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Abstract. In this work we treat the problem of scheduling under two types of
temporal uncertainty, set-based and probabilistic. For the former we define appro-
priate optimality criteria and develop an algorithm for finding optimal scheduling
strategies using a backward reachability algorithm for timed automata. For proba-
bilistic uncertainty we define and solve a special case of continuous-time Markov
Decision Process. The results have been implemented and were applied to bench-
marks to provide a preliminary assessment of the merits of each approach.

1 Introduction

The problem of evaluating or optimizing the performance of an open reactive system, that
is, a system that interacts with an external environment, raises some serious conceptual
problems. Given such a system S, each instance d of the environment can potentially
induce a different behavior S(d), and the question is how to take all these behaviors into
account while evaluating the system performance. Several approaches to this problem
are commonly used:
1) Worst-case: the system is evaluated according to its worst behavior.
2) Average-case: the set of all environment instances is considered as a probability space
and this induces a probability over all system behaviors. The system is then evaluated
according to the expected value (over all its behaviors) of the performance measure.
3) Nominal-case: the system is evaluated according to its performance with respect to
one behavior which corresponds to one “typical” instance of the environment.

Each of these approaches has its advantages and shortcomings. The worst-case ap-
proach is often used for safety-critical systems where the cost associated with bad be-
haviors is too high to tolerate, even if they constitute a negligible fraction of the possible
behaviors. This is implicitly the approach taken in verification, where the performance
measure is discrete and consists of a binary classification into “correct” and “incorrect”,
and this means that a system is incorrect if one of its behaviors violates the property in
question. On the negative side, this approach might lead to an over-pessimistic allocation
of resources which can be very inefficient during most of the system lifetime.1

The probabilistic approach is more appropriate when the performance measure is
more “continuous” in nature, e.g. the waiting time in a queue, and one can tolerate
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1 A good analogy is to live all your life wearing a helmet fearing a meteorite rain, or going to the
airport a day before the flight to counteract all conceivable traffic jams.
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graceful degradation in moments of extreme pressure from the environment. The implicit
assumption underlying the nominal approach is somewhat similar to the probabilistic
one, namely, the nominal behavior is “close” to most of the behaviors we are likely to
see in the system life-time and the performance of other behaviors varies “continuously”
with the distance from the nominal one. This approach is widely used in control theory.

From a computational standpoint the nominal approach is the easiest because when d
is fixed the system is closed and S(d) can be computed by simple simulation. Moreover,
the comparison of two candidate systems S and S′ is based on the same d. In the worst-
case approach when it is not known a-priori which d induces the worst behavior, one
has to “simulate exhaustively” with all instances in order to find that behavior. This is
the inherent difficulty of verification compared to testing/simulation. Moreover, when
we want to compare S and S′ for optimality, it might be that each of them attains its
worst performance on a different instance. The probabilistic approach is generally2 the
most difficult because not only do we need to explore all behaviors but also keep track
of their probabilities in order to compute the overall evaluation of the system.

In this work we treat the problem of job-shop scheduling under temporal uncertainty.
The system to be designed is a scheduler, i.e. a mechanism that controls the allocation of
resources to competing tasks. The environment consists of tasks, all known in advance,
that need to be executed on certain machines while satisfying some ordering constraints.
The only source of uncertainty is the duration of the tasks which is known to be bounded
within an interval of the form [l, u].Alternatively, the duration of each task can be given as
a continuous random variable. Each instance (also called realization) of the environment
consists of selecting a number d ∈ [l, u] for every task. The behavior induced by the
scheduler on this instance is evaluated according to the length of the schedule, i.e. the
termination time of the last task executed.

As a running example consider two jobs
J1 = (m1, 10) ≺ (m3, [2, 4]) ≺ (m4, 5) J2 = (m2, [2, 8]) ≺ (m3, 7)

with the intended meaning that J1 has to use m1 for 10 time, then m3 for a period
between 2 and 4 time, then m4 for 5, etc. In this example the only resource under
conflict is m3 and the order of its usage is the only decision the scheduler needs to take.
The uncertainties concern the durations of the first task of J2 and the second task in J1.
Hence an instance is a pair d = (d1, d2) ∈ [2, 4] × [2, 8]. It is very important to note
that in our example (and in “reactive” systems in general) instances reveal themselves
progressively during execution — the value of d1, for example, is known only after the
termination of m2.

Each instance defines a deterministic scheduling problem admitting one or more
optimal solutions. Such a solution specifies the start time of every task. Figure 1-(a)
depicts optimal schedules for the instances (8, 4), (8, 2) and (4, 4). Of course, such an
optimal schedule can only be generated by a clairvoyant scheduler who knows the whole
instance in advance.

For this type of problems, worst-case optimization reduces to nominal-case because
there is one specific instance, namely the one where each task terminates the latest
possible, such that the performance of any scheduler on this instance will be at least

2 At least when the approach is applied naively without using additional mathematical information
that can simplify the solution in some special cases.
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Fig. 1. (a) Optimal schedules for three instances. For the first two the optimum is obtained with
J1 ≺ J2 on m3 while for the third — with J2 ≺ J1; (b) A static schedule based on the worst
instance (8, 4). It gives the same length for all instances; (c) The behavior of a hole filling strategy
based on instance (8, 4).

as bad as on any other instance. This trivializes the problem of worst-case optimization
because we can do the following: find an optimal schedule for the worst instance, extract
the start time for each task and stick to the schedule regardless of the actual instance. The
behavior of a static scheduler for our example, based on instance (8, 4) is depicted in
Figure 1-(b), and one can see that it is rather wasteful for other instances. Intuitively we
will prefer a smarter adaptive scheduler that reacts to the evolution of the environment
and uses additional information revealed during the execution of the schedule. This
is the essential difference between a schedule (a plan, an open-loop controller) and a
scheduling strategy (a reactive plan, a closed-loop controller). The latter is a mechanism
that observes the state of the system (which tasks have terminated, which are executing
and for how long) and decides accordingly what to do. When there is no uncertainty, the
scheduler knows exactly what will be the state at every time instant, so the strategy can
be reduced to a simple assignment of start times to tasks.

One of the simplest ways to be adaptive is the following. First we choose a nominal
instance d and find a schedule S which is optimal for that instance. Rather than taking
S “literally”, we extract from it only the qualitative information, namely the order in
which conflicting tasks utilize each resource. In our example the optimal schedule for
the worst instance (8, 4) is associated with the ordering J1 ≺ J2 on m3. Then, during
execution, we start every task as soon as its predecessors have terminated, provided
that the ordering is not violated (a similar strategy was used in [NY00] and probably
elsewhere). As Figure 1-(c) shows, such a strategy is better than the static schedule for
instances such as (8, 2) where it takes advantage of the earlier termination of the second
task of J1 and “shifts forward” the start times of the two tasks that follow. On the other
hand, instance (4, 4) cannot benefit from the early termination of m2, because shifting
m3 of J2 forward will violate the J1 ≺ J2 ordering on m3.

Note that this “hole-filling” strategy is not restricted to the worst-case. One can
use any nominal instance and then shift tasks forward or backward as needed while
maintaining the order. On the other hand, a static schedule (at least when interpreted as a
function from time to actions) can only be based on the worst-case — a schedule based
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on another nominal instance may assume a resource available at some time point, while
in reality it will be occupied.

While the hole filling strategy can be shown to be optimal for all those instances
whose optimal schedule has the same ordering as that of the nominal instance, it is not
good for instances such as (4, 4), where a more radical form of adaptiveness is required.
If we look at the optimal schedules for (8, 4) and (4, 4) (Figure 1-(a)) we see that the
decision whether or not to execute the second task of J2 is done in both cases in the same
qualitative state, namely m1 is executing and m2 has terminated. The only difference is
in the elapsed execution time of m1 at the decision point. Hence an adaptive scheduler
should base its decisions also on such quantitative information which, in the case of
timed automata models, is represented by clock values.

Consider the following approach: initially we find an optimal schedule for some
nominal instance. During the execution, whenever a task terminates (before or after
the time it was assumed to) we re-schedule the “residual” problem, assuming nominal
values for the tasks that have not yet terminated. In our example, we first build an optimal
schedule for (8, 4). If task m2 in J2 has terminated after 4 time we have the residual
problem

J ′1 = (m1,6) ≺ (m3, 4) ≺ (m4, 5) J ′2 = (m3, 7)
where the boldface letters indicate thatm1 must be scheduled immediately (it is already
executing and we assume no preemption). For this problem the optimal solution will be
to start m3 of J2. Likewise if m2 terminates at 8 we have

J ′1 = (m1,2) ≺ (m3, 4) ≺ (m4, 5) J ′2 = (m3, 7)
and the optimal schedule consists of waiting for the termination of m1 and then starting
m3 of J1. The property of the schedules obtained this way, is that at any moment in
the execution they are optimal with respect to the nominal assumption concerning the
future. A similar idea is used in model-predictive control where at each time actions at
the current “real” state are re-optimized while assuming some nominal prediction of the
future.

This approach involves a lot of on-line computation, namely solving a new schedul-
ing problem each time a task terminates. The alternative approach that we propose in
this paper is based on expressing the scheduling problem using timed automata and syn-
thesizing a controller off-line. In this framework [AMPS98,AM99,AGP+99] a strategy
is a function from states and clock valuations to controller actions (in this case starting
tasks). After computing such a strategy and representing it properly, the execution of the
schedule may proceed while keeping track of the state of the corresponding automaton.
Whenever a task terminates, the optimal action is quickly computed from the strategy
look-up table and the results are identical to those obtained via on-line re-scheduling.
Of course, there is a trade-off between what we gain in reducing on-line computation
time and what we pay in terms of the time and space needed to compute and store the
strategy, but this is outside the scope of the current paper.

The rest of the paper is organized as follows. In Section 2 we describe the model and
characterize the properties of the dynamic schedulers we want to compute. In section 3
we show how to model the problem using timed automata. The algorithm for synthesizing
optimal strategies is described in Section 4 along with its implementation using the zone
library of Kronos. In Section 5 we formulate and solve the same scheduling problem
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where tasks durations are known to be distributed probabilistically. Section 6 concludes
the paper with a brief review of the experimental results and future directions. Due to
time and space limitation, large parts of the paper are written at an informal intuitive
level. Readers interested in more precise definitions or in the details of the experimental
results may consult the expanded version of this paper.3

2 The Model

We will use a formulation which is slightly more general than the standard job-shop
problem by allowing a partial-order relation between tasks. We denote by Int(N) the
set of intervals with integer endpoints.

Definition 1 (Uncertain Job-Shop Specification).
An uncertain job-shop specification is J = (P,M,≺, µ,D,U) where P is a finite
number of tasks, M is a finite set of machines, ≺ is a partial-order precedence relation
on tasks, µ : P → M assigns tasks to machines, D : P → Int(N) assigns an integer-
bounded interval to each task and U ⊆ P is a subset of immediate tasks consisting of
some ≺-minimal elements.

The set U is typically empty in the initial definition of the problem and we need it to
define residual problems. We use Dl and Du to denote the the lower- and upper-bounds
of the intervals, respectively. The setΠ(p) = {p′ : p′ ≺ p} denotes all the predecessors
of p, namely the tasks that need to terminate before p starts. In the standard job-shop
scheduling problem,≺ decomposes into a disjoint union of chains (linear orders) called
jobs.

An instance of the environment is any function d : P → R+, such that d(p) ∈
D(p) for every p ∈ P . The set of instances admits a natural partial-order relation:
d ≤ d′ if d(p) ≤ d′(p) for every p ∈ P . Any environment instance induces naturally a
deterministic instance of J , denoted by J (d), which is a classical job-shop scheduling
problem. The worst-case is defined by the maximal instance d(p) = Du(p) for every p.

Definition 2 (Schedule). Let J = (P,M,≺, µ,D,U) be an uncertain job-shop spec-
ification and let J (d) be a deterministic instance. A feasible schedule for J (d) is a
function s : P → R+, where s(p) defines the start time of task p, satisfying:
1) Precedence: For every p, s(p) ≥ maxp′∈Π(p)(s(p′) + d(p′)).
2) Mutual exclusion: For every p, p′ such that µ(p) = µ(p′)

[s(p), s(p) + d(p)] ∩ [s(p′), s(p′) + d(p′)] = ∅.
3) Immediacy: For every p ∈ U , s(p) = 0.

The schedule length is the termination time of the last task, i.e. maxp∈P (s(p) + d(p)).
An optimal schedule for J (d) is a schedule having a minimal length.

In order to be adaptive we need a scheduling strategy, i.e. a rule that may induce a
different schedule for every d. However, this definition is not simple because we need
to restrict ourselves to causal strategies, strategies that can base their decisions only on
information available at the time they are made. In our case, the value of d(p) is revealed
only when p terminates.

3 It can be found in www-verimag.imag.fr/∼maler/Papers/uncertain.ps



On Optimal Scheduling under Uncertainty 245

Definition 3 (State of Schedule). The state of a schedule s at time t is S =
(P f , P a, c, P e) such that P f is a downward-closed subset of (P,≺) indicating the
tasks that have terminated (those satisfying s(p) +d(p) ≤ t) , P a is a set of active tasks
currently being executed (those satisfying s(p) ≤ t ≤ s(p) + d(p)), c : P a → R+ is
a function such that c(p) = t − s(p) indicates the time elapsed since the activation of
p and P e is the set of enabled tasks consisting of those whose predecessors are in P f .
The set of all possible states is denoted by S.

Definition 4 (Scheduling Strategy). A (state-based) scheduling strategy is a function
σ : S → P ∪{⊥} such that for every S = (P f , P a, c, P e), σ(S) = p ∈ P e ∪{⊥} and
for every p′ ∈ P a, µ(p) �= µ(p′).

In other words a strategy decides at each state whether to do nothing and let time pass (⊥)
or to choose an enabled task, not being in conflict with any active task, and start executing
it. An operational definition of the interaction between a strategy and an instance will
be given later using timed automata, but intuitively one can see that the evolution of the
state of a schedule consists of two types of transitions: uncontrolled transitions where
an active task p terminates after d(p) time and moves from P a to P f , leading possibly
to adding new tasks to P e, and a decision of the scheduler to start an enabled task. The
combination of a strategy and an instance yields a unique schedule s(d, σ) and we say
that a state is (d, σ)-reachable if it occurs in s(d, σ).

Next we formalize the notion of a residual problem, namely a specification of what
remains to be done in an intermediate state of the execution.

Definition 5 (Residual Problem). Let J = (P,M,≺, µ,D,U) and let S =
(P f , P a, c, P e) be a state. The residual problem starting fromS isJS = (P−P f ,M,≺′
, µ′, D′, P a) where ≺′ and µ′ are, respectively, the restrictions of ≺ and µ, to P − P f
and D′ is constructed from D by letting

D′(p) =
{
D(p)−. c(p) if p ∈ P a
D(p) otherwise

Likewise a residual instance dS is an instance restricted to P a ∪ P e defined as

dS(p) =
{
d(p)−. c(p) if p ∈ P a
d(p) otherwise

Let d be an instance.A strategy σ is d-future-optimal if for every instance d′ and from
every (σ, d′)-reachable state S, it produces the optimal schedule for JS(dS). If we take
d to be the maximal instance, this is exactly the property of the on-line re-scheduling
approach described informally in the previous section.

3 Timed Automata for Scheduling Problems

In this section we model the problem using timed automata based on definitions that can
be found in [AM01]. We construct for every task p with D(p) = [l, u] a 3-state timed
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automaton AD (Figure 2-(a)) with a waiting state p, an active state p where the task is
executing and a final state p. The automaton has one clock which is reset to zero upon
entering p (“start”) and its value determines when a transition to p (“end”) is taken. This
automaton captures all instances: it can stay in p as long as c ≤ u and can leave p as
soon as c ≥ l. It represents the possible behaviors of the task in isolation, i.e. ignoring
precedence and resource constraints. The transition from p to p is triggered by a decision
of the scheduler, respecting those constraints, while the time of the transition from p to
p is determined by the instance. When an instance d is given, all the non-determinism
is related to scheduler decisions and the behaviors are captured by the automaton Ad
of Figure 2-(b). The automaton AD,d of Figure 2-(c) will be used later for computing
d-future optimal strategies: it can terminate as soon as c ≥ d but can stay in p until
c = u.
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p

End
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Fig. 2. The generic automaton AD for a task p such that D(p) = [l, u]. The automaton Ad for a
deterministic instance d. The automaton AD,d for computing d-future optimal strategies and the
automaton Aλ for an exponentially distributed duration. Staying conditions for p and p are true
and are omitted from the figure.

The timed automaton for the whole job-shop specification is the composition of
the automata for the individual tasks.4 The composition is rather standard, the only
particular feature is the enforcement of precedence and mutual exclusion constraints.
This is achieved by forbidding global states in which a task is active before all its
predecessors have terminated or in which two or more tasks that use the same resource
are active (see [AM01]).

The result of applying this composition to the automata corresponding to the exam-
ple5 appears in Figure 3. Since in this example ≺ decomposes into two disjoint chains,
we can annotate global discrete states with tuples of the form (α1, α2) where αj is either

4 In the following we will not distinguish between AD , Ad and AD,d — the definitions are the
same for all of them.

5 To make things simpler we change J1 to be completely deterministic, i.e. J1 = (m1, 10) ≺
(m3, 4) ≺ (m4, 5).
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m or m where m = µ(p) and p is the maximal enabled or active task in the jth chain
(or f when the last task in the chain has terminated). For example (p

1
, p2, p3, p4, p5)

is written as (m3,m2) and (p
1
, p2, p3, p4

, p
5
) as (m3, f). For the same reason we can

re-use the same clock for all tasks that share the same chain.6 Note that the automaton
is acyclic.

The relation between runs of the automaton and feasible schedules was elaborated
in [AM01,A02] where it was shown that solving the (deterministic) job-shop scheduling
problem amounts to finding the shortest run (in terms of elapsed time) from the initial
to the final state. A configuration of the timed automaton corresponds to a state of the
schedule and the residual problem associated with such a state is represented by the
sub-automaton rooted in the corresponding configuration.

The automaton can be viewed as specifying a game between the scheduler and the
environment. The environment can decide whether or not to take an “end” transition
and terminate an active task and the scheduler can decide whether or not to take some
enabled “start” transition. A strategy is a function that maps any configuration of the
automaton either into one of its transition successors or to the waiting “action”. For
example, at (m1,m3) there is a choice between moving to (m1,m3) by giving m3 to
J2 or waiting until J1 terminates m1 and letting the environment take the automaton to
(m3,m3), from where the conflict concerning m3 can be resolved in either of the two
possible ways.

A strategy is d-future optimal if from every configuration reachable inAD,d it gives
the shortest path to the final state (assuming that future uncontrolled transitions are taken
according to d). In the next section we use a simplified form of the definitions and the
algorithm of [AM99] to find such strategies.

4 Optimal Strategies for Timed Automata

Let J be a job-shop specification and let AD,d = (Q,C, s, f, I,∆) be the automaton
corresponding to an instance d, that is, “end” transitions are guarded by conditions of
the form ci ≥ d(pi). Let h : Q × V → R+ be a function with the intended meaning
that h(q, v) is the length of the minimal run from (q, v) to f , assuming that all uncon-
trolled future transitions will be taken according to d. This function admits the following
recursive backward definition:

h(f, v) = 0 h(q, v) = min{t+ h(q′, v′) : (q, v) t−→ (q, v + t1) 0−→ (q′, v′)}.

In other words, h(q, v) is the minimum over all immediate successors q′ of q of the time
it takes from (q, v) to satisfy the transition guard to q′ plus the time to reach f from the
resulting configuration (q′, v′). In [AM99] it has been shown that h ranges over a class
of “nice” functions closely related to the zones used in the verification of timed automata
and that this class is well-founded and, hence, the computation of h terminates even for
automata with cycles, a fact that we do not need here as h is computed in one sweep
through all (acyclic) paths from the final to the initial state.

6 More on the relation between jobs and partially-ordered tasks can be found in [AKM03].
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Fig. 3. The global automaton for the job-shop specification. The automata on the left and upper
parts of the figure are the partial compositions of the automata for the tasks of J1 and J2, respec-
tively. The “hole” at the right stands for the illegal state (m3,m3). The dashed state is where a
decision of the scheduler is needed.

Let us illustrate the computation of h on our example. We write h in the form
h(α1, α2, c1, c2) and use ⊥ to denote cases where the value of the corresponding clock
is irrelevant (its task is not active). We start with

h(f, f,⊥,⊥) = 0 h(m4, f, c1,⊥) = 5−. c1 h(f,m3,⊥, c2) = 7−. c2
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because the time to reach (f, f) from (m4, f) is the time it takes to satisfy the guard
c1 = 5, etc. The value of h at (m4,m3) depends on the values of both clocks which
determine what will terminate before, m4 or m3 and whether the shorter path goes via
(m4, f) or (f,m3).

h(m4,m3, c1, c2) = min
{

7−. c2 + h(m4, f, c1 + 7−. c2,⊥),
5−. c1 + h(f,m3,⊥, c2 + 5−. x1)

}

= min{5−. c1, 7−. c2} =
{

5−. c1 if c2 −. c1 ≥ 2
7−. c2 if c2 −. c1 ≤ 2

Note that the corresponding transitions are both uncontrolled “end” transitions and no
decision of the scheduler is required in this state.

This procedure goes higher and higher in the graph, computing h for the whole state-
space Q×V . In particular, for state (m1,m3) where we need to decide whether to start
m3 of J2 or to wait, we obtain:

h(m1,m3, c1,⊥) = min{16, 21−. c1} =
{

16 if c1 ≤ 5
21−. c1 if c1 ≥ 5

The extraction of a strategy from h is straightforward: if the optimum of h at (q, v)
is obtained via a controlled transition to q′ we let σ(q, v) = q′ otherwise, when it is
obtained via an uncontrolled transition we let σ(q, v) = ⊥. At (m1,m3) the optimal
result is obtained by givingm3 immediately to J2 and moving to (m1,m3) when c1 ≤ 5
or by waiting to the termination ofm1, reaching (m3,m3) and then moving to (m3,m3)
if c1 ≥ 5. Note that if we assume that J1 and J2 started their first tasks simultaneously,
the value of c1 upon entering (m1,m3) is exactly the duration of m2 in the instance.

The results of [AM01] concerning “non-lazy” schedules imply that there exist an
optimal strategy having the additional property that if σ(q, v) = ⊥ then σ(q, v′) = ⊥
for every v′ ≥ v. In other words, if an enabled controlled transition gives the optimum
it can be taken as soon as possible. This fact will be used later in the implementation of
the strategy.

Existing algorithms for timed automata work on sets, not on functions, and in order
to apply them to the computation of h we do the following.7 Let A′ be an auxiliary
automaton obtained fromA by adding a clock T which is never reset to zero. Clearly, if
(q, (v, T )) is reachable in A′ from the initial state (s, (0, 0)) then (q, v) is reachable in
A in time T . Let Θ be a positive integer larger then the longest path in the automaton.
Starting from (f, (⊥, . . . ,⊥, Θ)) and doing backward reachability we can construct a
relational representation of h. More precisely, if (q, (v, T )) is backward reachable from
(f, (⊥, . . . ,⊥, Θ)inA′ then f is forward reachable inA from (q, v) withinΘ−T time.

We recall some commonly-used definitions in the verification of timed automata
[HNSY94]. A zone is a subset of V consisting of points satisfying a conjunction of
inequalities of the form ci − cj ≥ k or ci ≥ k. A symbolic state is a pair (q, Z) where q
is a discrete state and Z is a zone. It denotes the set of configurations {(q, v) : v ∈ Z}.

7 A similar construction was proposed in [NTY00] to implement shortest path algorithm for
cyclic timed automata using forward reachability.
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Zones and symbolic states are closed under various operations including the following:

1) The time predecessors of (q, Z) is the set of configurations from which (q, Z) can
be reached by letting time progress:

Pret(q, Z) = {(q, v) : v + r1 ∈ Z, r ≥ 0}.
2) The δ-transition predecessor of (q, Z) is the set of configurations from which (q, Z)
is reachable by taking the transition δ = (q′, φ, ρ, q) ∈ ∆:

Preδ(q, Z) = {(q′, v′) : v′ ∈ Reset−1
ρ (Z) ∩ φ}.

3) The predecessors of (q, Z) is the set of all configuration from which (q, Z) is
reachable by any transition δ followed by passage of time:

Pre(q, Z) =
⋃
δ∈∆ Pre

t(Preδ(q, Z)).
The result can be represented as a set of symbolic states.

Algorithm 1 is based on the standard backward reachability algorithm for timed
automata. It starts with the final state of A′ in a waiting list and outputs the set R of all
backward-reachable symbolic states. In order to be able to extract strategies we store
tuples of the form (q, Z, q′) such that Z is a zone ofA′ and q′ is the successor of q from
which (q, Z) was reached backwards.

Algorithm 1 (Backward Reachability for Timed Automata)
Waiting:={(f, (⊥, . . . ,⊥, Θ))}, ∅)};
Explored:=∅;
while Waiting �= ∅ do

Pick (q, Z, q′′) ∈Waiting;
For every (q′, Z ′) ∈ Pre(q, Z);

Insert (q′, Z ′, q) into Waiting;
Move (q, Z, q′′) from Waiting to Explored

end
R:=Explored;

The setR gives sufficient information for implementing the strategy. Whenever a transi-
tion to (q, v) is done during the execution we look at all the symbolic states with discrete
state q and find

h(q, v) = min{Θ − T : (v, T ) ∈ Z ∧ (q, Z, q′) ∈ R}.

If q′ is a successor via a controlled transition, we move to q′, otherwise we wait until
a task terminates and an uncontrolled transition is taken. Non-laziness guarantees that
we need not revise a decision to wait until the next transition. This concludes our major
contribution, an algorithm for computing d-future optimal strategies for the problem of
job-shop scheduling under uncertainty.

Theorem 1 (Computing d-future Optimal Strategies). The problem of finding d-
future optimal strategies for job-shop scheduling problem under uncertainty is solvable
using timed automata reachability algorithms.
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5 Probabilistic Uncertainty

In this section we sketch the formulation and the solution of the same problem where
uncertainty in task durations is considered to be probabilistically distributed. We use
exponential distribution and associate with each task a parameter λ such that the time t
that the task spends in its active state p satisfies:

P (t ≥ T ) = e−λT .
The automaton for a task, depicted in Figure 2-(d), is a mixture of a non-deterministic
automaton and a continuous time Markov chain. The decision when to make the transition
from p to p is to be made by the scheduler and is not probabilistically distributed. Hence,
before the construction of the scheduler we cannot assign probabilities to the runs of the

automaton, which are of the form p
r−→ p

0−→ p
t−→ p

0−→ p
∞−→, where r is the time

chosen by the scheduler to wait before starting p.
A probabilistic version of the example used in the previous section looks like this:

J1 = (m1, λ1) ≺ (m3, λ2) ≺ (m4, λ3) J2 = (m2, λ4) ≺ (m3, λ5)
and it induces a probability distribution on the space of instances, R

5
+. A scheduling

strategy is, as before, a mechanism for deciding at every instance whether to start an
enabled task or to wait. A strategy together with an instance determines the length of
the obtained schedule and our goal is to find a strategy that optimizes the expected value
(over all instances) of this length.

The automata for the example are similar to those in Figure 3 with λ replacing [l, u].
The states of the product automaton admit combinations of controlled and probabilistic
transitions. A state like (m3,m3) has two controlled transitions that can be taken imme-
diately. A scheduling strategy will determine which of them should be taken. A state like
(m1,m2) has two outgoing probabilistic transitions and the instance determines which
of them will be taken. However it is possible to compute the expected staying time in the
state and the probability of each transition to win the “race”. In a state having both types
of transitions, such as (m3,m2), the outcome depends on the strategy. If it decides to
wait, the controlled transitions are erased and the evolution depends on the probabilistic
race. Otherwise if the strategy chooses a start transition, the rest of the transitions dis-
appear. The important thing is that after determining the strategy the system becomes
an ordinary continuous time Markov process with a well-defined expected length for a
path from beginning to termination, and our goal is to find a strategy that optimizes this
expected length.

The exponential distribution is memoryless, which means that the probability of
a transition to be taken does not change with the passage of time.8 Hence an optimal
strategy, like the hole filling strategy of the previous section, depends only on the discrete
state and does not need to record clock values.

The optimal strategy, like the future-d-optimal strategies of the previous section,
is found by a variant of dynamic programming value iteration. Let h : Q → R+
be a function such that h(q) is the best achievable expected value of the time from
q to the final state f . By definition, h(f) = 0 and its value for the other states is
computed backwards as follows. Let q be a state having k outgoing “end” transitions

8 This property is a source for both the analytic simplicity of this distribution as well as its modest
relevance to certain real-world situations.
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with parameters λ1, . . . , λk, leading to states q1, . . . , qk, respectively, and l outgoing
“start” transitions leading to states q′1, . . . , q

′
l, respectively. A strategy that takes one of

the start transitions to a state q′j spends no time at q and hence the expected time to
reach f will be like that of q′j . On the other hand a strategy that waits might make the
environment take any of the “end” transition. Hence

h(q) = min{h⊥(q), h(q′1), . . . h(q′l)}
where h⊥(q) is the expected value of h over all possible outcomes of waiting, computed
as:

h⊥(q) = d+
k∑
j=1

γj · h(qj)

where d is the expected duration (over all instances) of staying in q and γj is the proba-
bility that the transition to qj will be the one taken. These are:

d = 1∑k
a=1 λa

and γj = λj∑k
a=1 λa

.

The strategy chooses to wait or to take one of the start transitions according to where
the minimum is obtained. To the best of our knowledge, this as an unexplored class of
continuous-time Markov decision processes for which we can show:

Theorem 2 (Optimal Strategies for Probabilistic Uncertainty). The problem of find-
ing an optimal strategy for a job-shop specification with exponentially distributed du-
rations is solvable.

6 Discussion

We have implemented Algorithm 1 using the zone library of Kronos[BDM+98], as well
as the hole-filling strategy and the algorithm for the exponential distribution. In our
first set of experiments, a d-future optimal strategy based on the worst-case produced
schedules that, on the average, are only 2.39% longer than optimal schedules produced
by a clairvoyant scheduler. For comparison, the static worst-case strategy deviates from
the optimum by an average of 16.18%. The hole-filling strategy based on worst-case
prediction achieves good performance (3.73% longer than the optimum). On the other
hand, if these strategies are based on nominal instances other than the worst-case, the
results are poor, sometimes even worse than a static schedule. So one may conclude that
adaptive pessimism is a reasonable strategy for this class of problems.

The question of scaling-up the results to larger problems remains open. Currently
we can compute d-future optimal strategies for problems with up to 4 jobs, each with 6
tasks. The computation of the strategy for exponential distribution is faster (no clocks
and zones) but it is subject to the same type of state explosion. For the deterministic
case, we have shown in [AM01] that rather large problems can be solved using forward
reachability algorithms that do not use zones (only points in the clock space) and that
can use intelligent search strategies to prune the search space (see also [BFH+01]).
This is not the case for uncertain problems where backward computations on zones
seem unavoidable: Under uncertainty the environment can lead the automaton to a large
portion of the discrete state-space and to uncountably-many clock valuations, on which
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the strategy should be defined. The sub-optimal hole-filling strategy produces good
results with much more modest computation by solving a deterministic problem. More
details concerning the experimental results and the computational difficulty appear in
the expanded version of the paper along with some suggestions for future work.
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ments by Stavros Tripakis, Ed Brinksma and Albert Benveniste improved the presenta-
tion.
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