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Abstract. The introduction of Past Operators enables to produce more natural
formulation of a wide class of properties of reactive systems, compared to tradi-
tional pure future temporal logics. For this reason, past temporal logics are gaining
increasing interest in several application areas, ranging from Requirement Engi-
neering to Formal Verification and Model Checking. We show how SAT-based
Bounded Model Checking techniques can be extended to deal with Linear Tem-
poral Logics with Past Operators (PLTL). Though apparently simple, this task
turns out to be absolutely non-trivial when tackled in its full generality. We dis-
cuss a bounded semantics for PLTL, we show that it is correct (and complete),
and propose an encoding scheme able to cope with PLTL formulas. Finally, we
implement the encoding in NuSMYV, and present a first experimental evaluation of
the approach.

1 Introduction

Temporal logics [14] are traditionally used in formal verification to predicate about the
future evolutions of dynamic systems, both with a linear model or a branching model
of time. The most typical application is the representation of the properties of dynamic
systems within model checking tools. However, many interesting properties of dynamic
systems are naturally formulated in a way that is not limited to the future evolution,
but may refer to events in the past. For instance, properties such as “if a problem is
diagnosed, then a failure must have occurred in the past” or “a grant is always issued
as a consequence of a previous request” are not straightforward to express with future
temporal operators. For this reason, temporal logics with operators that allow for direct
reference of past events are being devoted increasing interest in formal verification for
requirement engineering [8)15/1823], and planning [2].

We are interested in extending state-of-the-art verification techniques developed for
(future) temporal logics, to encompass the case of past operators. In particular, we are
interested in extending to SAT-based Bounded Model Checking (BMC) techniques,
originally introduced in [55], that are being widely accepted as an effective alternative
to BDD-based symbolic methods [3J13]21,22]. In BMC, an existential model checking
problem for Linear Temporal Logic is reduced to a problem of propositional satisfiability,
and efficient SAT solvers are then used to tackle this problem. The idea behind BMC is
to look for finitely represented paths. Two cases arise: Counterexamples are either finite
prefixes of paths (in the case of safety properties), or exhibit an infinite lasso-shaped
structure (in the case of liveness properties) based on the existence of a loopback.
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We tackle the BMC problem for Linear Temporal Logic with Past Operators (PLTL).
From a theoretical point of view, it is well known that past operators do not add expressive
power w.r.t. pure-future LTL (as opposite to other temporal logics [19]]). In fact, a result
from [16] states that any PLTL formula can be re-written by only using future-time
operators, even though a non-elementary blow-up (w.r.t. the size of the formula) stems
from every known translation procedure. Even if the expressive power of the underlying
logic is left unchanged, past operators are still very useful in practice, in that they bring
additional expressivity from the perspective of end users. In fact, it is of paramount
importance to provide formalisms that allow for an easy-to-understand and compact
characterization of the desired behaviours of the system. Past operators help keeping
specifications short and simple.

The problem of BMC for PLTL is rather simple in the case of finite prefixes, since
the extent of the past is clear from any point. The construction becomes non-trivial when
loops are taken into account, because infinite paths are presented by means of a loopback,
and there is potentially more than one past for each point in the loop (at the loopback
point we have to chose whether a “back to the future” step is to be taken).

Here we provide a full characterization of the problem of BMC for PLTL, define
a bounded semantics, and show how to encode PLTL problems into propositional sat-
isfiability instances. We implement the encoding into the NuSMV model checker, and
provide some experimental evidence on the advantages of the approach.

This paper is structured as follows. Section [2] introduces the syntax and semantics
of PLTL. In Section Blwe recall the basics ideas underlying Bounded Model Checking.
Section [ discusses the encoding of PLTL for bounded paths. In Section[5 we highlight
the problems with loop paths, and present our solution. In Section [6] we discuss the
implementation of these ideas within NuSMV and present a preliminary experimental
comparison. Section [7]closes the paper with a few concluding remarks.

2 Linear Temporal Logic with Past Operators

In this paper we consider PLTL, i.e. the Linear Temporal Logic (LTL) augmented with
past operators. The starting point is standard LTL, the formulas of which are constructed
from propositional symbols by applying the future temporal operators X (next), F (fu-
ture), G (globally), U (until), and R (releases), in addition to the usual boolean connec-
tives. PLTL extends LTL by introducing the past operators Y, Z, O, H, and S, which
are the temporal duals of the future operators and allow us to express statements on the
past time instants. The Y (for “Yesterday”) operator is the dual of X and refers to the
previous time instant. At any non-initial time, Y f is true if and only f holds at the previ-
ous time instant. The Z (the name is just a mnemonic choice) operator is very similar to
the Y operator, and it differs in the way the initial time instant is dealt with. At time zero,
Y f is false, while Z f is true. The O (for “Once”) operator is the dual of F' (sometimes
in the future), so that O f is true iff f is true at some past time instant (including the
present timal). Likewise, H (for “Historically”) is the past-time version of G (always
in the future), so that Hf is true iff f is always true in the past. The S (for “Since”)

! We adopt a non-strict semantics for time operators, so that all temporal operators other than X,
Y and Z take into account the present time instant.
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operator is the dual of U (until), so that fSg is true iff g holds somewhere in the past
and f is true from then up to now. Finally, we have fTg = —(—fS—g) (T is called the
“Trigger” operator), exactly as in the future case we have fRg = —(—fU-g). The
syntax of PLTL is formally defined as follows.

Definition 1 (Syntax of PLTL). The grammar for PLTL formulas is
PLTL>f.g=q| ~f | foPg|of f|fo5g|of f| fokg

where q¢ € A and A is a set of atomic propositions, o® € {A,V} stands for a boolean
connective, of € {X,F,G} and o5 € {R, U} are future temporal operators (unary
and binary, respectively) , and o} € {Y,Z,0,H} and of € {T, S} are past temporal
operators (unary and binary).

We write f — g for =f V g, and f < g for (f — g) A (9 — f). As usual, Kripke
structures are used to give the semantics of PLTL formulas.

Definition 2. A Kripke structure is a tuple M = (S,1,T,{), where S is a finite set of
states, I C S is the set of initial states, T C S x S is a transition relation between
states and ( : S — 27 is a function which labels each state with a subset of the set A of
atomic propositions.

For an infinite sequence of states 7 = (sg, S1,...), we define 7(i) = s;, 7 =
(8i8i41,-..) and 7; = (0,1,...,s8;) for i € N, and we say that 7 is a path in M if
7(i) — w(i 4+ 1) for all i € N, where s — ¢ means that (s,t) € T. We also assume,
without loss of generality, that the transition relation is fotal, i.e. that for every state
s € S, there exists at least one state ¢ € .S such that (s,¢) € T'. Infinite paths which are
made up of a finite prefix u followed by a portion v repeated infinitely many times are
called loop paths.

Definition 3. A path 7 is a (k,1)-loop, with | < k, if n(l) = w(k) and 7 = u - v¥,
where uw = (m(0),...,7(l — 1)) and v = (w(l),...,w(k — 1)). We define the period of
a (k,1)-loop as k — l. The successor of the i instant in a (k,1)-loop, succ(i), is defined
ask+ 1ifi <k —1, andl otherwise.

In the following, unless specified otherwise, we assume that a given Kripke structure
M = (S,1,T,¢) is given. We also assume that different states in .S’ have different
labelings, i.e. for all s,s’ € S, £(s) # £(s") iff s # s’. We use 7 to denote a (k, [)-loop
(with [ < k), p to denote the period k — [ of the loop, f and g to denote PLTL formulae,
and ¢ to denote propositions in .A. We write [a,b) and (a,b] to denote right-open and
left-open intervals of integers, and (ab)use this notation by writing [a, c0) to denote the
infinite set {i € N,i > a}.

Definition 4 (Semantics of PLTL). Ler M be a boolean Kripke structure, m be a path
in M and f be a PLTL formula. Then (m,1) |= f (f holds in 7 at time i) is inductively
defined as follows.
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(md) Eq  iff q€l(n(i))

(7r77')':ﬁf iff (7772)#f

(W’i) ':f\/giﬁ (ﬂ-vi) ):f0r<7r7i) ':g

(i) E fAgiff (m4)F fand (m,i) =g

(md) EXSf iff (mi+1)Ef

(mé) EFf iff 3j€ [i,o0) . (m,5) E f

(7T7Z)’:Gf iff Vje [2700) '(Waj) |:f

(m,i) | fUg iff 3j € [i,00) . (7)) F gand Vk € [i,]) . (7, k) = f)
(mi) E fRyg iff Vj€ [i,00). ((m,j) Egor3ke [i,j).(mk) = f)
(mi)EYS iff i>0and(mi—1)Ff

(md) EZf iff i=0o0r(mi—1)Ef

(m i) EOf iff 3j€ (0,4 .(mJ) E f

(myé) EHSf iff Vje (0,4 .(mj) E f

(m,4) = fSg iff Fj € [0,d] . ((m,5) F gand ¥k € (4,i] . (. k) = f)
(m,4) = fTg iff Vje€ [0,i].((mj) Egor3ke (i .(mk)E[).

A formula f is valid on a path w in M (written 7 |= f) iff (7,0) = f. A formula f is
existentially valid in M (M | Ef) iff © |= [ for some path 7 in M. Conversely, | is
universally valid in M (M = Af)iff m |= f for every path 7 in M.

Although the use of past operators in LTL does not introduce expressive power, it
allows us to formalize properties more naturally. For instance, “if a problem is diagnosed,
then a failure must have previously occurred” can be represented in PLTL as

G(problem — O failure) €))

that is more natural than its pure-future counterpart —(— failureUproblem). Similarly,
the property “grants are issued only upon requests” can be easily specified as

G(grant — Y (—grant S request)) (2)
compared to the corresponding pure-future translation
(request R —grant) A G(grant — (request V (X(request R —grant)))).

As for the pure future case, any formula in PLTL can be reduced to Negation Normal
Form (NNF), where negation only occurs in front of atomic propositions. This linear time
transformation is obtained by pushing the negation towards the leaves of the syntactic
tree of the formula and exploiting the dualities between F and G, U and R, O and
H, and S and T. The case of previous time is a bit tricky, since we have to rely on
the two properties =Y f = Z—f and -Zf = Y—f which extend the single future-
case rule X f = X—f (we have both =Y f # Y- f and ~Zf # Z~-f, because of
their semantics at the initial time point). Notice that whenever we limit our attention
to NNF formulas, the semantic rule (7,¢) = —q iff ¢ ¢ £(7(4)) can be substituted for
(m,1) | —f iff (m,4) £ f in Definition[d] with no loss of completeness.
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3 Bounded Model Checking

LTL Model Checking is interpreted universally, as the problem of checking whether a
certain ¢ holds on all the paths of a Kripke structure M. The problem can be tackled by
refutation, by checking the existential problem M = E—¢. BMC tackles the bounded
version of the existential problem M =4 E—¢, by looking for witnesses of the violation
within a certain bound k. When the k-bounded version of the problem is considered,
only paths with at most & distinct transitions are taken into account. Such limited paths
can be either finite (in which case they are finite prefixes of a path) or infinite (in which
case paths exhibit a looping behaviour). Whichever the case, if a witness is found with
bound k, then the property ¢ is violated in the general sense (M = E—¢, so M [~ Ag).
Otherwise, if no violation is found, the bound can be increased until either a witness
with a higher bound is found, or a limit bound is reached that enables to conclude that no
violation exists, and thus M = A¢. In the following, we focus on the existential model
checking problem M = E—¢, in particular on its bounded version M =5 E—¢. This
problem can be effectively reduced to a propositional formula [3]] that is satisfiable if and
only if there exists a violation of ¢ within bound k. The satisfiability of the propositional
formula can then be effectively tackled by exploiting the impressive power of state-
of-the-art propositional solvers (e.g. Chaff [20]). Since the seminal work in [3], the
approach has been thoroughly investigated and extended [6/7,25/22/1], and its practical
applicability has been widely recognized [[13[3]]. Given the finiteness of M, it is possible
to define a k beyond which it is impossible to find a violation. The simple limits given
in [6] are too large to be reached in practice, and therefore, BMC was initially proposed
as a technique oriented to debugging. Improvements are proposed in [21]] and in [3],
where inductive reasoning and structural techniques allow the overapproximation of the
bound for safety properties.

The encoding into propositional logic is based on the standard representation of
Kripke structures used in symbolic model checking, where two sets of state variables —
the current set V' and the next set V/ — are used to represent sets of states and transitions.
In the following, we write I(V') for a formula in the V' variables representing the set
of initial states of M, and T'(V, V") for the formula representing the transition relation
of M. Given a bound k, the vector of state variables V is replicated k£ + 1 times, thus
obtaining the vectors V°, ... V* Intuitively, an assignment to V; represents a value of
the state vector after 4 transitions. We write ¢* for the variable representing proposition
g at time 4. The propositional encoding [M =i E—¢] of the problem M =, E—¢,
is a formula in the variables V°, ..., V¥, structured as a binary conjunction. The first
conjunct is the formula [M], = I(VO) ATV, VY A ... AT(VF=1 VF), where
T(V* Vitl) stands for the formula obtained by substituting the variables in V' with
the (corresponding) variables in V¢, and the variables in V'’ with the (corresponding)
variables in V**1. A similar argument holds for 7(V?). The formula [M]} constrains
the values of the state vectors at the different time instants in such a way that a satisfying
assignment represents a path in the Kripke structure.

The second conjunct, in the following referred to as encoding of the formula with
bound k, constrains the k + 1 state vectors in such a way that their assignments charac-
terize a path satisfying —¢, so that a satisfying assignment to [M =y E—¢] represents
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a path in the Kripke structure that violates ¢. The encoding of —¢ with bound k has the
form

[-olx v \/ (Li A [=0]k)

0<I<k

The formula [—¢], represents a violation of ¢ on a finite prefix of a path with % tran-
sitions, without assuming the existence of a loop. So, every finite sequence of states
satisfying the conjunction of this formula with [M] can be extended to at least one
infinite behaviour violating ¢, thanks to the totality of the transition relation.

The formula ;[—¢], relates to the construction of a particular counterexample of
infinite length. In fact — depending on the structure of the formula being analyzed —
there are cases where the production of a particular infinite behaviour is required to show
that a property is violated. Although only a finite number of transitions and states are
available in the encoding, this representation is possibly enough to represent an infinite
path as well. In fact, the formula ; [-¢],, encodes — for each value of | — the existence of
a counterexample for ¢ on a path structured as a (k, [)-loop. We produce such encoding
with bound % assuming that there exists a loopback at a certain previous time instant
I < k and enforcing this loop condition by constraining the variable of the state vectors
at [ and k to be pairwise equivalent, by means of the condition ;L;, = /\q c A(ql « q").
(This definition of the loop condition slightly differs from the one given in [3], in the
way the loopback point is identified. The new definition also allows us to interpret the
bound k as the number of transitions uniformly for the cases with and without loop.)

4 Bounded Model Checking for PLTL without Loopbacks

We now consider the encoding for PLTL formulae in NNF. We first build [—¢],., under
the hypothesis that the existence of a loopback is not enforced.

Definition 5 (Translation of a PLTL formula on a bounded path). The translation
of a PLTL formula on a path m with bound k at time point © (with k,l,i € Nandl < k,
1 < k) is a propositional formula inductively defined as follows.

[d]i = ¢ [f A ali. = LfD5 A Lol
[-ql}, = ﬂqi . [fvali = [f1i v [4li
X1 = { gt <k
[Ffl;. = Ve in I/l [fUgli, = Viein [[gﬂi/\/\he [i,5) LF1%
[GfT} = L [/RylL = Ajetiw (914 V Vie g TR
L1 =0 L [T =0
[[Yf]]k - {[[f]]z_ll>0 [[Zf]]k - {[[f]];—12>0
[[Of]]%; = VjG[O,i] [fT% Hfsﬂ]]i = Vje[O,i] [[gﬂ'zjﬂA/\he (5] [[f]]fé
[HAD = Njepo.q /I, [fTgl; = Nje o [917. V Ve G LR

The translation [[f],, of a PLTL formula f on a path 7 with bound k is defined as [ f]9.
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The index i in [f]% represent the time instant at which the formula is being evaluated.
The structural rules reflect quite closely the compositional semantics presented in Def-
inition B} At each time point — recursively traversing the structure of the formula — the
quantifications over time points can be unwound into boolean connectives, over the finite
set of time points of interest. For instance, in the case of the F' f, the encoding at point
7 results in a disjunction over the time points from i to k of the encoding of f: in fact,
F f holds at 4 iff we can produce a point in the (bounded) future such that f can be
shown to hold in it. Likewise, we can show that X f holds at 7 if we can produce a future
point where f holds. For this reason, X f is always false at k, since there is no “visible”
future. The case of G f always reduces to L, because the above encoding can not show
an infinite sequence of f. The cases for U and R follow Definition Hlas well.

Let us consider the case of past temporal operators. The formula Y f is encoded at 4
as the encoding of f at the previous time step ¢ — 1, if 7 is not initial, otherwise it reduces
to L. The encoding for Z f only differs at the initial time point. The case of O f behaves
similarly to F f: we need to show that there is a point between 0 and ¢ where f holds.
The case for H f differs from the future case G f in that the past is finite. Therefore, it
is enough to show that f holds in all the time points from ¢ down to 0 to conclude that
H f holds at time point 4. Similar arguments apply to the case of S and T.

5 Bounded Model Checking for PLTL with Loopbacks

We now tackle the problem of BMC for PLTL in its generality, by widening the scope
of the encoding presented in the previous section to the case when the existence of a
loopback at time  is assumed. We aim at finitely encoding into a formula ;[f], the
semantics of a PLTL formula f on an infinite path with a cyclic structure.

5.1 The Problem

Consider the following simple example, depicted in Figure [[](above), where a determin-
istic counter starts at 0, then increases its value until 5, and then restarts over from 2. The
path 01 - (2345)“ can be seen as a (6,2)-loop. In the future case, the encoding of a spec-
ification is based on the idea that, for every time in the encoding, exactly one successor
time exists. To reach the successor of the time instant 5, we loop back to time 2. The
encoding is formed structurally by analyzing the subformulae of the specification in the
loop between k and [. The future LTL formulae enjoy the following properties: first, the
evaluation of every pure-future LTL formula f at time ¢ only depends on time instants
not preceding i, i.e. only depends on the suffix 7; second, ¢ = 7/ for any two indexes
i, j at the same position in the loop (i.e., in the same set T;,, = {m + np,n € N}, with
m € [l,k)). This is the reason the pure-future encoding works fine: the evaluation of a
formula f on a (k, [)-loop 7 at each time point ¢ > k can be traced back to the evaluation
of the same formula at a particular time point i’ < k. In particular, the infinitely many
time points in each set T,,, on a (k,1)-loop are equivalent, in the sense that for every
m € [I,k) and every i,j € T, itis (m,4) = fiff (7,5) E f.

Unfortunately, the idea of a simple lifting of the pure future construction of [J] to the
past case breaks down immediately, as past formulas do not enjoy the above properties.
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u v
/_/H /—/%
x= 0 1 2 3 4 5 2 3 4 5 2 3 4 5 2
L Il Il Il Il Il Il Il Il Il Il Il Il Il |
T T T T T T T T T T T T T T 1
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
u v u v
0 1 2 3 4 5 2 0 1 2 3 4 5 2
f f f f f f | f f f f f f |
x 7 £ 1 A N 4

Fig. 1. An example of (6,2)-loop

First, when we progress backward in the past, at the point of loop back we have two
possible predecessor points. In the case of the example, in order to encode Y (¢) at point
2, we have to choose between progressing back through the loopback from point 2 to
point 5 or moving to time 1 (see figure ). Furthermore, we notice that this choice comes
into play since the evaluation of a formula may depend on the past sequence 7;, and
m|; # 7|; whenever i # j. Consider for instance the formula

Flx=2AN0(x=3A0(x=4AN0(z=15))))

expressing that it is possible to reach a point where the values {2, 3, 4,5} of the counter
occur in increasing order in the past. In the unbounded case, we need to get to the fourth
occurrence of 2 in the path, i.e. at time 14, in order to show that (x = 2 A O(z =
3AO(x =4A0(z =5)))) holds. If we only look at the third occurrence (time 10), we
can find previous points where the counter has values 3 and 4, but not 5. These issues
are clearly relevant, since we are working on a bounded path representation. In order
for the argument of F to evaluate to true, we will have to assume that we are far enough
from the initial state, in order to progress in the past through the loop back a sufficient
number of times. On the other hand, always choosing to progress in the past to the k-th
step is not a viable option, since otherwise the encoding procedure might not terminate.

5.2 The Solution: Intuition

In order to propose a solution to this problem, we note that the evaluation of the formula
(r=2A0(x =3AN0(x =4A0(x=5)))) is true in all the occurrences of x = 2
after the fourth, i.e. all the time points of the form 14 + 4. This is an example of the fact
that a formula with past operators is able to discriminate its past, (i.e. among the number
of times a loop has been traversed forwards), but only to a limited extent. Therefore,
from a certain point on, it is useless to take into account more unrolls of the loop (i.e.
to progress in the past by jumping from [/ to k — 1). The idea underlying our solution
is to identify sets of points in which the evaluation stabilizes, and to deal with them at
once. This is viable since the ability to refer to the past of a PLTL formula f is somehow
predictable, once its syntactic structure is known. The key idea here is that every formula
has a finite discriminating power for events in the past. So, when evaluated sufficiently
far from the origin of time, a formula becomes unable to distinguish its past sequence
from infinitely many other past sequences with a “similar” behaviour. The idea is then
to collapse the undistinguishable versions of the past together into the same equivalence
class. As we will see, only a finite number of such equivalence classes exists.
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5.3 The Solution: Formalization

The intuition is captured by the notion of Past Temporal Horizon (PTH). Given a specific
path, the PTH of a formula is the minimal number of loop unrolls after which the
behaviour of the formula with respect to its truth value on 7 stabilizes, i.e. starts repeating
in a cyclic way, according to the loop in the path. The PTH of a formula also provides
a measure of the maximal amount of past a formula is able to take into account in a
significant way along cyclic paths.

Definition 6. The pasttemporal horizon (PTH) 7,, (f) ofa PLTL formula f with respect
to a (k,1)-loop  (with period p = k — 1) is the smallest value n € N such that

Vie [I,k) ((mi+np)E fiff (Vo' >n (m,i+n'p) E f)).

We can abstract away the dependence of the PTH on a specific path, and give a notion of
PTH which is inherent to the behaviour of a PLTL formula on a cyclic path, no matter
which particular path is considered, nor even the structure of the loop.

Definition 7 (Past temporal horizon of a PLTL formula). The past temporal horizon
7(f) of a PLTL formula f is defined as 7(f) = maxrc T,x, (f) where II is the set of
all the paths which are (k,1)-loops for some k > 1 > 0.

The following theorem shows that a PLTL formula is guaranteed to have a finite PTH,
and that an upper bound can be found based on its syntactic structure.

Theorem 1. Let f and g be PLTL formulas. Then, it holds that:

-7

q) =0, whenq € Aand 7(f) = 7(—f);

(
- 7(of) < 7(f), when o € {X,F,G}
- 7(of) <7(f)+ 1, wheno € {Z,Y,0,H};
- 7(fog) <max(r(f),7(g)), wheno € {A,V,U,R};
— 7(f 0 g) < max(r(f).7(g)) + 1, when o € {S, T};

This result (proved in [4] together with all the others) makes precise an unsurprising
property of PLTL formulas: regardless of the particular path 7, the ability of a formula
in referring to the past along looping paths is bounded by its structural complexity. Put
another way: when a formula is evaluated along a cyclic path, its truth value eventually
starts looping as well. A delay in general exists between the starting points of these
looping behaviours (the formula starts looping later than the path). An upper bound to
this delay can be computed as a function of the syntactic structure of the formula itself.

The intuition behind the PTH is that it specifies the least number of times it is
necessary to traverse the loop backwards before safely progressing towards the origin
of time. In the following we provide the formal notions to deal with the idea of repeated
unrolling of the (k,)-loop. The intuition underlying the concept of projection is that
each formula can be “safely” encoded on a finite representation (such as a (k, [)-loop)
by suitably projecting the possibly infinite time interval the formula refers to onto its
finite counterpart. The key difference with respect to the pure-future case, is that the
projection also depends on the formula, not only on the shape of the path.
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Definition 8. We call LB(n) =1 + np the n-th left border of @, RB(n) =k + np the
n-th right border of w, and the interval M(n) = [0,RB(n)) the n-th main domain of
a (k,1)-loop. Let i € N. The projection of the point i in the n-th main domain of a
(k,D)-loop is py, (i), defined as
N 1 1 < RB(n
i) = {0 v

pn (i — p) otherwise

Let a,b € N, with a < b. The projection of the interval [a,b) on the n-th main domain
of a (k,1)-loop is

pn ([a;b)) = {pn (i) i € [a,b)}.
We call LB(f) = LB(T(f)) and RB(f) = RB(7(f)) the left and right borders of f, re-
spectively, and M(f) = M(7(f)) the main domain of f. The projections of the point
i and of the interval [a,b) onto the main domain of f are defined as py (i) = pr(y) (1)
and py ([a,b)) = pr(s) ([a,b) ) respectively.
While it is clear that the projection of a point onto the main domain of a function is still
a point, it is not immediately evident what an interval is projected onto, as the projection
of intervals is implicitly defined in terms of the projection function for time points. It is
possible to explicitly characterize the resulting set of points as follows.

Lemma 1. For an open interval [a,b), it is

if a = b, else
pn ([a,b)) = ¢ [min(a,LB(n)),RB(n)) ifb—a>p, else

pn (), pn () if pp (a) < pn (b), else
pn (a),RB(n)) U [LB(n), p (b))

This lemma shows that the projection of an interval is an interval in all but one case. It
could seem that the conjunction of intervals in the last row of this lemma gives rise to a
fragmentation of the interval-based representation. However, this apparent fragmentation
disappears if we admit extended intervals of the form [a,b) where b is possibly less
than a (or even it is equal to co). With this position, we can re-write the last two rows
of Lemma [Ilin a single rule [p,, (a), p, (b)) and generalize the notion of projection in
such a way that the projection of an extended interval is always an extended interval.

0
[a,b) if b < RB(n), else
[
[
[

Definition 9 (Extended projection). Let [a,b) be an extended interval. We define the
extended projection of [a, b) onto the n-th main domain of a (k,1)-loop as follows

g7, [a, maux(a, RB(n)) + ) ) b= oo
p;([a,b))i p;([a,b—i—p)) b<a
pn ([a,b)) otherwise

As before, we pose p} ([a, b)) = Prp) ([a,b) ). The intuitive meaning of the projection
p} ([a,b) ) of theinterval [a, b) w.r.t. f,is that the finite set of time instants p} ([a,b) ) €
M(f) is the equivalent counterpart along cyclic paths of the (possibly infinite) interval
[a,b) for f.For example, one might wonder whether f is true at some time point in the
(possibly infinite) interval [a,b) of a loop path 7. This happens if and only if f is true
at some time point in the (always finite) interval p} ([a,b) ).
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Theorem 2. Forany PLTL formulaf, any (k,1)-loop w, and any extended interval [a,b),
apointi € [a,b) suchthat (i) = f exists iff a point i’ € p} ([a,b) ) exists such that
(m, i) = f.

This argument can be specialized to the case when the interval contains only one point, by
saying that on every (k, [)-loop path 7 and forevery i > 0, (m,4) = fiff (7, ps (4)) = f.
We now define the translation of a PLTL formula on a (k, {)-loop.

Definition 10 (Translation of a PLTL formula on a (k, I)-loop). The translation of a
PLTL formula on a (k,1)-loop 7 at time point i (with k,l,i € Nand 0 <1 < k)isa
propositional formula inductively defined as follows.

ali, = ¢ iLf A gl
ol = g f v gl
XS = LY
[FfIL = \/jep;([i,oo)) A1 GH = /\jep;([i,oo)) 15,
[fUgl, = Vjep;([ipo)) z[[g]]i /\/\hep;([m)) l[[f]]z
LRIl = Njeps (fioo)) i[9l VVieps (i) Tk

) 1 1=0 . T 1=0
vl = N Zf] = .
Y £ L >0 HZ T, L i >0

A
V3 FARAVAN P

l[[ofmf = \/jep}:([oyi]) l[[fﬂjk l[[Hf]];g = /\jEp*([O,i]) l[[f]Hc
[fSqli = Viep: (1041 gl /\/\hep;((j,i]) IR
l[[ngﬂi; = /\jep;([oﬂi]) lﬂgﬂi v \/hep;((j,i]) z[f]]ﬁ

The translation of a PLTL formula f on a (k,1)-loop is defined as [ f]; = 1[f]%

Notice how the encoding of each operator closely resembles the semantics of that op-
erator (Definition ). For example, the encoding rule ;[F f]i = \/jep?( [1,00)) LT3,
is a quite straightforward interpretation of the semantic rule (m,¢) = Ff iff 35 €
[i,00) . (7, j) = f, thanks to the introduction of the projection operator, which maps
infinite sets of time points into equivalent but finite ones and shrinks finite intervals as
much as possible, according to the upper bound given in Lemmal[2l.

Differently from the encoding for pure-future LTL given in [5]], the above con-
struction allows to evaluate the encoding of subformulas at time points greater than
k. However, it is easy to see that no sub-formula f is encoded outside its main domain
M(f). Furthermore, the encoding of any PLTL formula always results in a propositional
formula with variables in {¢’. ¢ € A,i € [0, k) }, like in the pure-future case. While the
encoding goes on from the root of the syntactic tree of the formula towards its leaves, the
main domain of subformulas encountered along the way shrinks (the nesting depth of
past operators cannot increase moving from a formula to its subformulas). When pure-
future subformulas are reached the main domain is just [0, k), and this is guaranteed to
happen, since propositional leaves are pure-future formulas.
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symbol table
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LIL formula ¢ Encoder SAT solver @ Yes ol Decoder { ﬁtfssf ~

k:=0

Fig. 2. An high-level view of the Bounded Model Checker module in NuSMV

For example, in the case of the formula F(z =2 A0z =3A0(x =4 A O0(x =
5)))) presented in Section B the encoding is able to perform a “virtual” unrolling
of the (6,2)-path up to time 14 with no necessity of introducing more than 7 different
states in the propositional encoding. The loop is virtually unrolled three times w.r.t. the
subformula . = 2 A O(x = 3 A O(x = 4 A O(z = 5)), because this subformula has
PTH equal to 3. The example confirms that this sufficies (and is necessary) to reach
time 14 where the formula first evaluates to true. Inner subformulas have smaller and
smaller virtual unrolling, as the PTH decreases. For example, though the sub-formula
(x =4 A O(z = 5)) needs to be evaluated up to time 13, it is explicitly evaluated only
up to time 9 (PTH=1), and this suffices to catch all the variety of its behaviour, also
comprising time 8 when the formula is true for the first of infinitely many subsequent
times. The encoding is guaranteed to be correct by the following result.

Theorem 3. For any PLTL formula f, a (k,l)-loop path w in M such that T |= f exists
iff [M]k N 1L A 1[f], is satisfiable.

The computation of the PTH of a formula is not trivial in general. Therefore, we over-
approximate it by means of the nesting depth of past operators in the formula.

Definition 11 (Past operator depth). The past operator depth 6(f) of a PLTL formula
f is defined as follows

5(q) =0, when q € A and 6(of) = 6(f), when o € {-,X,F, G}
- gE g) = max(6(f),d(g)), when o € {A,V,U R},
o(fo

of)=4d(f)+ 1 wheno € {Z,Y,0,H};
g) = max(7(f),7(g9)) + 1, when o € {S, T},

By comparing Theorem [I] and Definition[I1] we obtain the following result, that guar-
antees the correctness of the resulting construction.
Lemma 2. For any PLTL formula f, itis 7(f) < 0(f).

6 Implementation and Evaluation

We implemented our PLTL bounded model checking algorithms within NuSMV [[10/11}
9|, a state-of-the-art symbolic model checker designed as an open architecture integrating
BDD-based and SAT-based model checking on the whole input language, and such that as
many functionalities as possible are independent of the particular model checking engine.
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Fig. 3. The Encoder block, expanded from Figure[2]
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NuSMYV has been used for the verification of industrial designs, as a core for custom
verification tools, and as a testbed for formal verification techniques. We benefit from
its pre-processing abilities, that include parsing, flattening, boolean encoding, predicate
encoding and cone of influence reduction (see [[I1] for details).

The BMC module was extended (see Figure 2) by enlarging its input language and
implementing the new encoding. Only the encoder needs changes (see Figure [3)), in
particular within the sub-encoders E'g (for bounded paths, see Sectiond) and E, (for
loop paths, see Section[S). Formulas represented as RBCs are produced, then converted
into CNF and passed to the SAT solver. The optimizing techniques used within the RBC
package, the CNF-ization procedure, the interface to the solver, the trace reconstruction
sub-system, and the control system are inherited from the existing architecture.

We cannot take into account other systems to evaluate the effectiveness of our ap-
proach with an experimental comparison, as NuSMV appears to be the first system
featuring past LTL operators: None of the available generic model checkers encom-
passes past operatorﬁ neither in a direct way (e.g.: like we do) nor in an indirect way
(e.g.: by somehow pre-processing PLTL specifications). So, we push our analysis of
past operators beyond the presented results, by preliminary investigating two alternative
strategies for handling LTL and past operators within a BMC framework.

LTL model checking can be implemented via reduction to CTL model checking with
fairness constraints, along the lines suggested in [12]] for a BDD-based framework. The
approach composes the model with the observer automaton [24]] M-, corresponding to
the negation of the specification, thus looking for unwanted behaviours of the model. If a
fair path in the model-automaton composition is found, then the property is violated, and
diagnostic information can be returned. This construction was recently extended to allow
full-fledged BDD-based PLTL reasoning within NuSMV. We modified this construction
by exploiting a SAT solver to look for fair paths. Two resulting scenarios can then be
compared: in one case, the encoding block in Figure [3 is presented with the original
model M and PLTL specification ¢ (encoded as explained in the previous sections). In
the other case, the encoding block is presented with the composition of M- 4 with M,
and the BMC machinery just searches for a fair path.

We experimented with these two alternatives. Figure[dlshows a sample comparison on
the models “queue” and “syncarb5”, taken from the standard NuSMYV distribution. Safety
properties of the form G ¢ (known to be true) are considered. None of the two approaches
is dominant, even in case of pure-future specifications only: A tradeoff seems to exist

% Tt is worth mentioning that past operators are sometimes used by specialized model checkers
(such as BRUTUSJ[17]], which only works in the verification of security protocols).
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Fig. 4. Two instances showing that none of the approaches is dominating

between the additional variables introduced with the model-automaton based approach
to take into account the status of the observer, and the additional number of clauses
produced by the implicit unwinding of loops in the other case. However, preliminary
results suggest that the tableau-based construction often outperforms the automaton-
based one, despite some cases where the opposite happens. Even though such tradeoff
deserves further investigation, interesting features of the encoding for past operators can
still be significantly evaluated. At least two advantages come from our approach w.r.t.
the automaton-based one: first, the search for a fair path can lead to a needlessly long
counterexample. Second, the virtual unrolling of loop paths is potentially able to discover
counterexample (far) before the actual time the property fails to be true. In both cases,
the time spent solving unnecessary instances is saved. As a very simple example of this
advantage, we present the sender/receiver model “abp4”from the NuSMV distribution,
checked against the false property:

G (sender.state=waitForAck — YH sender.state#waitForAck).

Our encoding is able to produce a counterexample as soon as a wait state appears
in the middle of the cyclic portion of a loop path, by unrolling in a virtual manner
such a cyclic portion. Conversely, the observer automaton is forced to explicitly reach
the second occurrence of the wait state. Figure [5lshows how this difference can be very
significant also for not so shorter counterexamples: The automaton based approach finds
a counterexample at length 19, while 16 is sufficient for the tableau. This leads to a clear
advantage in terms of time, as the growth of the solving time is usually dominant.

The number of virtual unrolls necessary to exhibit a counterexample increase as
the PLTL formula gets more complex, and the automaton-based approach is forced to
reach further and further length to find a solution. Our encoding always “foresees” the
consequences of a looping behaviour up the necessary point and never needs to explicitly
produce and solve additional instances. The duty paid for this advantage is that more
time is spent both on producing and on solving an instance of size k£ w.r.t. the analogous
k-sized instance of the model-based approach. The additional solving time is usually
very small (see Figure[3)). The additional time for generation is eventually overcome by
the solving time, even if for very small models it may be sensitive. Figure 5] shows that
the additional generation time is completely negligible in our example.
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Fig. 5. The same instance dealt with in two ways

Though very preliminary, this experimental evaluation suggests that in addition to the
increased complexity of the model, the unbounded approach may also require longer
counterexamples, which in turn makes it necessary to solve harder SAT problems.

7 Conclusions

We tackle the problem of extending BMC to the case of LTL with Past Operators. We have
shown that the task is not trivial in the case of loops: when traversing a path backward,
we have to choose whether to proceed towards the origin or to jump “back to the future”.
We have provided a formal account that allows us to solve the problem by projecting
infinite sets of points into equivalent finite ones. Then, we have provided an effective
tableau construction that encodes full PLTL into propositional formulae, and we showed
that it is correct and complete. The formal treatment is the basis for the implementation
of the technique in the NuSMV symbolic model checker. A preliminary experimental
evaluation was discussed. In the future, we plan to extend and optimize the construction,
and encompass verification problems in Requirement Engineering.
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