
Strategies for Combining Decision Procedures�

Sylvain Conchon1 and Sava Krstić2

1 École des Mines de Nantes
2 OGI School of Science & Engineering at Oregon Health & Sciences University

Abstract. Implementing efficient algorithms for combining decision
procedures has been a challenge and their correctness precarious. In this
paper we describe an inference system that has the classical Nelson-
Oppen procedure at its core and includes several optimizations: vari-
able abstraction with sharing, canonization of terms at the theory level,
and Shostak’s streamlined generation of new equalities for theories with
solvers. The transitions of our system are fine-grained enough to model
most of the mechanisms currently used in designing combination proce-
dures. In particular, with a simple language of regular expressions we are
able to describe several combination algorithms as strategies for our infer-
ence system, from the basic Nelson-Oppen to the very highly optimized
one recently given by Shankar and Rueß. Presenting the basic system
at a high level of generality and nondeterminism allows transparent cor-
rectness proofs that can be extended in a modular fashion whenever a
new feature is introduced in the system. Similarly, the correctness proof
of any new strategy requires only minimal additional proof effort.

1 Introduction

Efficient decision procedures exist for many first-order theories commonly oc-
curring in modeling practice. Linear arithmetic, the pure theory of equality, and
theories associated with algebraic datatypes are some examples. Since the inter-
esting properties are often expressed by formulas involving symbols from more
than one theory, what one really needs is the integration of these “little engines of
proof” into a single efficient tool [12]. Several such systems have been designed
[5,15] and used in a variety of applications: general purpose theorem provers,
static analysis, extended type checking, hardware verification, etc.

The promise of combination provers is great, but their actual use is still
limited and their design is in the state of active research and experimentation.
The basic design principles have been set down in the landmark papers of Nelson
and Oppen [8] and Shostak [14]. Nelson and Oppen described and proved a
general combination algorithm, and Shostak offered an apparently more efficient
algorithm, but of restricted scope. What exactly the scope of Shostak’s method
is has remained unclear for a long time, and it took twenty years to obtain the
first correct versions of his algorithm [13,3,6].
� The research reported in this paper was supported by the NSF Grant CCR-9703218.

It was performed while S. Conchon was with OGI School of Science & Engineering.

H. Garavel and J. Hatcliff (Eds.): TACAS 2003, LNCS 2619, pp. 537–552, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

538 S. Conchon and S. Krstić

On the other hand, correctness of the Nelson and Oppen framework has not
been a concern; a pleasing high-level proof is given by Tinelli and Harandi [16].
Correctness becomes a concern, however, as soon as we attempt to describe this
framework at a lower level that explicates important implementation features,
or to incorporate Shostak’s algorithm into it.

Our goal in this paper is to describe the Nelson-Oppen framework at a level
that is high enough to enjoy a simple correctness proof (based on the theorem of
Tinelli and Harandi), and low enough to incorporate crucial optimizations, like
variable abstraction with sharing, theory state normalization, and deduction by
lookup.

Our system is described in Section 3 by a set of transformation rules which
can be applied in arbitrary order. The generality and nondeterminism expose
only the essential parts of the system and allow for simple correctness proofs.
They also give us great flexibility to restrict the system further without needing
to reprove most of the necessary correctness facts. We demonstrate this in Section
4, by expressing several interesting strategies with a simple language of regular
expressions and proving their correctness with only a little extra effort.

We believe we have described the essence of Shostak’s method by the rules
we present in Section 5. The rules capture the inference pattern that is possible
for the so-called Shostak theories and that allows these theories to “cooperate”
in the Nelson-Oppen framework more efficiently than by using a generic search-
and-backtrack mechanism. With these rules added to our inference system, it
becomes possible to express complex algorithms, and we show in Section 6 a
regular expression that (as a strategy) quite accurately describes the recent
algorithm of Shankar and Rueß. The algorithm combines decision procedures of
several Shostak theories and is the most detailed algorithm of this kind whose
correctness has been proved [13].

2 Notations and Conventions

This section contains the notation and conventions used throughout the paper.
Given a first-order signature Σ and a fixed countable set X of variables, we

will denote by TΣ(X) the set of terms constructed over Σ and X. We will use
the symbols a, b to denote terms and x, y, z to denote variables. Viewing terms
as trees, subterms within a given term a are identified by their positions. Given
a position π, aπ denotes the subterm of a at position π, and a[π �→ b] the term
obtained by the replacement of aπ by the term b.

For simplicity we will consider only signatures without predicate symbols.
Literals are thus equations a ≈ b between terms over Σ, and disequations ¬(a ≈
b) that will be written as a �≈ b. Formulas over Σ are built from literals using
the standard logical connectives. Sets of formulas are viewed as conjunctions of
their elements.

We will write a �� b for a general literal (equation or disequation). If a and
b are variables, we say that this literal is simple. Sets of simple equations are
called queries and sets of disjunctions of simple equations are answers.

Strategies for Combining Decision Procedures 539

As usual, we say that a formula Φ over Σ is satisfiable (resp. valid) if it holds
for some (resp. all) Σ-models and variable assignments. A theory is a satisfiable
set of closed formulas over some signature Σ. If T and Φ are, respectively, a
theory and a formula overΣ, we say that Φ is T -satisfiable if T ∪{Φ} is satisfiable.
The entailment notation T , Γ |= Φ means that the implication Γ −→ Φ holds
in all models of T and for all variable assignments. A decision procedure for
a theory T is an algorithm that decides for a given quantifier-free formula Φ
whether T |= Φ or not. As is well known, having a decision procedure for a theory
amounts to having an algorithm that checks satisfiability of sets of literals.

A theory T is stably-infinite if every quantifier-free formula satisfiable in
some model of T is also satisfiable in an infinite model of T . All theories in this
paper will be stably-infinite by assumption.

Two theories T1 and T2 are disjoint if they are defined over two disjoint
signatures Σ1 and Σ2. We will use the notation T1 + T2 for the union of disjoint
theories. Terms over Σ1 + Σ2 are usually called mixed ; a mixed term is a pure
i-term if its symbols are all in Σi.

3 The Equality Propagation Procedure

We present in this section an abstract version of the equality propagation pro-
cedure of Nelson and Oppen [8]. It combines decision procedures of disjoint
stably-infinite theories into a single decision procedure for the union theory.

3.1 Abstract Combination Procedure

Let T0, . . . , Tn be disjoint stably-infinite theories and T = T0 + · · · + Tn the
combined theory. In the following, we will use the term satisfiable to mean T -
satisfiable.

We define the operation of our abstract procedure by a set of inference rules,
shown in Figure 1. The rules describe the evolution of the state of the procedure,
represented as a configuration 〈V �∆�Γ �Φ0, . . . , Φn〉, where Γ is a set of literals
over T , ∆ is a set of disjunctions of simple literals, each Φi is a set of equations of
the form x ≈ a where a is an i-term, and V is a set of variables containing those
occurring in Γ and ∆. (The set V is redundant, but convenient for bookkeeping
purposes.) We also use the symbol ⊥ as a configuration, and call a configuration
proper if it is not ⊥. The aim of our inference system is to determine satisfiability
of configurations, formally defined as follows.

Definition 1 (Satisfiability). A configuration 〈V �∆ �Γ �Φ0, . . . , Φn〉 is sat-
isfiable if the formula Γ ∧ Φ0 ∧ · · · ∧ Φn ∧∆ is satisfiable. The configuration ⊥
is not satisfiable.

We say that a configuration C reduces to a configuration C′, written C ⇒ C′,
if C can be transformed into C′ by applying one of the inference rules. Configu-
rations that allow no reductions will be called irreducible.

540 S. Conchon and S. Krstić

Satisfiability of any set Γ of literals over T is clearly equivalent to the satisfi-
ability of the corresponding initial configuration CΓ = 〈V � ∅ �Γ � ∅〉, where V is
the set of variables in Γ . With this interpretation of Γ as a configuration, and in
view of the following theorem, our inference system is indeed a nondeterministic
decision procedure for T .

(Ab)stracti
〈V �∆ � Γ � {a �� b} � . . . , Φi, . . .〉

〈V ∪ {z} �∆ � Γ ∪ {a[π �→ z] �� b} � . . . , Φi ∪ {z ≈ aπ}, . . .〉

if aπ ∈ TΣi(X); aπ 	∈ X; z /∈ V

(Ar)range
〈V �∆ � Γ � {x �� y} � Φ0, . . . , Φn〉
〈V �∆ ∪ {x �� y} � Γ � Φ0, . . . , Φn〉

(De)ducti
〈V �∆ � Γ � Φ0, . . . , Φn〉
〈V �∆ ∪ δ � Γ � Φ0, . . . , Φn〉

if Ti, Φi |= Λ −→ δ; Λ ⊆ ∆ is a query; δ is an answer; ∆ 	|= δ

(Co)ntradicti
〈V �∆ � Γ � Φ0, . . . , Φn〉

⊥
if Φi ∧∆ is not satisfiable

(Br)anch
〈V �∆ � {x1 ≈ y1 ∨ · · · ∨ xk ≈ yk} � Γ � Φ1, . . . , Φn〉

〈V �∆ ∪ {xi ≈ yi} � Γ � Φ1, . . . , Φn〉

if ∆ 	|= xi ≈ yi; 1 ≤ i ≤ k

Fig. 1. Inference system for combining decision procedures

Theorem 1 (Correctness). A set of formulas Γ is satisfiable if and only if
there exists a proper irreducible configuration C such that CΓ ⇒∗ C.

We will turn to the proof of Theorem 1 after a brief discussion of the rules.
For convenience we treat literals as syntactically symmetric in these rules, so
that a �� b also matches b �� a. The rules Abstracti (0 ≤ i ≤ n) are used to
purify the literals of Γ . If aπ is a pure i-subterm of a, then Abstracti replaces
aπ in a with a new variable z, at the same time adding the equation z ≈ aπ to the
set Φi. The rule Arrange just transfers simple literals from Γ to ∆. The rules
Contradicti, Deducti and Branch perform equality propagation by moving
to ∆ new (disjunctions of) simple equations that are valid in some theory Ti.

Strategies for Combining Decision Procedures 541

Given a query part Λ of ∆ and an answer set δ entailed by Λ and Φi, the rule
Deducti adds δ to ∆ if δ is not already entailed by ∆. The rule Contradicti
produces the configuration ⊥ as soon as the state Φi becomes incompatible with
∆. Finally, the rule Branch performs a case split by choosing an equation from
a disjunction of simple equations contained in ∆.

Example 1. The following table shows the reduction of an unsatisfiable initial
configuration to ⊥. It also uses the rule Sharei defined later in this section.
The theory T1 is the theory of linear arithmetic and T0 is the theory of one
uninterpreted unary symbol f .

V ∆ Γ Φ0 Φ1 Rule
f(x) ≈ x

x ∅ f(2x− f(x)) �≈ x ∅ ∅
y ≈ x

x, y ∅ f(2x− f(x)) �≈ x y ≈ f(x) ∅ Ab0

x, y y ≈ x f(2x− f(x)) �≈ x y ≈ f(x) ∅ Ar
x, y y ≈ x f(2x− y) �≈ x y ≈ f(x) ∅ Sh0

x, y, z y ≈ x f(z) �≈ x y ≈ f(x) z ≈ 2x− y Ab1

x, y, z, u y ≈ x u �≈ x y ≈ f(x), u ≈ f(z) z ≈ 2x− y Ab0

x, y, z, u y ≈ x, u �≈ x ∅ y ≈ f(x), u ≈ f(z) z ≈ 2x− y Ar
y ≈ x

x, y, z, u u �≈ x, z ≈ x ∅ y ≈ f(x), u ≈ f(z) z ≈ 2x− y De1

⊥ Co0

Remark 1. The inference system in Figure 1 leads naturally to a modularly
designed combined prover of Nelson-Oppen style depicted in Figure 2. The prover
consists of a core module and a set of theory modules. The behavior of the core
module is specified using the rules in Figure 1. The rules suggest a natural set
of interface functions for theory modules. Correctness of the prover follows from
the fact that its behavior can be simulated by the inference system.

3.2 Proof of Theorem 1

The theorem follows from the following four lemmas. We give the proof only of
the most important one. Complete proofs are given in the technical report [4].

Lemma 1 (Termination). The relation ⇒ is terminating.

Lemma 2. Every proper irreducible configuration is satisfiable.

Proof. Let 〈V �∆ � Γ �Φ0, . . . , Φn〉 be a proper irreducible configuration. Since
the rules Abstracti and Arrange cannot be applied, Γ must be empty. Since
Contradicti does not apply, Φi ∧ ∆ is Ti-satisfiable for every i. If ∆ is an

542 S. Conchon and S. Krstić

�
�

PnP2P1

�
�

�
� addFormula

sat?
inferEqualities

�

�

Γ

Combination Core

Φi

sat? ...

Pi

Fig. 2. Rudimentary architecture of a Nelson-Oppen prover based on the inference
system in Figure 1. The interface function addFormula is needed to implement the rule
Abstracti; it adds a new pure formula to the state Φi of the theory module Pi. Im-
plementation of the rule Contradicti requires the function sat? that reports whether
Pi’s state is inconsistent. Finally, for Deducti we need the function inferEqualities
that computes a new disjunction of equalities that can be inferred from ∆ and Φi.

arrangement1, then the theorem of Tinelli and Harandi [16] implies that Φ0 ∧
· · · ∧ Φn ∧ ∆ is satisfiable, finishing the proof. If ∆ is not an arrangement, we
will show that that exists an arrangement ∆′ such that ∆′ |= ∆ and such that
Φi ∧∆′ is Ti-satisfiable. The proof will again follow from the theorem of Tinelli
and Harandi.

Take∆′ to be a maximal satisfiable extension∆∪{x1 �≈ y1, . . . , xk �≈ yk} of∆
with disequations that are not entailed by ∆. If for some x, y ∈ V , neither x ≈ y
nor x �≈ y is entailed by ∆′, then ∆′ ∪ {x �≈ y} is a satisfiable extension of ∆′,
contradicting the maximality assumption about ∆′. Thus, ∆′ is an arrangement.

It remains to prove satisfiability of Φi ∧∆′. Assuming the contrary, we have
that Φi∧∆∧x1 �≈ y1∧· · ·∧xk �≈ yk is not Ti-satisfiable. In other words, we have
Ti, Φi |= ∆ −→ δ where δ is the answer formula x1 ≈ y1∨· · ·∨xk ≈ yk. Since the
Branch rule cannot be applied, ∆ must be a set of equations and disequations.
Thus, ∆ is equivalent to a formula of the form Λ ∧ ¬δ′, where Λ is a query and
δ′ is an answer or false. Thus, we have Ti, Φi |= Λ −→ δ ∨ δ′. Since the rule
Deducti cannot be applied, we conclude that ∆ |= δ ∨ δ′ and then (since ∆
implies ¬δ′) that ∆ |= δ. This contradicts the assumed satisfiability of ∆′.

Lemma 3 (Equisatisfiability). If C ⇒ C′ is a non-branching reduction, then
C and C′ are equisatisfiable.

Lemma 4 (Branching). Suppose C ⇒ C′ is a branching reduction. Then:

(a) if C′ is satisfiable, then C is satisfiable;
(b) if C is satisfiable, then there exists a branching reduction C ⇒ C′′ such that
C′′ is satisfiable.

Proof of Theorem 1. It suffices to prove that a configuration C is satisfiable if and
only if there exists a proper irreducible C′ such that C ⇒∗ C′. If C is irreducible,
1 ∆ is an arrangement if for every x, y ∈ V either x ≈ y or x 	≈ y is implied by ∆.

Strategies for Combining Decision Procedures 543

the claim is true by Lemma 2. For non-irreducible C, we have by Lemmas 3 and
4 that C is satisfiable if and only if there exists a satisfiable C′ such that C ⇒ C′.
The proof follows by wellfounded induction over the terminating relation ⇒.

3.3 Optimized Variable Abstraction

The rules Sharei describe a space-efficient variable abstraction mechanism which
allows us to replace a subterm aπ of a term a by an existing variable z which is
known by one of the theories to be equal to aπ.

(Sh)arei
〈V �∆ � Γ � {a �� b} � Φ0, . . . , Φn〉

〈V �∆ � Γ ∪ {a[π �→ z] �� b} � Φ0, . . . , Φn〉

if aπ ∈ TΣi
(X); aπ �∈ X; Ti, Φi |= Λ −→ z ≈ aπ; Λ ⊆ ∆ is a query

It is not difficult to show that Theorem 1 and the four lemmas needed for its
proof all remain valid when the system in Figure 1 is extended by adding the
rules Sharei.

3.4 Deduction in the Case of Convex Theories

A theory T is called convex if for every set Λ of literals the truth of a judgment
of the form T |= Λ −→ a1 ≈ b1 ∨ · · · ∨ ak ≈ bk implies T |= Λ −→ ai ≈
bi for some i. This property allows us to simplify the system of Figure 1 by
strengthening the side condition of Deducti with an additional requirement
that the answer formula δ be a single equation. Let us call this modified rule
DeductConvexi. The following theorem states that the system will remain
correct after this change; the proof of Theorem 1 applies almost verbatim and
only Lemma 2 requires a (straightforward) modification.

Theorem 2. The correctness result expressed in Theorem 1 remains valid if for
every convex theory Ti we replace the rule Deducti in the inference system in
Figure 1 with the rule DeductConvexi.

Corollary 1. If all theories T0, . . . , Tn are convex, then Theorem 1 remains
valid when all the rules Deducti are replaced with DeductConvexi and the
rule Branch is excluded from the system.

4 Strategies

Strategies introduce determinism in our inference system by constraining the
shape of reduction chains. A variety of strategies can be described by using the
simple language given in Figure 3. It is the language of regular expressions over
the set of basic actions (rules of our inference system), extended with the oper-
ator ⊕. The figure also gives the semantics of the language: the concatenation

544 S. Conchon and S. Krstić

(·), and choice (+) operators have their standard meaning, the star (∗) is for
exhaustive application, and ⊕ denotes a left-associative choice that gives pref-
erence to its left argument. Clearly, every strategy e is sound in the sense that
C ⇒e C′ implies C ⇒∗ C′.

a ::= Abi | Ar | Shi | Dei | Co | Br
e ::= a | e+ e | e∗ | e · e | e⊕ e

C ⇒ C′ by applying the rule a
C ⇒a C′

C ⇒e C′ C′ ⇒e′ C′′
C ⇒e·e′ C′′

C0 ⇒e · · · ⇒e Cn 	⇒e 0 ≤ n
C0 ⇒e∗ Cn

C ⇒e C′
C ⇒e+e′ C′

C ⇒e′ C′
C ⇒e+e′ C′

C ⇒e C′
C ⇒e⊕e′ C′

C 	⇒e C ⇒e′ C′
C ⇒e⊕e′ C′

Fig. 3. Syntax and semantics of a simple language for strategies.

For most of this section we will assume that all theories Ti are convex. Then,
if a strategy e satisfies the condition

(S-1) For every C, there exists C′ such that C ⇒e C′, and all such C′ are
irreducible.

then e implements a decision procedure for the union theory T . Indeed, for a
given input Γ , we just need to find C′ such that CΓ ⇒e C′ and check whether
C′ = ⊥.

We will show several examples of strategies satisfying the property (S-1).
Then we will see how to incorporate branching in the case when there are non-
convex theories in the system.

4.1 The Basic Strategy

The following expression describes the original Nelson-Oppen algorithm for the
disjoint union of convex theories.

Ab∗ ·Ar∗ · (Co⊕De)∗ (1)

The action Ab is an abbreviation for Ab0+· · ·+Abn and similarly De is the sum
of all Dei (which are now DeductConvexi). The effect of Ab∗ is “purification”
of Γ ; it reduces Γ to a set of simple literals. The action Ar∗ then moves all these
literals to ∆. Thus, Ab∗ ·Ar∗ describes a strategy for the variable abstraction
part of the algorithm.

Strategies for Combining Decision Procedures 545

The remaining expression (Co ⊕ De)∗ describes the equality propagation
mechanism of the algorithm: repeated application of the rules Contradicti or
DeductConvexi until the ⊥ configuration is reached, or no more equations
between variables can be deduced.

When applied to an arbitrary configuration C, the strategy Ab∗ ·Ar∗ pro-
duces configurations with empty ∆-part that are all equisatisfiable with C. If C′ is
any of these configurations, and if it can be reduced in the original system, then
every step in any reduction chain of C′ must be by one of the rules Contradicti
or DeductConvexi. Thus, the strategy (Co ⊕ De)∗ when applied to C′ pro-
duces irreducible configurations. This proves that the strategy (1) satisfies the
property (S-1).

4.2 An Incremental Strategy

The following expression describes an incremental version of the strategy (1)
which processes one literal of Γ at a time.

(
(Va1 + · · ·+ Vam) · (Co⊕De)∗

)∗ (2)

Here we use Vaj as an abbreviation for the strategy Ab∗ ·Ar applied only to
the jth literal of Γ . (A precise definition would require primitive actions Abji
and Arj .) The main idea of the strategy is that processing a new literal begins
only after it has been checked that the contradiction cannot be reached from the
literals that have already been processed.

When applied to a configuration C = 〈V �∆ � Γ � Φ0, . . . , Φn〉, the strategy
Va1 + · · ·+Vam fails only if Γ is empty; otherwise, it produces configurations of
the form 〈V ′ �∆′ �Γ ′ �Φ′0, . . . , Φ′n〉, where Γ ′ is obtained by removing one literal
from Γ . The outer closure operator in (2) guarantees that when the strategy
(2) is applied to C, the result will be a configuration equisatisfiable to C that is
either ⊥ or of the form C′ = 〈V � ∆ � ∅ � Φ0, . . . , Φn〉. Similarly as in the case
of the strategy (1), we can see that C′ is actually irreducible, proving that (2)
satisfies (S-1).

4.3 Strategies with Sharing

The variable abstraction part of the previous strategies can be optimized against
proliferation of new variables by an aggressive use of the rules Sharei. Intro-
ducing sharing into the basic strategy gives

(Sh⊕Ab)∗ ·Ar∗ · (Co⊕De)∗ (3)

Similarly, the incremental strategy (2) can be optimized by replacing the action
Vaj in it with the appropriate form of (Sh⊕Ab)∗ ·Ar. Checking the property
(S-1) for these strategies proceeds as in the case of strategies (1) and (2), with
minimal changes.

546 S. Conchon and S. Krstić

4.4 Branching Strategies

If some of the component theories Ti are not convex, then the corresponding rules
Deducti must be used in place of the simpler DeductConvexi. The answer sets
δ can now contain disjunctions and case splitting may be necessary to check the
satisfiability of a configuration. A strategy that implements a decision procedure
now must satisfy the following additional condition.
(S-2) If C is satisfiable, then there exists a satisfiable C′ such that C ⇒e C′.

Since branching is expensive, the obvious approach is to use it only when
everything else fails. This gives us strategies

(NO⊕Br)∗ (4)

where NO denotes any of the above strategies (1), (2) and (3) with Dei denot-
ing DeductConvexi or Deducti, depending on whether Ti is convex or not.
We know that NO will reduce any configuration into one to which no rule ap-
plies, except possibly Branch. It follows that the strategy (4) produces only
irreducible configurations. It is easy to check, using Lemma 4 that this strategy
also satisfies (S-2).

5 Shostak Optimization

A modular design of a decision procedure for the combined theory T =
T0 + · · · + Tn can be derived from the inference system given in Section 3. In
Remark 1 and Figure 2 we sketched such a design. Note that the strategies of
the previous section are possible ways of programming the control core module.
The requirements for the theory modules can be seen from Figure 1: the rule
Abstracti needs support for addition of a new formula to the state Φi of the
theory module; Contradicti needs a decision procedure for Ti; and Deducti
needs generation of answers from input queries. In principle, a theory module
can implement this last task on top of its decision procedure: with a given input
query Λ, it can search for an answer δ such that Λ ∧ ¬δ is unsatisfiable.

Now, for some theories there exist more efficient algorithms for computing
answers to given queries. A prime example is the free theory over a signature
consisting of uninterpreted functions, where the congruence closure algorithm
[9,1] can process the input query and change its state appropriately so that
new equations between variables can be directly seen from it. Shostak made
an important discovery that a similar inference pattern is possible for many
other theories [14]. Roughly speaking, the theory module maintains a union-find
data structure on a set of terms so that the answer equation x ≈ y is deduced by
checking that find(x) = find(y) is true. To make such “trivial deduction” possible,
the theory module must have some powerful mechanism for processing input
queries. We describe it abstractly below by the concept of “state normalization”
which essentially means bringing a set of equations (the original state together
with the query equations) to some kind of normal form from which the maximum
information about equalities between variables can be directly drawn.

Strategies for Combining Decision Procedures 547

To formalize the pattern, we need to make several assumptions. The first is
that Ti is a convex theory with a canonizer. A canonizer is a function that for
every term a returns a unique representative canoni(a) in the equivalence class of
the relation Ti |= a ≈ b.2 A Ti-term a is in canonical form when canoni(a) = a.

We will also assume that there is a function that picks a representative from
each class of the equivalence relation on V defined by ∆ |= x ≈ y. The repre-
sentative of x will simply be denoted ∆(x). Extending this notation to terms,
we will also write ∆(a) for the term in which every variable x is replaced by its
representative ∆(x).

The following rule TDeducti is a trivial special case of Deducti, where the
answer x ≈ y is found by a simple lookup into the state. Similarly, TSharei is a
special case of Sharei that finds the required shared variable by inspecting the
state.

(TDe)ducti
〈V �∆ � Γ � . . . , Φi ∪ {x ≈ a, y ≈ a}, . . . 〉

〈V �∆ ∪ {x ≈ y} � Γ � . . . , Φi ∪ {x ≈ a, y ≈ a}, . . . 〉

if ∆(x) �= ∆(y)

(TSh)arei
〈V �∆ � Γ � {a �� b} � . . . , Φi ∪ {z ≈ c}, . . . 〉

〈V �∆ � Γ ∪ {a[π �→ z] �� b} � . . . , Φi ∪ {z ≈ c}, . . . 〉

if aπ ∈ TΣi(X); aπ �∈ X; canoni(∆(aπ)) = c

The concept of state normalization requires a normalization function Ni. If
Φ′i is the state obtained by adding equations of ∆ to Φi, the idea is thatNi(Φi, ∆)
denotes the first intermediate result in the (possibly multi-step) normalization
process from Φ′i to its normal form.

(Nor)mi

〈V �∆ � Γ � . . . , Φi, . . . 〉
〈V �∆ � Γ � . . . ,Ni(Φi, ∆), . . . 〉

if Ni(Φi, ∆) �= Φi

In order to make the Shostak inference pattern possible, the normalization
function has to satisfy the following conditions.

Termination: There exists k such that N k
i (Φi, ∆) = N k+1

i (Φi, ∆);

Equisatisfiability: Ti |= Φi ∧∆←→ Ni(Φi, ∆) ∧∆;

Completeness: If Ti, Φi, ∆ |= x ≈ y and ∆(x) �= ∆(y), then there exist k and
a such that N k

i (Φi, ∆) contains equations x ≈ a and y ≈ a.
2 Some proofs require that canonizers satisfy additional conditions. It is safe to assume

that: (1) canoni(a) contains only variables that occur in a; (2) all subterms of a term
in canonical form are canonical too; cf. [13].

548 S. Conchon and S. Krstić

Lemma 5. If the above three conditions are satisfied, then Theorem 2 remains
valid when the rule DeductConvexi is replaced by Normi and TDeducti.

It can also be proved that Normi and TSharei together have equal opti-
mizing effect as Sharei. A necessary condition for this is that the normalization
produces equations in which the right-hand side is in canonical form and contains
only representative variables.

Presently, concrete examples of normalization are known only for the free
theories and for Shostak theories. Before describing them, we give two rules that
bring canonization of terms and substitution of variables with their representa-
tives into our system. These rules simplify the state Φi at the term level and are
the reasonable first step for any state normalization function.

(Su)bsti
〈V �∆ � Γ � . . . , Φi � {x ≈ a}, . . . 〉
〈V �∆ � Γ � . . . , Φi ∪ {x ≈ ∆(a)}, . . . 〉

if a �= ∆(a) for some i

(Ca)nonizei
〈V �∆ � Γ � . . . , Φi � {x ≈ a}, . . . 〉

〈V �∆ � Γ � . . . , Φi ∪ {x ≈ canoni(a)}, . . . 〉

if a �= canoni(a)

5.1 Free Theories

To define the state normalization function for a free theory Ti, we need to assume
that every variable in V occurs as the left-hand side in at least one equation of
Φi, and that all equations of Φi are of the form x ≈ y or x ≈ f(y1, . . . , yk),
where x and yi are variables in V . (That is, the right-hand sides can contain at
most one occurrence of functional symbols.) The normalization function Ni just
picks one of the equations and replaces the variables on its right-hand side with
their ∆-representatives. In other words, in this case we have Normi = Sui.

Proving that the assumptions of Lemma 5 hold for this normalization func-
tion amounts to proving correctness of the congruence closure algorithm.

5.2 Shostak Theories

Some theories admit solutions to equations. A solver for a theory T is an al-
gorithm solve that takes a T -equation u ≈ v as input, and if this equation is
T -satisfiable, solve returns its general solution in the form of an equisatisfiable
set of equations

x1 ≈ t1, . . . , xk ≈ tk,
where the variables x1, . . . xk are those occurring in u ≈ v and none of them
occurs in the terms ti. (For more details about solvers, see [13,3,6].)

By definition, a Shostak theory is a convex theory with a canonizer and a
solver. If Ti is a Shostak theory, we assume that every variable occurs at most

Strategies for Combining Decision Procedures 549

once as a left-hand side in the equations of Φi, and if it does have such an
occurrence, then it does not occur in any right-hand side. That is, viewed as a
substitution, Φi is idempotent.

The normalization for a Shostak theory can now be defined by

Normi = Cai ⊕ Soi ⊕ Sui

where the crucial new rule Solvei is as follows.

(So)lvei
〈V �∆ � Γ � . . . , Φi ∪ {x ≈ a, y ≈ b}, . . . 〉

〈V �∆ � Γ � . . . , (Φi ∪ {x ≈ a, y ≈ b} ∪ solve(a = b))2, . . . 〉

if ∆(x) = ∆(y); a �= b; a ≈ b is Ti-satisfiable

To explain the rule, we note first that the variables on the left-hand sides
in the set solve(a = b) are those of a and b, and so no variable occurs twice as
a left-hand side in Ψ = Φi ∪ {x ≈ a, y ≈ b} ∪ solve(a = b). Thus, Ψ defines a
substitution. It is not idempotent since the variables of a and b occur also in
right-hand sides of Ψ . However, the composition Ψ2 = Ψ ◦ Ψ is easily seen to
be idempotent, and regarded as a set of equations, it is equisatisfiable with Ψ .
Thus, Ψ2 has all the properties required for the state.

Proving that the state normalization of Shostak theories satisfies the condi-
tions of Lemma 5 requires an effort commensurable with proving correctness of
the “single theory Shostak algorithm” (Algorithm S1 of [3]). As a consequence
we obtain that for a Shostak theory Ti the set of rules Substi, Canonizei,
Solvei, TDeducti and TSharei can replace DeductConvexi and Sharei in
our system.

6 The Shankar-Rueß Algorithm

A highly efficient algorithm to combine decision procedures of a free theory and
several Shostak theories has recently been given and proved correct by Shankar
and Rueß [13]. We show now that their algorithm can be with reasonable preci-
sion described as a strategy in the language of Section 4 extended with actions
corresponding to the rules introduced in Section 5. As in [13], we assume that
the free theory is T0, and that T1, . . . , Tn are Shostak theories. The strategy is
given by the expression

(
abstraction ·

(
Co⊕merge⊕ infer⊕ normalize

)∗)∗ (5)

where
abstraction = (Va1 ⊕ · · · ⊕Vam) · Su∗0

merge = (So1 ·Ca∗1) + · · ·+ (Son ·Ca∗n)
infer = (TDe0 + · · ·+ TDen) · Su∗0

normalize = (Su1 + · · ·+ Sun) · (Su∗1 · · ·Su∗n)

550 S. Conchon and S. Krstić

Here Va denotes the strategy (TSh ⊕ASC)∗ ·Ar, where TSh is the sum
of all TShi and ASC is the sum of all Abi · Su∗i ·Ca∗i . As before, superscirpts
indicate application to a particular literal of Γ .

The algorithm starts by executing an efficient incremental variable abstrac-
tion; hence the superscripts in abstraction and the outer star operator in (5).
abstraction generates new equations only when the rules TSharei fail to find
shared variables. It also maintains the sets Φi in normal form by applying Substi
and Canonizei exhaustively. After this step comes the equality propagation
mechanism. It immediately examines all theory states attempting to find a con-
tradiction in one. If this fails, every Φi is satisfiable, and then the state normal-
ization is initiated by merge which solves one equation x ≈ y in some Shostak
theory state Φi when the variables x and y are equal in ∆ but not yet in Φi.
merge finishes by restoring the normal form of Φi with exhaustive application
of Canonizei. (Substi is unnecessary here, since the right-hand side variables
of Φi are all representatives.) When the state is in normal form and if x and y
are equal in some Φi but not in ∆, infer propagates the new equality x ≈ y
to ∆ and normalizes the set Φ0 by applying Subst0 exhaustively. Finally, nor-
malize substitutes the variables in the Shostak theory states Φi by their new
representatives which may have been added to ∆ by infer.

7 Conclusion and Related Work

We have presented results of our initial study of design of correct algorithms for
combining decision procedures. Having in mind a modular implementation with
theory modules as black boxes and a programmable control core module, we
formalized the entire system as an inference system that is convenient to reason
about and to refine. Our system is of Nelson-Oppen type, but we have shown that
the congruence closure algorithm and the Shostak algorithm can be incorporated
into it with additional rules so that overall correctness is preserved. We have
given a simple strategy language capable of expressing complex combination
algorithms. Proving correctness of a concrete algorithm written as a strategy is
reduced to proving one or two simple properties of the strategy; the rest follows
from the correctness of the whole system.

The Nelson-Oppen method has been widely adopted as the basis for com-
bination algorithms [12]. Its bare bones versions are described and proved cor-
rect by Ringeissen [10] and by Tinelli and Harandi [16]. We work at the level
of abstraction that is close to these works, but our system is extended with
implementation-related details.

A series of recent papers is devoted to proofs of correctness of various versions
of the Shostak algorithm. Rueß and Shankar [11] and Ganzinger [6] consider the
algorithm for combining a free theory with one Shostak theory. In Barrett, Dill
and Stump [3], the algorithm is for the combination of a Shostak theory with
any convex theory. Finally, Shankar and Rueß [13] settle the case of a free theory
combined with an arbitrary number of Shostak theories. (The same case is con-
sidered in the preliminary draft [7].) We have borrowed from all these sources.

Strategies for Combining Decision Procedures 551

In particular, the idea to model the whole system by state-transformation rules
is already in [6] and in [1,17], which also uses regular expressions to express vari-
ous strategies for the same system. Our system allows arbitrary combinations of
stably-infinite theories and so is significantly more general. Moreover, this gen-
erality does not come at the price of ignoring important details, as demonstrated
by modeling the Shankar-Rueß algorithm as a strategy for our system.

We leave for future work a description of a modular implementation of our
system, with precise interfaces for theory modules. The intention is to establish
correctness of such an implementation by simulating it in our abstract system.
A similar project has been carried out very recently by Barrett [2]. He verified
a combination procedure described as a modular system with an impressive list
of implementation features; his system includes non-convex theories, but allows
only one Shostak theory. We believe our approach will lead to shorter and more
general proofs.

We also believe our work will contribute to the understanding of the scope
of the Shostak algorithm. We hypothesize that in a modular implementation
there is no advantage in allowing the core module to have access to Shostak
module primitives (canonizer and solver); the same efficiency can be achieved
with a plain Nelson-Oppen core that communicates with Shostak theory modules
through generic theory module interfaces, while canonizer and solver are used
only to implement those interfaces. If this is correct, the Shostak algorithm
would largely be a single theory affair; cf. [3]. We expect to gain some insights
by comparing the complexity (number of reductions needed for a given initial
configuration) of the Rueß-Shankar strategy against our best strategy that uses
Shostak theories in a generic way.

Acknowledgments. We thank John Matthews and Andrew Tolmach for valu-
able discussions, comments, and corrections.

References

1. L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. Journal
of Automated Reasoning, 2002. To appear.

2. C. Barrett. Checking Validity of Quantifier-free formulas in Combinations of First-
Order Theories. PhD thesis, Stanford University, 2002.

3. C. W. Barrett, D. L. Dill, and A. Stump. A generalization of Shostak’s method for
combining decision procedures. In Frontiers of Combining Systems (FROCOS),
volume 2309 of Lecture Notes in Artificial Intelligence, pages 132–147. Springer-
Verlag, 2002.

4. S. Conchon and S. Krstic. Strategies for combining decision procedures. Technical
Report CSE-03-001, OHSU, 2003.

5. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonization
and Solving (Tool presentation). In G. Berry, H. Comon, and A. Finkel, editors,
Proceedings of CAV’2001, volume 2102 of Lecture Notes in Computer Science,
pages 246–249. Springer-Verlag, 2001.

552 S. Conchon and S. Krstić

6. H. Ganzinger. Shostak light. In A. Voronkov, editor, Automated Deduction –
CADE-18, volume 2392 of Lecture Notes in Artificial Intelligence, pages 332–347.
Springer-Verlag, 2002.

7. D. Kapur. A rewrite rule based framework for combining decision procedures.
In Frontiers of Combining Systems (FROCOS), volume 2309 of Lecture Notes in
Artificial Intelligence, pages 87–103. Springer-Verlag, 2002.

8. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257, 1979.

9. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
JACM, 27(2):356–364, 1980.

10. Ch. Ringeissen. Cooperation of Decision Procedures for the Satisfiability Problem.
In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems: Pro-
ceedings of the 1st International Workshop, Applied Logic, pages 121–140. Kluwer
Academic Publishers, 1996.

11. H. Rueß and N. Shankar. Deconstructing Shostak. In Proceedings of the 16th
Annual IEEE Symposium on Logic in Computer Science (LICS-01), pages 19–28.
IEEE Computer Society, 2001.

12. N. Shankar. Little engines of proof. In L.-H. Eriksson and P. Lindsay, editors,
FME 2002: Formal Methods – Getting IT Right, pages 1–20, Copenhagen, 2002.
Springer-Verlag.

13. N. Shankar and H. Rueß. Combining Shostak theories. In S. Tison, editor, Rewrit-
ing Techniques and Applications (RTA), volume 2378 of Lecture Notes in Computer
Science, pages 1–19. Springer-Verlag, 2002.

14. R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1–12,
1984.

15. A. Stump, C. Barrett, and D. Dill. CVC: a Cooperating Validity Checker. In 14th
International Conference on Computer-Aided Verification, 2002.

16. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen com-
bination procedure. In F. Baader and K. U. Schulz, editors, Frontiers of Combining
Systems: Proceedings of the 1st International Workshop, Applied Logic, pages 103–
120. Kluwer Academic Publishers, 1996.

17. A. Tiwari. Decision Procedures in Automated Deduction. PhD thesis, University
of Stony Brook, 2000.

	Introduction
	Notations and Conventions
	The Equality Propagation Procedure
	Abstract Combination Procedure
	Proof of Theorem T @ref {no-correctness}
	Optimized Variable Abstraction
	Deduction in the Case of Convex Theories

	Strategies
	The Basic Strategy
	An Incremental Strategy
	Strategies with Sharing
	Branching Strategies

	Shostak Optimization
	Free Theories
	Shostak Theories

	The Shankar-Rue{ss } Algorithm
	Conclusion and Related Work

