8 S 66 11 0.1 0.1 0.1 0.04 F
B9 S 72 53 12.7 1973.4 45.5 -
B10 S 82 46 2.3 1036.7 81.5 -
B11 L 89 124 34 362.6 371.6 -
B12 S 92 429 337.9 2988.9 27889.6 12473.8 F
B13 L 113 51 84.1 5946.6 1049.5 -
B14 L 127 45 1.4 36 34.4 0.1 NC
B15 S 316 74 15.6 14159.2 229.9 150.7 F
B16 L 801 132 75.4 m/o m/o -
B17 S 1152 153 48.5 2541.6 1035.9 -

above. Overall, the BDD-based approach did better on 9 of the 17 benchmarks,
the SAT approach did better on 7 and the explicit state approach did better on
only 1 benchmark. Unlike BDD and explicit state BMC, SAT-based BMC did
not complete on only one of the benchmarks (B16) in these two groups. We also
found that BerkMin outperformed zChaff on most of the benchmarks and by a
significant margin on the models with counterexamples of larger depths.

3.3 Benchmarks with Properties That Passed

Group3 contained benchmarks that had properties that passed. We ran each
benchmark with a limit depth of 10, 25, 50 and 100 with all three engines. The
time reported for the random explicit state engine is the cumulative time taken
for three runs, systematically increasing the number of inputs considered in each
successive run. Table 4 in the Appendix reports the results for BDDs, explicit
state and SAT-based BMC with BerkMin. A comparison of the two SAT-solvers
on these benchmarks that demonstrates that BerkMin does better, can be found
in Table 3 in the Appendix. In Table 4, the first three columns correspond to
the name of the benchmark, type of property and the number of state variables.
The next three columns correspond to the time taken for BMC at a depth of
10 with explicit state, BDDs and SAT (using BerkMin) respectively. Similarly,
the remaining columns report the results of BMC at depths 25, 50 and 100. As
mentioned earlier, BDD-based BMC can assert that a property holds when it
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Fig. 2. Time taken for SAT BMC versus BDD BMC on Group2 benchmarks X-axis:
benchmarks ordered by increasing depth. Y-axis: run time in seconds.

reaches a fix-point. This is depicted in the table by reporting the time taken at
the depth where the fix-point was reached along with the suffix “P”. We used a
timeout of 36,000 seconds and this is shown in the table as “-”.

We found that random explicit state BMC did fairly well at depth 10 and
did better than the other two engines on 11 of the 25 benchmarks. However,
the performance went down as the depth was increased. At a depth of 100, the
explicit state engine timed out on all but 6 of the benchmarks but did better
than the others on 5 of them. The BDD engine started out by doing better
on only 3 of the 25 benchmarks at depth 10 but improved to do better on 13
benchmarks at final depth checked. Five of benchmarks (C13, C17, C18, C22
and C24) in this group were known to do poorly with BDDs. In these cases,
we found that SAT-based BMC did very well on three of them (C18, C13 and
C17) but did not do as well on the other two at larger depths. The explicit state
engine did extremely well on one of them (C17). We reached a fix-point in 9
cases but BDDs outperformed the other approaches on only 4 of them. SAT-
based BMC outperformed the other two engines on 11 of the 25 benchmarks
at depth 10 but as the depth was increased it did worse, and at depth 100 it
did better on only 6 of them. Again, the SAT-engine was the most consistent
and only timed out at a depth of 50 or greater. Figure 3 plots the number of
benchmarks that each technique did better on versus the four depths checked,
namely 10, 25, 50 and 100. For example, the plot shows that at depth 10, the
BDD-based approach did better on 3 benchmarks while the other two engines
did better on 11 benchmarks. The BDD-based method, as shown in the plot in
Figure 3, appears to scale better on benchmarks where it does not fail to build
the global transition structure (those that fail are indicated in Table 4 by a “-”).
An interesting point to note is that at least one of the three algorithms finished
on all but one of the benchmarks.



Experimental Analysis of Different Techniques for Bounded Model Checking 43

Fig. 3. Plot of the number of Group3 benchmarks that each engine did better on
versus depth of BMC. X-axis: BMC depth at 10, 25, 50 and 100, Y-axis: Number of
benchmarks (maximum is 25).

3.4 Choosing the Bound

In the results presented so far, we assumed that we knew the depth of the
counterexample. This gave us a good measure of the performance of each engine.
However, in general, the depth of the counterexample is unknown. There are two
possible ways to choose the bound for BMC. One can choose a maximum bound
and try to find the error within this bound. A disadvantage of this approach
for SAT-based BMC is that the counterexample found will be of the specified
length and this could make the counterexample harder to analyze. However, this
approach seems to be the right one for both BDD-based and explicit state BMC
since they stop as soon as they encounter the error. In order to investigate how
this approach works with SAT-based BMC, and based on our results, we chose
a maximum depth of 60 and ran the benchmarks in Groups 1 and 2 that had
counterexamples of length at most 60. For each of these benchmarks, Figure 4
plots the time taken for BMC at the known depth of the counterexample versus
the time taken at depth 60. We can see rather clearly that this approach is
expensive and could take orders of magnitude more time. In fact three of the
benchmarks that finished within 1000 seconds timed out at bound 60.

Alternatively we could employ an iterative approach, that starts at a min-
imum depth and systematically increases the depth until a counterexample is
found. For our study, we used the following depths: 10, 25, 50 and 100. We
applied this iterative method to benchmarks in Groups 1 and 2 that had coun-
terexamples of length less than 100. Figure 5 plots the cumulative time taken
versus the time taken at the depth of the counterexample. The X-axis represents
the 29 benchmarks in increasing order based on the length of the counterexample
and the Y-axis represents the cumulative time taken in seconds. This method
appears to be more efficient and in most cases took approximately the same time
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Fig. 4. Time taken for SAT BMC at the depth of counterexample versus depth=60.
X-axis: benchmark, Y-axis: run time in seconds.

as BMC with the depth already known. The only three benchmarks where the
difference was fairly significant had counterexamples of length 52 (B3) and 54
(B5 and B6 in Table 2) and therefore represent the worst case scenario. Only 2
of the 29 benchmarks with the iterative method changed the SAT BMC result
in the comparison with BDDs and explicit state, and the difference in time in
both cases was less than 30 seconds.

4 Conclusions

This paper presents a systematic performance analysis for BMC with three en-
gines: SAT, BDDs and random explicit state. We used 62 industrial benchmarks
that were partitioned into three groups based on the length of the counterexam-
ple and whether the property was falsified.

Our results demonstrate that for models with deep counterexamples, BDDs
were the clear winner, while for models with shallow counterexamples, SAT and
random explicit state performed comparably. The results were the same for both
safety and liveness properties with the exception being that the random explicit
state algorithm did much worse on the 13 liveness properties in our benchmark
suite. The SAT-based approach was very consistent and completed within the
timeout on all but 4 of the 62 benchmarks and, more importantly, all 4 timeouts
were observed at a depth of 50 or greater. The SAT engine also seems to be less
sensitive to the size of the design (number of state variables) and did well on the
larger benchmarks. In cases when not much information is available about the
design, running the engines in parallel until one of them completes is a sound
idea.
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Fig. 5. Time taken for SAT BMC at the depth of counterexample versus cumulative
time taken. X-axis: benchmark, Y-axis: run time in seconds.
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5 Appendix

Table 3. Results for zChaff and BerkMin on benchmarks that passed.

Benchmark depth 10 depth 25 depth 50 depth 100
name stvars BerkMin zChaff BerkMin zChaff BerkMin zChaff BerkMin zChaff
C1 51 2.7 2.7 4.7 5 15.6 50.1 1002.1 10529.8
C2 52 3.3 3.5 3.8 4.4 5 5.9 7.4 9.5
C3 53 3.3 3.1 5.1 15.1 34.6 219.2 910.6 7665.8
C4 58 6.8 46.5 11.5 145.7 40 1217.2 414 12284.2
C5 69 1.6 1.7 2.6 3.1 5.8 6.3 141.4 131.9
C6 70 4.2 4.4 5.4 11.6 15.8 67.7 59.8 495.2
C7 70 6.8 7.3 7.1 9.1 9.7 12.3 14.8 19.7
C8 77 13.3 10 17.7 13.4 25.3 19.5 40.4 30.6
C9 91 10.3 10.8 14.4 18.7 22.6 34.9 96.8 162.3
C10 95 10.7 9.3 14.6 14.8 22.5 24.1 57 43.4
C11 100 8.1 5.3 8.7 7.6 15.2 23.4 1106.1 6084.3
C12* 111 35.4 60.7 4278.7 23641.8 - - - -
C13 114 4.1 5 5.6 7.2 8.3 11.5 7.7 20.3
C14 127 70 1723.4 698 - 6960.9 - - -
C15 131 3.9 3.9 6.3 4 4 6.2 6.5 3.9
C16 268 10 8.8 16.4 16.3 34.3 144.7 460.9 5026.3
C17 423 15.6 15.7 23.5 30.8 38.6 52.5 71.4 97.7
C18 423 14.6 13.1 21.2 12.5 39 2262.3 98.9 35340.3
C19 428 54.7 69.3 78.2 85.5 368.4 133.3 2356 226.3
C20 446 22.1 25.3 27.9 32.6 37.7 44.8 60.4 72.3
C21 455 22 14.4 33.8 11 52.2 11 100.5 14.4
C22 625 46.2 42.7 106.1 58.3 3895.3 12837.9 - -
C23 600 29 29.8 40.1 45.9 59.9 72.4 100.2 125.7
C24 624 43.9 53.6 61.7 224.6 69.6 7977.9 31753.6 -
C25 644 42.4 46.8 64.5 80.8 152.6 135 195 255.4
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