
Verification of Probabilistic Systems with Faulty

Communication

Parosh Aziz Abdulla1 and Alexander Rabinovich2

1 Uppsala University, Sweden
2 Tel Aviv University, Israel

Abstract. Many protocols are designed to operate correctly even in the
case where the underlying communication medium is faulty. To capture
the behaviour of such protocols, lossy channel systems (LCS) [AJ96b]
have been proposed. In an LCS the communication channels are modelled
as FIFO buffers which are unbounded, but also unreliable in the sense
that they can nondeterministically lose messages.

Recently, several attempts [BE99, ABIJ00] have been made to study
probabilistic Lossy Channel Systems (PLCS) in which the probability of
losing messages is taken into account. In this paper, we consider a variant
of PLCS which is more realistic than those studied in [BE99, ABIJ00].
More precisely, we assume that during each step in the execution of the
system, each message may be lost with a certain predefined probability.
We show that for such systems the following model checking problem
is decidable: to verify whether a given property definable by finite state
ω-automata holds with probability one. We also consider other types
of faulty behavior, such as corruption and duplication of messages, and
insertion of new messages, and show that the decidability results extend
to these models.

1 Introduction

Finite state machines which communicate through unbounded buffers have been
popular in the modelling of communication protocols [BZ83, Boc78]. One disad-
vantage with such a model is that it has the full computation power of Turing
machines [BZ83], implying undecidability of all nontrivial verification problems.
On the other hand, many protocols are designed to operate correctly even in
the case where the underlying communication medium is faulty. To capture the
behaviour of such protocols, lossy channel systems (LCS) [AJ96b] have been
proposed as an alternative model. In an LCS the communication channels are
modelled as FIFO buffers which are unbounded but also unreliable in the sense
that they can nondeterministically lose messages. For LCS it has been shown
that the reachability problem is decidable [AJ96b] while progress properties are
undecidable [AJ96a].

Since we are dealing with unreliable communication media, it is natural to
deal with models where the probability of losing messages is taken into account.

A.D. Gordon (Ed.): FOSSACS 2003, LNCS 2620, pp. 39–53, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

40 Parosh Aziz Abdulla and Alexander Rabinovich

Recently, several attempts [BE99, ABIJ00] have been made to study probabilis-
tic Lossy Channel Systems (PLCS) which introduce randomization into the be-
haviour of LCS. The decidability of model checking for the proposed models
depend heavily on the semantics provided. The works in [BE99, ABIJ00] define
different semantics for PLCS depending on the manner in which the messages
may be lost inside the channels.

Baier and Engelen [BE99] consider a model where it is assumed that at most
single message may be lost during each step of the execution of the system. They
show decidability of model checking under the assumption that the probability
of losing messages is at least 0.5. This implies that, along each computation of
the system, there are infinitely many points where the channels of the system are
empty, and therefore the model checking problem reduces to checking decidable
properties of the underlying (non-probabilistic) LCS.

The model in [ABIJ00] assumes that messages can only be lost during send
operations. Once a message is successfully sent to a channel, it continues to
reside inside the channel until it is removed by a receive operation. Both the
reachability and repeated reachability problems are shown to be undecidable for
this model of PLCS. The idea of the proof is to choose sufficiently low prob-
abilities for message losses to enable the system to simulate the behaviour of
(non-probabilistic) systems with perfect channels.

In this paper, we consider a variant of PLCS which are more realistic than
that in [BE99, ABIJ00]. More precisely, we assume that, during each step in
the execution of the system, each message may be lost with a certain predefined
probability. This means that the probability of losing a certain message will not
decrease with the length of the channels (as it is the case with [BE99]). Thus,
in contrast to [BE99] our method is not dependent on the precise transition
probabilities for establishing the qualitative properties of the system. For this
model, we show decidability of both the reachability and repeated reachability
problems.

The decidability results are achieved in two steps. First, we prove general
theorems about (infinite state) Markov chains which serve as sufficient conditions
for decidability of model checking. To do that, we introduce the concept of
attractor sets: all computations of the system are guaranteed to eventually reach
the attractor. The existence of finite attractors imply that deciding reachability
and repeated reachability in the PLCS can be reduced to checking reachability
problems in the underlying LCS. Next, we show that all PLCS, when interpreted
according to our semantics, have finite attractors. More precisely, we prove the
existence of an attractor defined by the set of all configuration where the sizes
of channels are bound by some natural number. This natural number can be
derived from the predefined probability given to the loss of messages. In fact,
for the systems considered in [BE99] this bound is equal to 0, and therefore the
decidability results in [BE99] can be seen as a consequence of the properties we
show for attractors.

We also show that our decidability results extend to PLCS with different
sources of unreliability [CFI96], such as duplication, corruption, and insertion

Verification of Probabilistic Systems with Faulty Communication 41

combined with lossiness Furthermore, we show how to extend our decidability
results to more general properties specified by finite state automata or equiva-
lently by formulas of Monadic Logic of Order.
Remark Bertrand and Schnoebelen [BS03] have independently obtained what
essentially amounts to Theorem 1 in this paper.
Outline In the next two Sections we give basics of transition systems and
Markov chains respectively. In Section 4 we present sufficient conditions for
checking reachability and repeated reachability for Markov chains. In Section 5
we extract from these conditions algorithms for PLCS. In Section 6 we consider
models involving different sources of unreliability combined with lossiness. In
Section 7 we generalize our results to verification of the properties definable by
ω-behavior of finite state automata (or equivalently formulas in the Monadic
Logic of Order). Finally, we give conclusions and directions for future work in
Section 8.

2 Transition Systems

In this section, we recall some basic concepts of transition systems.
A transition system T is a pair (S,−→) where S is a (potentially) infinite set

of states, and −→ is a binary relation on S. We write s1 −→ s2 to denote that
(s1, s2) ∈−→ and use ∗−→ to denote the reflexive transitive closure of −→. We
say that s2 is reachable from s1 if s1

∗−→ s2. For sets Q1, Q2 ⊆ S, we say that Q2

is reachable from Q1, denoted Q1
∗−→ Q2, if there are s1 ∈ Q1 and s2 ∈ Q2 with

s1
∗−→ s2. A path p from s to s′ is of the form s0 −→ s1 −→ · · · −→ sn, where

s0 = s and sn = s′. We say that p is simple if there are no i, j with i �= j and
si = sj . For a set Q ⊆ S, we say that p reaches Q if si ∈ Q for some i : 0 ≤ i ≤ n.
For Q1, Q2 ⊆ S, we define the set Until(Q1, Q2) to the set of all states s such
that there is a path s0 −→ s1 −→ · · · −→ sn from s satisfying the following
property: there is an i : 0 ≤ i ≤ n such that si ∈ Q2 and for each j : 0 ≤ j < i
we have sj ∈ Q1.

For Q ⊆ S, we define the graph of Q, denoted Graph(Q), to be the transition
system

(
Q,−→′) where s1 −→′ s2 iff s1

∗−→ s2.
A strongly connected component (SCC) in T is a maximal set C ⊆ S such

that s1
∗−→ s2 for each s1, s2 ∈ C. We say that C is a bottom SCC (BSCC) if

there is no other SCC C1 in T with C
∗−→ C1. In other words, the BSCCs are

the leafs in the acyclic graph of SCCs (ordered by reachability).
We shall later refer to the following two problems for transition systems

Reachability
Instance A transition system T = (S,−→), and sets Q1, Q2 ⊆ S.
Question Is Q2 reachable from Q1?

Until
Instance A transition system T = (S,−→), a state s, and sets Q1, Q2 ⊆ S.
Question Is s ∈ Until(Q1, Q2)?

42 Parosh Aziz Abdulla and Alexander Rabinovich

3 Markov Chains

In this section, we introduce (potentially infinite state) Markov chains.
A Markov chain M is a pair (S, P) where S is a (potentially infinite) set of

states and P is a mapping from S×S to the set [0, 1], such that
∑

s′∈S P (s, s′) =
1, for each s ∈ S. A computation π (from s0) of M is an infinite sequence
s0, s1, . . . of states. We use π(i) to denote si.

A Markov chain induces a transition system, where the transition relation
consists of pairs of states related by positive probabilities. Formally, the under-
lying transition system of M is (S,−→) where s1 −→ s2 iff P (s1, s2) > 0. In
this manner, the concepts defined for transition systems can be lifted to Markov
chains. For instance, an SCC in M is a SCC in the underlying transition system.

A Markov chain (S, P) induces a natural measure on the set of computations
from every state s.

Let us recall some basic notions from probability theory.
A measurable space is a pair (Ω, ∆) consisting of a non empty set Ω and a

σ-algebra ∆ of its subsets that are called measurable sets and represent random
events in probability context. A σ-algebra over Ω contains Ω and is closed
under complementation and countable union. Adding to a measurable space
a probability measure Prob : ∆ → [0, 1] such that Prob(Ω) = 1 and that is
countably additive, we get a probability space (Ω, ∆,Prob).

Consider a state s of a Markov chain (S, P). On the sets of computations
that start at s, the probabilistic space is defined as follows:

Probabilistic space (Ω, ∆,Prob)(see [KSK66]) : Ω = sSω is the set of all
infinite sequences of states starting from s, ∆ is the σ-algebra generated by the
basic cylindric sets Du = uSω, for every u ∈ sS∗, and the probability measure
Prob is defined by Prob(Du) =

∏
i=0,...,n−1 P (si, si+1) where u = s0s1...sn; it is

well-known that this measure is extended in a unique way to the elements of the
σ-algebra generated by the basic cylindric sets.

4 Reachability Analysis for Markov Chains

In this section we explain how to check reachability and repeated reachability for
Markov chains. We show how to reduce qualitative properties of the above two
types into the analysis of the underlying (non-probabilistic) transition system of
the Markov chain.

In the rest of this section, we assume a Markov chain M = (S, P) with an
underlying transition system T = (S,−→).

Consider a set Q ⊆ S of states and a computation π. We say that π reaches
Q if there is an i ≥ 0 with π(i) ∈ Q. We say that π repeatedly reaches Q if
there are infinitely many i with π(i) ∈ Q. Let s be a state in S. We define the
probability of Q being (repeatedly) reachable from s by

Prob {π| π is a computation from s and π (repeatedly) reaches Q}.

Verification of Probabilistic Systems with Faulty Communication 43

We consider the following two problems for Markov chains:

Probabilistic Reachability
Instance A Markov chain M = (S, P), a state s ∈ S, and a set Q ⊆ S.
Question Is Q reachable from s with probability one?

Probabilistic Repeated Reachability
Instance A Markov chain M = (S, P), a state s ∈ S, and a set Q ⊆ S.
Question Is Q repeatedly reachable from s with probability one?

In the above problems, we do not assume that Markov chains are finite. Hence
these are not instances of algorithmic problems. In Sections 5-7 we consider
reachability and repeated reachability problems when countable Markov chains
are described by probabilistic lossy channel systems. For such finite descriptions
we investigate the corresponding algorithmic problems.

We introduce a central concept which we use in our solution for the proba-
bilistic (repeated) reachability problem, namely that of attractors.
Definition [attractors] A set A ⊆ S is said to be an attractor, if for each s ∈ S,
the set A is reachable from s with probability one.

In other words, regardless of the state in which we start, we are guaranteed
that we will eventually enter the attractor.

We consider two preliminary lemmas which are derived from the standard
properties of recurrent classes. The Lemma below describes a property of BSCCs
of the graph of a finite attractor A, which will make use of in our algorithms (to
prove Lemma 2 and Lemma 3).

Lemma 1. Consider a finite attractor A, a BSCC C in Graph(A), and a state
s ∈ C. Then, for every s′ ∈ C, the probability that s′ is repeatedly reachable from
s is one.

The following Lemma enables us to construct an algorithm for solving the
probabilistic reachability problem.

Lemma 2. Consider a finite attractor A, a state s ∈ S, and a set Q ⊆ S. Then,
Q is reachable from s with probability one iff for each BSCC C in Graph(A), if
C is reachable from s then either

– Q is reachable from C; or

– For every finite simple path in T from s, if p reaches C then p also reaches
Q.

From Lemma 2 we conclude that we can define a scheme for solving the
reachability problem as follows.

44 Parosh Aziz Abdulla and Alexander Rabinovich

Scheme – Probabilistic Reachability

Input Markov chain M = (S, P) with an underlying transition
system T = (S,−→), a state s ∈ S, and a set Q ⊆ S.
Output Is Q reachable from s with probability one?
begin

1. construct a finite attractor A
2. construct Graph(A)
3. for each BSCC C in Graph(A) which is reachable from s

3a. if ¬
(
C

∗−→ Q
)

and s ∈ Until(¬Q, C) then return(false)
4. return(true)

end

The following Lemma enables us to construct an algorithm for solving the
probabilistic repeated reachability problem.

Lemma 3. Consider a finite attractor A, a state s ∈ S, and a set Q ⊆ S. Then,
Q is repeatedly reachable form s with probability one iff the reachability of C from
s implies the reachability of Q from C, for each BSCC C in Graph(A).

From Lemma 3 we conclude that we can define a scheme for solving the
repeated reachability problem as follows.

3a. if ¬
(
C

∗−→ Q
)

then return(false)

The correctness of the two schemes follows immediately from Lemma 2 and
Lemma 3. Furthermore, we observe that, in order to obtain algorithms for check-
ing the reachability and repeated reachability problems, we need the following
three effectiveness properties for the operations involved:

1. Existence and computability of a finite attractor. This condition is necessary
for computing the set A.

2. Decidability of the reachability problem for the underlying class of transition
systems T . This condition is necessary for computing Graph(A) and for
checking the relation C

∗−→ Q.
3. Decidability of the until problem for the underlying class of transition sys-

tems. This condition is only needed in the reachability algorithm.

5 Lossy Channel Systems

In this section we consider (probabilistic) lossy channel systems: processes with
a finite set of local states operating on a number of unbounded and unreliable
channels. We use the scheme defined in Section 4 to solve the problem of whether
a set of local states is (repeatedly) reachable from a given initial state with prob-
ability one.

Verification of Probabilistic Systems with Faulty Communication 45

Lossy Channel Systems A lossy channel system consists of a finite state pro-
cess operating on a finite set of channels each of which behaves as a FIFO buffer
which is unbounded and unreliable in the sense that it can nondeterministically
lose messages. Formally, a lossy channel system (LCS) L is a tuple (S, C, M, T)
where S is a finite set of local states, C is a finite set of channels, M is a finite
message alphabet, and T is a set of transitions each of the form (s1, op, s2), where
s1, s2 ∈ S, and op is an operation of one of the forms c!m (sending message m to
channel c), or c?m (receiving message m from channel c). A global state s is of
the form (s, w) where s ∈ S and w is a mapping from C to M∗.

For words x, y ∈ M∗, we use x • y to denote the concatenation of x and y.
We write x � y to denote that x is a (not necessarily contiguous) substring of
y. By Higman’s Lemma [Hig52] it follows that � is a well quasi-ordering, i.e.,
for each infinite sequence x0, x1, x2, . . . there are i and j with i < j and xi � xj .
We use |x| to denote the length of x, and use x(i) to denote the ith element of
x where i : 1 ≤ i ≤ |x|. For w1, w2 ∈ (C �→ M∗), we use w1 � w2 to denote that
w1(c) � w2(c) for each c ∈ C, and define |w| =

∑
c∈C |w(c)|. We also extend � to

a relation on S× (C �→ M∗), where (s1, w1) � (s2, w2) iff s1 = s2 and w1 � w2.
The LCS L induces a transition system (S,−→), where S is the set of global

states, i.e., S = (S× (C �→ M∗)), and (s1, w1) −→ (s2, w2) iff one of the following
conditions is satisfied

– There is a t ∈ T, where t is of the form (s1, c!m, s2) and w2 is the result of
appending m to the end of w1(c).

– There is a t ∈ T, where t is of the form (s1, c?m, s2) and w1 is the result of
removing m from the head of w2(c).

– Furthermore, if (s1, w1) −→ (s2, w2) according to one of the previous two
rules then (s1, w1) −→ (s′2, w′2) for each (s′2, w′2) � (s2, w2).

In the first two cases we define t(s1, w1) = (s2, w2).
A transition (s1, op, s2) is said to be enabled at (s, w) if s = s1 and either

– op is of the form c!m; or
– op is of the form c?m and w(c) = m • x, for some x ∈ M∗.

We defined enabled(s, w) = {t| t is enabled at (s, w)}. In the sequel, we assume
that for all (s, w), the set enabled(s, w) is not empty. This is guaranteed for
instance, by requiring that for any local state s1 there are c, m, and s2 with
(s1, c!m, s2) ∈ T
Remark on notation We use s and S to range over local states and sets of
local states respectively. On the other hand, we s and S to range over states and
sets of states of the induced transition system (states of the transition system
are global states of the LCS)

For the rest of this section we assume an LCS (S, C, M, T).
For Q ⊆ S, we define a Q-state to be a state of the form (s, w) where s ∈ Q.

A set Q ⊆ S is said to be upward closed if s1 ∈ Q and s1 � s2 imply s2 ∈ Q.
Notice that, for any Q ⊆ S, the set of Q-states is an upward closed set.

In [AJ96b], algorithms are given which shows the following decidability re-
sults for LCS:

46 Parosh Aziz Abdulla and Alexander Rabinovich

Lemma 4. For states s1 and s2, it is decidable whether s2 is reachable from s1.

Lemma 5. For a state s and a set Q ⊆ S, it is decidable whether the set of
Q-states is reachable from s.

Decidability of the corresponding until problem follows from a straightforward
modification of the reachability algorithm of [AJ96b]. This gives the following.

Lemma 6. For a state s, a set Q1 ⊆ S, and a finite set Q2 of states, it is
decidable whether s ∈ Until(¬Q1, Q2), where Q1 is the set of Q1-states.

Probabilistic Lossy Channel Systems A probabilistic lossy channel system
(PLCS) L is of the form (S, C, M, T, λ, w), where (S, C, M, T) is an LCS, λ ∈ [0, 1],
and w is a mapping from T to the natural numbers. Intuitively, we derive a
Markov chain from the PLCS L by assigning probabilities to the transitions
of the underlying transition system (S, C, M, T). The probability of performing
a transition t from a global state (s, w) is determined by the weight w(t) of
t compared to the weights of the other transitions which are enabled at (s, w).
Furthermore, after performing each transition, each message which resides inside
one of the channels may be lost with a probability λ. This means that the
probability of reaching (s2, w2) from (s1, w1) is equal to (the sum over all (s3, w3)
of) the probability of reaching some (s3, w3) from (s1, w1) through performing
a transition of the underlying LCS, multiplied by the probability of reaching
(s2, w2) from (s3, w3) through the loss of messages. Now, we show how to derive
these probabilities from the definition of L.

First, we compute probabilities of reaching states through the loss of mes-
sages. For x, y ∈ M∗, we define # (x, y) to be the size of the set

{(i1, . . . , in) | i1 < · · · < in and x = y(i1) • · · · • y(in)}

In other words, # (x, y) is the number of the different ways in which we can
delete symbols in the word y in order to obtain x. We also define PL(x, y) =
(x, y) · λ|y|−|x| · (1 − λ)|x|. For w1, w2 ∈ (C �→ M∗), we define PL(w1, w2) =∏

c∈C PL (w1(c), w2(c)). Intuitively, PL(w1, w2) defines the probability by which
w2 can change to w1 through loss of messages during a single step of the ex-
ecution of the system. Notice that PL(w1, w2) = 0 in case w1 �� w2. We take
PL((s1, w1) , (s2, w2)) = PL(w1, w2) if s1 = s2, and PL((s1, w1) , (s2, w2)) = 0
otherwise. We define w(s, w) =

∑
t∈enabled(s,w) w(t).

The PLCS L induces a Markov chain (S, P), where S = (S× (C �→ M∗)) and
P ((s1, w1) , (s2, w2)) =

∑
t∈T ((w(t)/w(s1, w1)) · PL(t(s1, w1), (s2, w2))). No-

tice that this is well-defined by the assumption that there are no deadlock states.
We instantiate the reachability problems considered in Section 3 and Sec-

tion 4 to PLCS.
Below, we assume a PLCS L = (S, C, M, T, λ, w) inducing a Markov chain

M = (S, P) with an underlying transition system T = (S,−→).
We shall consider the probabilistic (repeated) reachability problem for PLCS.

We check whether an upward closed set, represented by its minimal elements,

Verification of Probabilistic Systems with Faulty Communication 47

is (repeatedly) reachable from a given initial state with probability one. We
show that the (repeated) reachability problem instantiated in this manner fulfills
the three conditions required for effective implementation of the probabilistic
(repeated) reachability schemes of Section 4.

The following Lemma shows that we can always construct a finite attractor
in a PLCS.

Lemma 7. For each λ, w, and PLCS (S, C, M, T, λ, w), thse set
{(s, w) | |w| = 0} is an attractor.

From Lemma 4, and the fact that the transition system underlying a PLCS
(S, C, M, T, λ, w) is independent on λ we obtain:

Lemma 8. For each PLCS (S, C, M, T, λ, w), we can compute the graph Graph(A)
of a finite set A.

Furthermore, for two PLCS L = (S, C, M, T, λ, w) and L′ = (S, C, M, T, λ′, w′) which
differ only by probabilities, If λ, λ′ > 0 and w(t) > 0 iff w′(t) > 0 then A has the
same graph in both PLCS. Now we are ready to solve Probabilistic Reachability
and Probabilistic Repeated Reachability problems for PLCS.

Probabilistic Reachability for PLCS
Instance An PLCS M = (S, C, M, T, λ, w) a state s, and a set Q ⊆ S.
Question Is the set of Q-states is reachable from s with probability one?

Probabilistic Repeated Reachability
Instance An PLCS M = (S, C, M, T, λ, w) a state s, and a set Q ⊆ S.
Question Is the set of Q-states is repeatedly reachable from s with probability
one?

From the results of Section 4 and Lemma 8, Lemma 5, Lemma 7, and
Lemma 6 we get the following.

Theorem 1. Probabilistic Reachability and Probabilistic Repeated Reachability
are decidable for PLCS. .

Remark In our definition of LCS and PLCS, we assume that messages are lost
only after performing non-lossy transitions. Our analysis can be modified in a
straightforward manner to deal with the case where losses occur before, and the
case where losses occur both before and after non-lossy transitions.

6 Duplication, Corruption, and Insertion

We consider PLCS with different sources of unreliability such as duplication,
corruption, and insertion combined with lossiness.
Duplication We analyze a variant of PLCS, where we add another source of
unreliability; namely a message inside a channel may be duplicated [CFI96].

An LCS L with duplication errors is of the same form (S, C, M, T) as an LCS.
We define the behaviour of L as follows. For a ∈ M, we use an to denote the

48 Parosh Aziz Abdulla and Alexander Rabinovich

concatenation of n copies of a. For x = a1a2 · · · an with x ∈ M∗, we define
duplicate(x) to be the set{

b1b2 · · · bn| either bi = ai or bi = a2
i for each i : 1 ≤ i ≤ n

}

In other words, we get each member of duplicate(x) by duplicating some of the
elements of x. We extend the definition of duplicate to S× (C �→ M∗) in a similar
manner to Section 5. The transition relation of an LCS L with duplication errors
is enlargement of that of the corresponding standard LCS in the sense that:

– If (s1, w1) −→ (s2, w2) according to the definition of Section 5 then
(s1, w1) −→ (s′2, w

′
2) for each (s′2, w

′
2) ∈ duplicate(s2, w2).

In [CFI96], it is shown that the reachability problem is decidable for LCS with
duplication errors. The reachability algorithm can be modified in a similar man-
ner to Section 5 to solve the until problem. Hence we have

Lemma 9. Given LCS with duplication errors.

1. For states s1 and s2, it is decidable whether s2 is reachable from s1 [CFI96].
Hence, Graph(A) is computable for any finite set A of states.

2. For a state s and a set Q ⊆ S, it is decidable whether the set of Q-states is
reachable from s [CFI96].

3. For a state s, a set Q1 ⊆ S, and a finite set Q2 of states, it is decidable
whether s ∈ Until(¬Q1, Q2), where Q1 is the set of Q1-states.

A PLCS with duplication errors is of the form (S, C, M, T, λ, w, λD), where
(S, C, M, T, λ, w) is a PLCS, and λD ∈ [0, 1]. The value of λD represents the
probability by which any given message is duplicated inside the channels.

To obtain the Markov chain induced by a PLCS with duplication errors,
we compute probabilities of reaching states through duplication of messages.
For x, y ∈ M∗, where x = a1a2 · · · an, we define #D (x, y) to be the size of the
set

{
(i1, . . . , in) | 1 ≤ ij ≤ 2 and y = ai1

1 ai2
2 · · ·ain

n

}
. In other words, #D (x, y) is

the number of the different ways in which we can duplicate symbols in the
word x in order to obtain y. In a similar manner to the case of losing messages
(Section 5), we define PD(x, y) = #D (x, y)·λ|y|−|x|

D ·(1−λD)|x|, and PD(w1, w2) =∏
c∈C PD (w1(c), w2(c)). The PLCS L with duplication errors induces a Markov

chain (S, P ′
D), where S = (S× (C �→ M∗)) and

P ′
D ((s1, w1) , (s2, w2)) =

∑
(s3,w3)

P ((s1, w1) , (s3, w3)) · PD ((s3, w3) , (s2, w2))
where P has the same definition as in Section 5. Notice that the sum is

computable since the set {(s3, w3) | P ((s1, w1) , (s3, w3)) �= 0} is finite and com-
putable.

Lemma 10. For each λ, w, λD, and PLCS (S, C, M, T, λ, w, λD) with λD < λ,
the set {(s, w) | |w| = 0} is an attractor.

Using a similar reasoning to Section 5, we derive from Lemma 9 and Lemma
10

Theorem 2. Probabilistic Reachability and Probabilistic Repeated Reachability
are decidable for PLCS with duplication errors when λD < λ.

Verification of Probabilistic Systems with Faulty Communication 49

Corruption We consider LCS with corruption errors, i.e., a message inside a
channel may be changed to any other message. We extend the semantics of LCS
to include corruption errors in the same manner as we did above for duplication
errors. For x ∈ M∗, we define Corrupt(x) to be the set {y| |y| = |x|}, i.e., we get
a member of Corrupt(x) by changing any number of symbols in x to another
symbol in M. We extend the definition to S × (C �→ M∗) in the same manner as
before. Furthermore, we enlarge the transition transition of an LCS:

– If (s1, w1) −→ (s2, w2) according to the definition of Section 5 then
(s1, w1) −→ (s′2, w

′
2) for each (s′2, w

′
2) ∈ Corrupt(s2, w2).

Decidability of the reachability problem for LCS with corruption errors fol-
lows from the fact (s1, w1)

∗−→ (s2, w2) implies (s1, w1)
∗−→ (s2, w3) for each w3

with |w3(c)| = |w2(c)| for all c ∈ C. This implies that the only relevant informa-
tion to consider about the channels in the reachability algorithm is the length of
the channels. In other words, the problem is reduced to ¡a special case of LCS
systems where the set M can be considered to be a singleton. The until problem
can be solved in a similar manner. Hence,

Lemma 11. Given LCS with corruption errors.

1. For states s1 and s2, it is decidable whether s2 is reachable from s1. Hence,
Graph(A) is computable for any finite set A of states.

2. For a state s and a set Q ⊆ S, it is decidable whether the set of Q-states is
reachable from s.

3. For a state s, a set Q1 ⊆ S, and a finite set Q2 of states, it is decidable
whether s ∈ Until(¬Q1, Q2), where Q1 is the set of Q1-states.

A PLCS with corruption errors is of the form (S, C, M, T, λ, w, λC), where
λD ∈ [0, 1] represents the probability by which any given message is corrupted
to some other message. For x, y ∈ M∗, we define #C (x, y) to be the size of the
set {i| x(i) = y(i)}. In other words, #C (x, y) is the number of elements which

must change in order to obtain y from x. We define PC(x, y) =
(

λC

|M|−1

)#C(x,y)

·
(1 − λC)|x|−#C(x,y) if |x| = |y|, and PC(x, y) = 0 otherwise. We extend PC(x, y)
to S × (C �→ M∗) as before. This induces a Markov chain in a similar manner to
the case with duplication.

Lemma 12. For each λ, w, λC , and PLCS (S, C, M, T, λ, w, λC), the set
{(s, w) | |w| = 0} is an attractor.

From Lemma 11 and Lemma 12 we can derive in a similar manner to Sec-
tion 5.

Theorem 3. Probabilistic Reachability and Probabilistic Repeated Reachability
are decidable for PLCS with corruption errors.

Other Unreliability Sources In a similar manner to the cases with duplica-
tion and corruption, we can obtain decidability results for models involving other

50 Parosh Aziz Abdulla and Alexander Rabinovich

sources of unreliability such as insertion of messages [CFI96]. Furthermore, we
can combine different sources of unreliability. For instance, we can consider mod-
els where we have both duplication and corruption together with lossiness. The
crucial aspect of the model is that unreliability sources which may increase the
number of messages inside the channels (such as insertion and duplication but
not corruption) should have sufficiently low probabilities (compared to lossiness)
to guarantee existence of a finite attractor.

7 Automata Definable Properties

In this section we consider more general properties than reachability and re-
peated reachability for PLCS. Let ϕ be a property of computations. We will be
interested in whether

Prob {π| π is a computation from s in PLCS M and π satisfies ϕ } = 1.

We show that if the properties of computations are specified by (the ω-behavior
of) finite state automata or equivalently by formulas of Monadic Logic of Order
then the above problem is decidable

In order to check a property defined by a finite state automaton, we take
its product with the given PLCS. The acceptance conditions are reduced to the
reachability problem for the non-probabilistic system underlying the product.
Similar results hold for the faulty probabilistic systems considered in section 6.
The proofs for these systems follow the same pattern as for PLCS, therefore here
we will confine ourself only with PLCS.

We consider an extension of LCS by adding a labeling function. A state
labeled LCS is an LCS together with a finite alphabet Σ and a labeling function
lab from the local states to Σ. Throughout this section we always assume that
LCS are state labeled and will often use “LCS” for “state labeled LCS”. We lift
the labeling from LCS to the state labeled transition system T = (S,−→, Σ, lab)
induced by an LCS L : the label of every state in T is the same as the label of its
local state component. Similarly, with a path s0, s1, . . . we associate an ω-string
lab(s1), lab(s2), . . . over the alphabet Σ. When we deal here with probabilistic
lossy channel systems we also assume that the underlying LCS is labeled, and
this labeling is lifted to the labeling of the corresponding Markov chain. In this
manner we obtain state labeled PLCS inducing state labeled Markov chains.

Next, we recall basic definitions and notations about finite state automata
and cite a classical theorem (Theorem 4 [Tho90]) that automata have the same
expressive power as monadic logic of order. A finite automaton A is a tuple
(Q, Σ, →, q0,F), consisting of a finite set Q of states, a finite alphabet Σ of
actions, a transition relation → which is a subset of Q× Σ ×Q, q0 ∈ Q is the
initial state of A, and F ⊆ 2Q is a collection of fairness conditions. We write
q

a→ q′ if 〈q, a, q′〉 ∈→.
A run of A is an ω-sequence q0a0q1a1 . . . such that qi

ai→ qi+1 for all i. Such
a run meets the the fairness conditions if the set of states that occur in the run

Verification of Probabilistic Systems with Faulty Communication 51

infinitely many times is a member of F . An ω-string a0, a1 . . . over Σ is accepted
by A if there is a run q0a0q1a1 . . . that meets the fairness conditions of A. The
ω-language accepted by A is the set of all ω-strings acceptable by A. We say
that A is deterministic if for every state q and every letter b there is a unique
q′ such that q

b→ q′.

Theorem 4. The following conditions are equivalent for ω-language L:

1. L is acceptable by a finite state automaton.
2. L is acceptable by a deterministic finite state automaton.
3. L is definable by a monadic formula .

Products We define products of automata and state labeled transition systems.
We also define products of automata and state labeled Markov chains. We in-
vestigate the reachability problem for these products and provide reduction of
verification of automata definable properties of computations to the reachability
problem. Consider an automaton A = (Q, Σ, →, q0,F), and a state labeled
transition system T = (S,−→, Σ, lab). The product of A and M is a state labeled
transition system defined as follows:

States: Q × S - the Cartesian product of the states of A and of T .
Labeling: A state (q, s) is labeled by lab(s), i.e., it has the same label as s in T .
Transition relation: There is transition from (q, s) to (q′, s′) iff there is a tran-

sition q
lab(s)→ q′ in A and there is a transition from s to s′ in T .

Problem 1
Instance A state labeled LCS which defines a state labeled transition system
T = (S,→, lab, Σ), an automaton A, states s1 and s2 in the product of T and
A.
Question Is s2 reachable from s1?

Problem 2
Instance A state labeled LCS which defines a state labeled transition system
T = (S,→, lab, Σ), an automaton A, states s1 and a finite set of states S2 in
the product of T and A.
Question Is the upward closure of S2 reachable from s1?

Lemma 13. Problem 1 and Problem 2 are decidable.

Next, we consider products of automata and state labeled Markov chains.
Consider a deterministic automaton A = 〈Q, Σ, →, q0, F〉 and a state labeled
Markov chain M = (S, P, lab, Σ) . The product of A and M is a state labeled
Markov chain defined as follows:

States: Q × S - the Cartesian product of the states of A and of M .
Labeling: A state (q, s) is labeled by lab(s), i.e., it has the same label as s in

M .
Transition relation: The probability of transition from (q, s) to (q′, s′) is p iff

there is a transition q
lab(s)→ q′ in A and the probability of transition from s

to s′ in M is p.

52 Parosh Aziz Abdulla and Alexander Rabinovich

Observe that the requirement that A is deterministic ensures that the sum of
probabilities of the transitions from the state (q, s) is the same as the sum of
probabilities of the transitions from the state s in M , i.e. the sum is one. Hence
the product is indeed a labeled Markov chain.

We say that a computation s1, s2, . . . is accepted by an automaton iff the
corresponding ω-string lab(s1), lab(s2), . . . is accepted

Lemma 14. Let A be a deterministic automaton with a set F of fairness con-
ditions, let M be a labeled Markov chain, let R be the product of A and M , and
let B be an attractor of R. Then the following are equivalent:

1. The probability of the set computations of M that start at s and are accepted
by A is one.

2. For each BSCC C in Graph(B), if C is reachable from s then there is F in
F such that
(a) if (q, u) is reachable from C in R then q ∈ F and
(b) for each q ∈ F there is u ∈ M such that (q, u) is reachable from C in R.

Probabilistic Model Checking The next problem deals with probabilistic
LCS.
Problem: Probabilistic Model-checking.
Instance A stated labeled PLCS which defines a state labeled Markov chain
M , a state s in M , and an automaton A.
Question Is the probability that a computation of M that starts at s is accepted
by A equal to one?

Theorem 5. Probabilistic Model-checking. Problem is decidable.

Proof. Let R be the product of A and M . It is easy to see, by the same arguments
as in Lemma 7, that the set B of states with empty channels in R is a finite
attractor for R. By Lemma 13, we obtain that Graph(B) is computable. Now,
applying reachability algorithm of Lemma 13, we can verify the conditions of
Lemma 14(2). By Lemma 14 these conditions are satisfied if and only if the
probability that a computation of M that starts at s is accepted by A equal to
one.

8 Conclusions and Discussion

We have shown decidability of model checking for a realistic class of probabilistic
lossy channel systems, where during each step of the runs of the systems, any
message inside the channels may be lost with a certain predefined probability.

In Section 5 we assume that our LCS are deadlock-free. In case of existence
of deadlock states, Lemma 7 does not hold. However, it is straightforward to
modify our algorithm to deal with deadlock. This follows from the fact that, we
can use the reachability algorithm in [AJ96b] in order to check reachability of
deadlock states.

A work closely related to this is [BE99]. In fact, our work can been as a
generalization of the ideas presented in [BE99]. More precisely, in [BE99], a

Verification of Probabilistic Systems with Faulty Communication 53

model of PLCS is considered where at each state either one message lost or
an non-lossy transition is performed. The probability λ of losing messages is
assumed to be at least 0.5. Under this semantics, it is proved that for an PLCS
the set {(s, w) | |w| = 0} is an attractor. The decidability of reachability follows
then in a similar manner to Section 5. Also, in [BE99], in contrast to the model of
LCS presented in this paper, loss transitions are explicit. Therefore, the product
of the transition system generated by an LCS with an automaton (Section 7),
might not be equivalent to the transition system generated by any other LCS. In
fact, under this semantics, it is undecidable whether the set of computations of a
PLCS is accepted by a finite state automaton with probability one. To overcome
this difficulty, it is assumed in [BE99] that the given automaton accepts an
ω-language which is closed under stuttering.

Acknowledgement The work of the first author was partially supported by
the European project ADVANCE, Contract No. IST – 1999-29082.

References

[ABIJ00] Parosh Aziz Abdulla, Christel Baier, Purushothaman Iyer, and Bengt Jons-
son. Reasoning about probabilistic lossy channel systems. In C. Palamidessi,
editor, Proc. CONCUR 2000, 11th Int. Conf. on Concurrency Theory, vol-
ume 1877 of Lecture Notes in Computer Science, 2000.

[AJ96a] Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification prob-
lems for programs with unreliable channels. Information and Computation,
130(1):71–90, 1996.

[AJ96b] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable
channels. Information and Computation, 127(2):91–101, 1996.

[BE99] C. Baier and B. Engelen. Establishing qualitative properties for probabilistic
lossy channel systems. In Katoen, editor, ARTS’99, Formal Methods for
Real-Time and Probabilistic Systems, 5th Int. AMAST Workshop, volume
1601 of Lecture Notes in Computer Science, pages 34–52. Springer Verlag,
1999.

[Boc78] G. V. Bochman. Finite state description of communicating protocols. Com-
puter Networks, 2:361–371, 1978.

[BS03] N. Bertrand and Ph. Schnoebelen. Model checking lossy channels systems
is probably decidable. In Proc. FOSSACS03, Conf. on Foundations of Soft-
ware Science and Computation Structures, 2003.

[BZ83] D. Brand and P. Zafiropulo. On communicating finite-state machines. Jour-
nal of the ACM, 2(5):323–342, April 1983.

[CFI96] Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable channels
are easier to verify than perfect channels. Information and Computation,
124(1):20–31, 10 January 1996.

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc., 2:326–336, 1952.

[KSK66] J.G. Kemeny, J.L. Snell, and A.W. Knapp. Denumerable Markov Chains.
D Van Nostad Co., 1966.

[Tho90] W. Thomas. Automata on infinite objects. In Handbook of Theoretical
Computer Science, Volume B: Formal Methods and Semantics, pages 133–
192, 1990.

	Verification of Probabilistic Systems with FaultyCommunication
	Introduction
	Transition Systems
	Markov Chains
	Reachability Analysis for Markov Chains
	Lossy Channel Systems
	Duplication, Corruption, and Insertion
	Automata Definable Properties
	Conclusions and Discussion

