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Abstract. This paper presents a proof-theoretical framework that ac-
counts for the entire process of register allocation – liveness analysis is
proof reconstruction (similar to type inference), and register allocation
is proof transformation from a proof system with unrestricted variable
accesses to a proof system with restricted variable access. In our frame-
work, the set of registers acts as a “working set” of the live variables at
each instruction step, which changes during the execution of the code.
This eliminates the ad-hoc notion of “spilling”. The necessary memory-
register moves are systematically incorporated in our proof transforma-
tion process. Its correctness is a direct corollary of our construction; the
resulting proof is equivalent to the proof of the original code modulo
treatment of structural rules. The framework yields a clean and power-
ful register allocation algorithm. The algorithm has been implemented,
demonstrating the feasibility of the framework.

1 Introduction

Register allocation is a process to convert an intermediate language to another
language closer to machine code. Such a process should ideally be presented as
a language transformation system that preserves the meaning of a program –
both its static and dynamic semantics. These results will not only yield robust
and systematic compiler implementation but also serve as a basis for reasoning
about formal properties of register allocation process such as preservation of type
safety, which will complement recent results on verifying type safety of low-level
code, e.g. [11,6,7,8]. Unfortunately, however, it appear to be difficult to establish
such results for existing methods of register allocation.

The most widely used method for register allocation is graph coloring [3,2].
It first performs liveness analysis of a given code and constructs an interference
graph. It then solves the problem by “spilling” some nodes from the graph and
finding a “coloring” of the remaining subgraph. Although it is effective and
practically feasible, there seems to be no easy and natural way to show type and
semantics preservation of this process. There are also some other methods such
as [10], but we do not know any attempt to establish a framework for reasoning
about register allocation process.
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The goal of this work is to establish a novel framework for reasoning about
register allocation process and also for developing a practical register allocation
algorithm.

Our strategy is to present register allocation as a series of proof transforma-
tions among proof systems that represents code languages with different variable
usage. In an earlier work [8], the author has shown that a low-level code lan-
guage can be regarded as a sequent-style proof system. In that work, a proof
system deduces typing properties of a code. However, it is also possible to re-
gard each “live range” of a variable as a type, and to develop a proof system to
deduce properties of variable usage of a given code. Such a proof system must
admit structural rules, e.g. those of contraction, weakening and exchange, to
rearrange assumptions. The key idea underlying the present work is to regard
those structural rules as register manipulation instructions and to represent a
register allocation process as a proof transformation from a proof system with
implicit structural rules to one with explicit structural rules. In this paradigm,
liveness analysis is done by proof reconstruction similarly to type inference. Dif-
ferent from ordinary type inference, however, it always succeeds for any code and
returns a proof, which is the code annotated with variable liveness information.
The reconstructed proof is then transformed to another proof where allocation
and deallocation of registers, and memory-register moves are explicitly inserted.
The target machine code is extracted mechanically from the transformed proof.

Based on this idea, we have worked out the details of proof transformations
for all the stages of register allocation, and have developed a register allocation
algorithm. The correctness of the algorithm is an obvious corollary of this con-
struction itself. Since structural rules only rearrange assumptions and do not
change the computational meaning of a program, the resulting proof is equiva-
lent to the original proof representing the given source code. Moreover, as being
a proof system, our framework can be easily combined with a static type system
of low-level code. Compared with the conventional approaches based on graph
coloring, our framework is more general in that it uniformly integrate liveness
analysis and register-memory moves.

We believe that the framework can be used to develop a practical register
allocation algorithm. In order to demonstrate its practical feasibility, we have
implemented the proposed method. Although the current prototype is a “toy
implementation” and does not incorporated any heuristics, our limited experi-
mentation confirms the effectiveness of our framework.

The major source of our inspiration is various studies on proof systems in
substructural logic [9] and in linear logic [5]. They have attracted much attention
as logical foundations for “resource management”. To the author’s knowledge,
however, there does not seem to exist any attempt to develop a register allocation
method using proof theoretical or type-theoretical frameworks.

The rest of the paper is organized as follows. Section 2 defines a proof system
for a simple source language and gives a proof reconstruction algorithm. Section 3
gives a proof normalization algorithm to optimize live ranges of variables. Sec-
tion 4 presents a proof transformation to a language with a fixed number of
registers, and gives an algorithm to assign register numbers. Section 5 discusses
some properties of the method and concludes the paper.
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2 Proof System for Code Language and Liveness Analysis

To present our method, we define a simple code language. Let x, y, . . . range over
a given countably infinite set of variables and c range over a given set of atomic
constants. We consider the following instructions (ranged over by I), basic blocks
(ranged over by B), and programs (ranged over by P ).

I ::= x = y | x = c | x = y + z | if x goto l

B ::= returnx | goto l | I;B

P ::= {l : B, . . . , l : B}

There is no difficulty of adding various primitive operations other than +. It is
also a routine practice to transform a conventional intermediate language into
this representation by introducing necessary labels.

We base our development on a proof-theoretical interpretation of low-level
code [8] where each instruction I is interpreted as an inference rule of the form

Γ ′ �B : τ
Γ � I;B : τ

indicating the fact that I changes machine state Γ to Γ ′ and continues execution
of the block B. Note that a rule forms a bigger code from a smaller one, so the
direction of execution is from the bottom to the top. If the above rule is the last
inference step, then I is the first instruction to execute. The “return” instruction
corresponds to an initial sequent (an axiom in the proof system) of the form

Γ, x : τ � return x : τ

which returns the value of r to the caller. All the sequents in the same proof has
the same result type determined by this rule.

Under this interpretation, each basic block becomes a proof in a sequent
style proof system. A branching instruction is interpreted as a meta-level rule
referring to an existing proof. For this purpose, we introduce a label environment
(ranged over by L) of the form {l1 : Γ1 � τ1, . . . , ln : Γn� τn} specifying the type
of each label, and define a proof system relative to a given label environment.
We regard L as a function and write L(li) for the li’s entry in L.

To apply this framework to register allocation, we make the following two
refinements. First, we regard a type not as a property of values (such as being
an integer) but as a property of variable usage, and introduce a type variable
for each live range of a variable. Occurrences of the same variable with different
type variables imply that the variable has multiple live ranges due to multiple
assignments. Second, we regard structural rules in sequent style proof system as
(pseudo) instructions for allocation and de-allocation of variables (registers). The
left-weakening rule corresponds (in the sense of Curry-Howard isomorphism) to
the rule for discarding a register:

Γ � τ0
Γ, τ � τ0

=⇒ Γ, x : nil �B : τ0
Γ, x : τ � discard x;B : τ0
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Γ, x : t� return x : t
Γ, x : nil �B : t0

Γ, x : t� discard x;B : t0
Γ, x : t�B : t0

Γ, x : nil � x = c;B : t0

Γ, x : t1, y : t2 �B : t0
Γ, x : nil, y : t2 � x = y;B : t0

Γ, x : t1, y : t2, z : t3 �B : t0
Γ, x : nil, y : t2, z : t3 � x = y + z;B : t0

Γ, x : t1, y : t2 �B : t0
Γ, x : t3, y : t2 � x = x + y;B : t0

(similarly for x = y + x)

Γ, x : t�B : t0
Γ, x : t� if x goto l;B : t0

(if L(l) = Γ ′ � t0 such that Γ ′ ⊆ Γ, x : t.)

Γ � goto l : t (if L(l) = Γ ′ � t such that Γ ′ ⊆ Γ .)

Fig. 1. SSC(L) : proof system for liveness information

where x : nil indicates that x is not live at this point. Assuming that τ is a true
formula (inhabited type), the following valid variant of the left-contraction rule
corresponds to the rule for allocating a new register.

Γ, τ � τ0
Γ,�τ0

=⇒ Γ, x : τ �B : τ0
Γ, x : nil � alloc x;B : τ0

Later, we shall see that exchange rules represent register-memory moves.
We let t range over type variables. A type τ is either t or nil (which is

introduced to make type inference easier.) A context Γ is a mapping from a
finite set of variables to types. For contexts Γ and Γ ′, we write Γ ⊆ Γ ′ if Γ
is included in Γ ′ as sets ignoring entries of the form x : nil. Fig. 1 gives the
proof system for liveness. This is relative to a given label environment L. A
program {l1 : B1, . . . , ln : Bn} is derivable under L, if L(li) = Γi � τi and
Γi � Bi : τi for each 1 ≤ i ≤ n. We call this proof system SSC(L)1. We note
that, in this definition, alloc is implicitly included in the rules for assignment.
Furthermore, if the target variable of an assignment is one of its operands, then
the assignment rule also includes discard. For example, an inference step for
x = x + y discards the old usage of variable x and allocates a new usage for x.
This is reflected by the different type variables for x in the rule.

We develop a proof reconstruction algorithm. For this purpose, we introduce
context variables (denoted by ρ) and extend the set of contexts as follows.

γ ::= Γ | ρ · Γ

For this set of terms, we can define a unification algorithm. We say that a set of
context equations (i.e. a set of pairs of contexts) E is well formed if whenever
ρ·Γ1 and ρ·Γ2 appear in E, dom(Γ1) = dom(Γ2). Well-formedness is preserved by
unification, and therefore it is sufficient to consider well formed equations. This
1 The proof system for low-level code in [8] is called the sequential sequent calculus;

hence the name. Also note that a program in general forms a cyclic graph, and
therefore as a logical system it is inconsistent. It should be regarded as a type
system of a recursive program, but we continue to use the term proof system.
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property allows us to define a unification algorithm similarly to the standard
unification. We note that although context terms are similar to record types,
any extra machinery for record unification is not required. We can show the
following.
Theorem 1. There is an algorithm cunif such that for any set of well formed
context equations E, if cunif(E) = S then S is a unifier of E, and if there is a
unifier S of E then cunif(E) = S′ such that S = S′′ ◦ S′ for some S′′.
We omit a simple definition of cunif and its correctness proof.

Using cunif and a standard unification algorithm unify on types, we define
a proof inference algorithm Infer. To present the algorithm, we first define some
notations. We let ∆ range over proofs. In writing a proof tree, we only include,

at each inference step, the instruction that is introduced. We write
∆

(Γ � I : τ)
if ∆ is a proof whose end sequent is Γ � I : τ . If γ is a context containing x,
γ{x : τ} is the context obtained from γ by replacing the value of x with τ . An
entry constraint is a sentence of the form l � γ � τ indicating the requirement
that the block labeled with l must be a proof γ′� τ such that γ′ ⊆ γ. Let L be a
label environment and C be a set of entry constraints. L(C) is the set of sentence
of the form γ′ � τ ′ � γ � τ obtained from C by replacing each l appearing in
C with L(l). We write x and x : τ for a sequence of variables and a sequence of
typed variables.

The algorithm Infer is given in Fig. 2. It takes a labeled set of basic blocks
{l1 : B1, . . . , ln : Bn} and returns a labeled set of proofs {l1 : ∆1, . . . , ln : ∆n}.
It first uses InfBlk to infer for each Bi its proof scheme (i.e. a proof containing
context variables) together with a set of entry constraints. InfBlk proceeds
by induction on the structure of Bi, i.e. it traverses Bi backward from the last
instruction (return or goto). When it encounters a new variable, it introduces
a fresh type variable for a new live range of the variable. When it encounters
an assignment to x, it inserts discard x, and changes the type of x to nil,
and continues toward the entry point of the code block. It generates an entry
constraint for l for each branching instruction (goto l or if x goto l.) After
having inferred proof schemes for blocks, the main algorithm gathers the set
L(C) of constraints of the form γ′ � t′ � γ � t. The set of constraints is then
solved by fixed point computation, where each iteration step picks one sentence
ρ′ · Γ ′ � t′ � ρ · Γ � t such that Γ ′ �⊆ Γ or t �= t′, and generates a minimal
substitution S such that S(ρ · Γ ) = ρ′′ · Γ ′′, S(Γ ′) ⊆ Γ ′′ and S(t′) = S(t).
Finally, the main algorithm Infer instantiates all the context variables with
empty set to obtain a ground proof.

We establish the soundness of this algorithm. Let C be a set of entry con-
straints of L; let dom(C) be the set of labels mentioned in C. We say that a
substitution S is a solution of C under L if dom(C) ⊆ dom(L) and, for each
constraint l� γ � τ in C, L(l) = γ′ � τ ′, S(γ′) ⊆ S(γ), and S(τ ′) = S(τ). From
this definition, if S is a solution of C under L, then S(L) satisfies S(C). We can
show the following lemmas.
Lemma 1. Let B be a code block. If InfBlk(B) = (C, ∆) then for any solution
(L, S) of C, S(∆) is a derivable proof under L.
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InfBlk(return x) = (∅, ρ · x : t� return x : t) (t, ρ fresh)

InfBlk(goto l) = ({l� ρ� t}, ρ� goto l : t) (t, ρ fresh)

InfBlk(x = v;B) =

let (C1, ∆0

(γ0 � I0 : t0)
) = InfBlk(B)

S = cunif(γ0, ρ1 · y : t2) (y = FV (v) ∪ {x}, and ρ1, t2 fresh)
{y1, . . . , yk} = {y′|(y′ : nil) ∈ S(γ0), y′ ∈ y}

∆1

(γ1 � τ1) = S(∆0)

∆i+1

(γi+1 � τi+1) =
∆i

γi{yi : t′i}� discard yi : τi
(t′i fresh for each 1 ≤ i ≤ k)

in if x ∈ FV (v) then (S(C1),
∆k+1

γk+1{x : tk+1}� x=v : S(t0)
) (tk+1 fresh)

else (S(C1),
∆k+1

γk+1{x : nil}� x=v : S(t0)
)

Solve(C) =
if there is some (ρ1 · Γ1 � τ1 � ρ2 · Γ2 � τ2) ∈ C such that Γ1 �⊆ Γ2 or τ1 �= τ2 then

let S1 = unify({(Γ1(x), Γ2(x))|x ∈ dom(Γ1) ∩ dom(Γ1), Γ1(x) �= nil} ∪ {(τ1, τ2))})
Γ3 = {x : Γ1(x)|x ∈ (dom(Γ1) \ dom(Γ2)), Γ1(x) �= nil}
S2 = [ρ3 · S1(Γ3)/ρ2] ∪ S1 (ρ3 fresh)

in Solve(S2(C)) ◦ S2

else ∅

Infer({l1 : B1, . . . , ln : Bn}) =

let (Ci, ∆i

(Γi � τi)
) = InfBlk(Bi) (1 ≤ i ≤ n)

(C, {l1 : ∆1, . . . , ln : ∆n}) = (C1 ∪ · · · ∪ Cn, {l1 : ∆1, . . . , ln : ∆n})
L = {li : γi � τi|∆i’s end sequent is of the form γi �Bi : τi}
S = Solve(L(C))
P = S({l1 : ∆1, . . . , ln : ∆n})
{ρ1, . . . , ρk} = FreeContextV ars(P )

in [∅/ρ1, . . . , ∅/ρk](P )

Fig. 2. Some of the cases of proof reconstruction algorithm

Lemma 2. If Solve(L(C)) = S and {ρ1, . . . , ρk} is the set of free context vari-
ables in S(L(C)) then [∅/ρ1, . . . , ∅/ρk] ◦ S is a solution of C under L.

Using these lemmas, we can show the following soundness theorem.

Theorem 2. If Infer({· · · , li : Bi · · ·}) = {· · · , li :
∆i

(Γi � Ii : τi)
, · · ·} then

each ∆i is a proof of Bi under the label environment {l1 : Γ1 � τ1, . . . , ln :
Γn � τn}, and therefore the program {l1 : B1, . . . , ln : Bn} is derivable under
{l1 : Γ1 � τ1, . . . , ln : Γn � τn}.
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(1) An example source code
i = 1
s = 0

loop c = i > n
if c goto finish
s = s + i
i = i + 1
goto loop

finish return s

(2) The source program obtained by decom-
posing the source code into basic blocks

{l1: i = 1; s = 0; goto l2,
l2: c = i > n; if c goto l4; goto l3,
l3: s = s + i; i = i + 1; goto l2,
l4: return s}

(3) The inferred proof schemes of blocks, and the associated constraints

l1:

ρ1{i : t2, s : t3}� goto l2 : t1
ρ1{i : t2, s : nil}� s=0 : t1
ρ1{i : nil, s : nil}� i=1 : t1 l3:

ρ3{i : t9, s : t10}� goto l2 : t8
ρ3{i : t11, s : t10}� i=i+1 : t8
ρ3{i : t11, s : t12}� s=s+i : t8

l2:

ρ2{c : t5, i : t6, n : t7}� goto l3 : t4
ρ2{c : t5, i : t6, n : t7}� if c goto l4 : t4
ρ2{c : nil, i : t6, n : t7}� c=i>n : t4 l4 : ρ4{s : t13}� return s : t13

l2 � ρ1{i : t2, s : t3}� t1 l2 � ρ3{i : t9, s : t10}� t8
l3 � ρ2{c : t5, i : t6, n : t7}� t4 l4 � ρ2{c : t5, i : t6, n : t7}� t4

(4) The reconstructed liveness proof of the program after constraint solving

l1:

{i : t2, n : t3, s : t1}� goto l2 : t1
{i : t2, n : t3}� s=0 : t1
{n : t3}� i=1 : t1 l3:

{i : t2, n : t3, s : t1}� goto l2 : t1
{i : t2, n : t3, s : t1}� i=i+1 : t1
{i : t2, n : t3, s : t1}� s=s+i : t1

l2:

{c : t4, i : t2, n : t3, s : t1}� goto l3 : t1
{c : t4, i : t2, n : t3, s : t1}� if c goto l4 : t1

{i : t2, n : t3, s : t1}� c=i>n : t1 l4 : {s : t1}� return s : t1

Fig. 3. Example code and the reconstructed liveness proof

Fig. 3 shows an example of proof reconstruction. It lists (1) a sample source
code in an informal notation, (2) the source program obtained by decomposing
the given source code into a set of basic blocks, (3) the inferred proof schemes of
the basic blocks and the associated set of constraints, and (4) the reconstructed
liveness proof after constraint resolution. In this final proof, empty entries of
the form x : nil are eliminated since they are no longer needed after the proof
reconstruction have been completed.

We will use the sample source code (1) in Fig. 3 as the running example and
will show examples of the proof transformation steps that follow (4) in Fig. 3.
The examples above and those shown later are (reformatted) actual outputs of
our prototype system.
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3 Optimizing Liveness by Inserting Weakening Rule

The above proof inference algorithm always succeeds and returns a liveness proof
for any given code. The resulting proof is, however, not the only possible one.
The next step is to optimize the inferred proof by proof normalization.

The proof system has the freedom in terms of the places where discard is
inserted. Our proof inference algorithm does not insert weakening rules (discard
instructions) except for those required by assignments. All the necessary weaken-
ing rules are implicitly included in goto and return instructions. The optimiza-
tion step is to introduce weakening rules explicitly and to move them toward the
root of the proof tree (i.e. toward the entry point of the code) so that variables
are discarded as early as possible. This is characterized as a proof normalization
process with respect to the following commutative conversion (used in the spec-
ified direction) of proofs:

...
Γ, x : nil �B : τ0

Γ, x : τ � discard x;B : τ0
Γ, x : τ � I; discard x;B : τ0

=⇒

...
Γ, x : nil �B : τ0
Γ, x : nil � I;B : τ0

Γ, x : τ � discard x; I;B : τ0

(if x �∈ I)

Fig. 4 gives the optimization algorithm Weaken. In these definitions, we used
the notations Γ |V for the restriction of Γ to a set of variables V , and Γ − V for
the context obtained from Γ by removing the assumptions of variables in V .

We write AddWeaken(∆) for the proof obtained from ∆ by adding all the
discard instructions just before each branching instruction so that the proof
conforms to the proof system where the axioms are restricted to the following:

{x : t}� return x : t. Γ � goto l : τ (if L(l) = Γ � τ)

We write ∆
∗−→ ∆′ if ∆′ is obtained from ∆ by repeated application of the

conversion rule. We can show the following.

Theorem 3. For any proof ∆, if WK(∆) = ∆′then AddWeaken(∆) ∗−→ ∆′.

Fig. 5 shows the optimized proof of the proof inferred for our running example
in Fig. 3. Since discard is a pseudo instruction and is not needed in subsequent
development, the algorithm erases them after the optimization is completed. In
Fig. 5, discard step is shown in parenthesis to indicate this fact.

Let us review the results so far obtained. The labeled set of proofs obtained
from a given program (a labeled set of basic blocks) by the combination of proof
inference (Infer) and optimization (Weaken) is a code annotated with liveness
information at each instruction step. The annotated liveness information is at
least as precise as the one obtained by the conventional method. This is seen by
observing the following property. If ∆ contains a inference step Γ � I : τ then
all the variables in Γ are live at I and the interference graph of P must contain a
completely connected subgraph of the length of Γ . Significant additional benefit
of our liveness analysis is that it is presented as a typing annotation to the
original program. This enables us to change the set of the target variables for
register allocation dynamically, to which we now turn.



Register Allocation by Proof Transformation 407

Weaken({l1 : ∆1, . . . , ln : ∆n}) =
let E = {l1 : EntryVars(∆1), . . . , ln : EntryVars(∆n)}

(Vi, ∆′i) = WK(∆i) (1 ≤ i ≤ n)
in {l1 : ∆′1, . . . , ln : ∆′n}

EntryVars(
∆

(Γ � I : τ)
) = {x|x ∈ dom(Γ ), Γ (x) �= nil)}

In the following definition, E is a global environment defined in the main algorithm.

WK(Γ � return x : t) = (dom(Γ ) \ {x}, {x : Γ (x)}� return x : t)

WK(Γ � goto l : τ) = (dom(Γ ) \ E(l), Γ |E(l) � goto l : τ)

WK(
∆

Γ � x = v : τ ) =

let (V,
∆0

(Γ0 � I0 : τ)
) = WK(∆)

{x1, . . . , xn} = FV (v) ∩ V
V ′ = V \ {x1, . . . , xn}

∆i

(Γi � : )
=

∆i−1

Γi−1{xi : Γ (xi)}� discard xi : τ
for each xi (1 ≤ i ≤ n)

in (V ′,
∆n

Γ − V ′ � x = v : τ )

WK(
∆

Γ � discard x : τ ) = let (V,∆0) = WK(∆) in (V ∪ {x}, ∆0)

Fig. 4. Some cases of weakening (discard pseudo instruction) insertion algorithm

l1:

{i : t2, n : t3, s : t1}� goto l2 : t1
{i : t2, n : t3}� s=0 : t1
{n : t3}� i=1 : t1 l3:

{i : t2, n : t3, s : t1}� goto l2 : t1
{i : t2, n : t3, s : t1}� i=i+1 : t1
{i : t2, n : t3, s : t1}� s=s+i : t1

l2:

{i : t2, n : t3, s : t1}� goto l3 : t1
({c : t4, i : t2, n : t3, s : t1}� discard c : t1)
{c : t4, i : t2, n : t3, s : t1}� if c goto l4 : t1

{i : t2, n : t3, s : t1}� c=i>n : t1 l4 : {s : t1}� return s : t1

Fig. 5. The result of weakening insertion optimization for the example in Fig. 3

4 Assigning Registers

We have so far considered a language with unbounded number of variables. A
conventional approach to register allocation selects a subset of variables for the
target of register allocation, and “spills” the others out. The treatment of spilled
variables require ad-hoc strategies. Our approach provides a systematic solution
to this problem using the liveness annotated code itself. We consider the set of
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registers as a “working set” of the live variables at each instruction step, and
maintain this working set. For this purpose, we define a new proof system whose
sequents are of the form

Σ | Π �k B : τ.

where Π is a register context whose length is bounded by the number k of
available registers, and Σ is a memory context of unbounded length. We assume
that k is no less than the number of assumptions needed for each instructions. In
our case, instructions have at most 2 operands and therefore k ≥ 2. Each logical
rule (instruction) can only access assumptions in Π. To assess Σ, we introduce
rules for load x and store x to move assumptions between Σ and Π:

Σ | Π,x : t1 �k B : t
Σ, x : t1 | Π �k load x;B : t0

Σ, x : t1 | Π �k B : t0
Σ | Π,x : t1 �k store x;B : t0

(if |Π| < k)

where |Π| denotes the length of Π. The other rules do not change Σ and are
the same as before. We call the new proof system SSC(LE, k).

In a proof-theoretical perspective, the previous proof system SSC(L) im-
plicitly admits unrestricted exchange so that any assumptions in Γ is freely
available, while the new proof system SSC(LE, k) requires explicit use of the
exchange rules to access some part of the assumptions. The next step of our
register allocation method is to transform a proof obtained in the previous step
into a proof in this new system. Since each inference rule only uses no more than
k assumptions, the following is obvious.
Proposition 1. There is an algorithm Exchange such that, for any provable
program P in SSC(L), Exchange(k, P ) is a program provable in SSC(LE, k),
and if we ignore the distinction between Σ and Π, and erase load and store,
then it is equal to P .
Exchange traverses the code block, and whenever it detects an instruction
whose operands are not inΠ, it exchanges the necessary operands inΣ with some
variables in Π, which are selected according to some strategy. The algorithm is
straightforward except for this strategy of selecting variables to be saved. With
the existence of branches, developing an optimal strategy is a difficult problem.
Our prototype system adopted a simple lookahead strategy: it selects one control
flow and traverses the instructions (up to a fixed number) to form an ordered
list of variables that are more likely to be used in near future, and select those
variables that are not appearing in the beginning of this list. In practical, we
need more sophisticated heuristics, which is outside of the scope of this paper.

Fig. 6 shows the result of exchange insertion against the optimized proof
shown in Fig. 4.

The final stage of our development is to assign a register number to each type
variable in Π at each instruction step. We do this by defining yet another proof
system where a type variable in Π has an attribute of a register number (ranged
over by p). The set of instructions in this final proof system is as follows.

I ::= x = y | x = c | x = x + x | if x goto l

| load (p,x) | store (p, x) | move x[pi → pj ]

load (p, x) moves variable x from Σ to Π and loads register p with the content
of x. store (p, x) is its converse. move x[pi → pj ] is an auxiliary instruction



Register Allocation by Proof Transformation 409

l1:

∅ | {i : t2, n : t3, s : t1}�3 goto l2 : t1
∅ | {i : t2, n : t3}�3 s=0 : t1
∅ | {n : t3}�3 i=1 : t1 l3:

∅ | {i : t2, n : t3, s : t1}�3 goto l2 : t1
∅ | {i : t2, n : t3, s : t1}�3 i=i+1 : t1
∅ | {i : t2, n : t3, s : t1}�3 s=s+i : t1
{s : t1} | {i : t2, n : t3}�3 load s : t1

l2:

{s : t1} | {i : t2, n : t3}�3 goto l3 : t1
{s : t1} | {c : t4, i : t2, n : t3}�3 if c goto l4 : t1

{s : t1} | {i : t2, n : t3}�3 c=i>n : t1
∅ | {i : t2, n : t3, s : t1}�3 store s : t1 l4:

∅ | {s : t1}�3 return s : t1
{s : t1} | ∅�3 load s : t1

Fig. 6. Converting to the dual context calculus

that changes the register allocated to x, which corresponds to register-register
copy instruction. The rules for load, store and move are given below.

Σ | Π,x : t[p2] �k I : t0
Σ | Π,x : t[p1] �k move x[p1 → p2] : t0

(p1 �∈ Π)
Σ | Π,x : t[p] �k I : t0

Σ, x : t | Π �k load (p, x) : t0

Σ, x : t | Π �k I : t0
Σ | Π,x : t[p] �k store (p, x) : t0

(if |Π,x : t[p]| ≤ k, p �∈ Π)

The other rules are the same as those in SSC(LE, k) except that in Π, each
type variable has distinct register number attribute p. We call this proof system
SSC(LEA, k).

Within a block, proof transformation from SSC(LE, k) to SSC(LEA, k) is
straightforwardly done by a simple tail recursive algorithm (starting from the
entry point) that keeps track of the current register assignment of Π and a
set of free registers, and updates them every time when Π is changed due to
assignment, load or store instructions. Since the length of Π is bounded by
k, it is always possible to assign registers. An extra work is needed to adjust
register assignment before a branching instruction so that the assignment at the
branching instruction agrees with that of the target block. If the target block
is not yet processed, then we can simply set the current register assignment of
Π as the initial assignment for the block. If an assignment has already been
done for the target block and it does not agree on the current assignment, then
we need to permutate some registers by inserting move instructions using one
temporary register. If there is no free register, we have to save one and then load
after the permutation. In our current prototype implementation, we adopt a
simple strategy of trying to allocate the same register to the same liveness type
whenever possible by caching the past allocation. Minimizing register-register
moves at branching instructions requires certain amount of heuristics, which is
left as future work.

It should be noted, however, that this problem is much simpler than the
problem of combining independently colored basic blocks. Our liveness analysis
and the subsequent decompositions of variables into Σ and Π are done globally,
and therefore the set Π of register contexts are guaranteed to agree when control
flows merge.
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The remaining thing to be done is to extract machine code from a proof in
SSC(LEA, k). We consider the following target machine code.

I ::= return ri | goto l | ri = c | ri = rj | if ri goto l

| store (ri,x) | load (ri,x) | ri = rj + rk

ri is the register identified by number i. store (ri,x) stores the register ri
to the memory location named x. load (ri,x) loads the register ri with the
content of the memory location x. Since in a proof of SSC(LEA, k), each occur-
rence of variable in its register context Π is associate with a register number,
it is straightforward to extract the target machine code by simply traversing a
proof. For example, for the proof

∆

(Σ | Π,x : t1[1], y : t2[2] �k I : t0)

Σ | Π, y : t2[2] �k x = y : t0

we emit instruction “r1 = r2” and then continue to emit code for the proof ∆.
Fig. 7 shows the proof in SSC(LEA, k) and the machine code for our running

example.

5 Conclusions and Discussions

We have presented a proof-theoretical approach to register allocation. In our
approach, liveness analysis is characterized as proof reconstruction in a sequent-
style proof system where a formula (or a type) represents a “live range” of a
variable at each instruction step in a given code. Register manipulation instruc-
tions such as loading and storing registers are interpreted as structural rules in
the proof system. Register allocation process is then regarded as a proof trans-
formation from a calculus with implicit structural rules to one with explicit
structural rules. All these proof transformation processes are effectively done,
yielding a register allocation algorithm. The algorithm has been implemented,
which demonstrates the practical feasibility of the method.

This is the first step toward proof theoretical framework for register alloca-
tion; there remain number of issues to be investigated – detailed comparisons
with other approaches, relationship to other aspects of code generation such
as instruction scheduling, robust implementation and evaluation etc. Below we
include some discussion and suggestions for further investigation.

Correctness and other formal properties. In our approach, register allocation
is presented as a series of proof transformations among proof systems that dif-
fer in their treatment of structural rules. Since structural rules do not affect
the meanings, it is an immediate consequence that our approach preserves the
meaning of the code. Since our method is a form of type system, it can smoothly
be integrated in a static type system of a code language. By regarding liveness
types as attribute of the conventional notion of types, we immediately get a reg-
ister allocation method for a typed code language. Type-preservation is shown
trivially by erasing liveness and register attributes, and merging the memory
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The proof with register number annotation.

l1:

∅ | {i : t2[r1], n : t3[r0], s : t1[r2]}�3 goto l2 : t1
∅ | {i : t2[r1], n : t3[r0]}�3 s=0 : t1

∅ | {n : t3[r0]}�3 i=1 : t1

l2:

{s : t1} | {i : t2[r1], n : t3[r0]}�3 goto l3 : t1
{s : t1} | {c : t4[r2], i : t2[r1], n : t3[r0]}�3 if c goto l4 : t1

{s : t1} | {i : t2[r1], n : t3[r0]}�3 c=i>n : t1
∅ | {i : t2[r1], n : t3[r0], s : t1[r2]}�3 store s : t1

l3:

∅ | {i : t2[r1], n : t3[r0], s : t1[r2]}�3 goto l3 : t1
∅ | {i : t2[r1], n : t3[r0], s : t1[r2]}�3 i=i+1 : t1
∅ | {i : t2[r1], n : t3[r0], s : t1[r2]}�3 s=s+i : t1
{s : t1} | {i : t2[r1], n : t3[r0]}�3 load s : t1

l4:
∅ | {s : t1[r0]}�3 return s : t1
{s : t1} | ∅�3 load s : t1

The extracted machine code:

l1 : r1 = 1 l3: load r2,s
r2 = 0 r2 = r2 + r1
goto l2 r1 = r1 + 1

goto l2
l2: store r2,s

r2 = r1 > r0 l4: load r0,s
if r2 goto l4 return r0
goto l3

Fig. 7. Example of register number assignment and code emission

and register context of each sequent. We also believe that our method can be
combined with other static verification systems for low-level code.

Expressiveness. Our formalism covers the entire process in register allocation,
and as a formalism, it appears to be more powerful than the one underlying the
conventional method based on graph coloring. We have seen that liveness analysis
is as strong as the conventional method using an interference graph. Since our
formalism transforms the liveness annotated code, it provides better treatment
for register-memory move than the conventional notion of “spilling”. Although
we have not incorporated various heuristics in our prototype implementation,
our initial experimentation using our prototype system found that our method
properly deals with the example of a “diamond” interference graph discussed in
literature [1], for which the conventional graph coloring based approach cannot
find an optimal coloring. Fig. 8 shows one simple example.
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(1) The source program

L: a = d + c
b = a + d
c = a + b
d = b + c
goto L

(2) The optimized liveness proof:

{c : t3, d : t2}� goto L : t1
{b : t4, c : t3, d : t2}� discard b : t1

{b : t4, c : t3}� d=b+c : t1
{a : t5, b : t4, c : t3}� discard a : t1

{a : t5, b : t4}� c=a+b : t1
{a : t5, b : t4, d : t2}� discard d : t1

{a : t5, d : t2}� b=a+d : t1
{a : t5, c : t3, d : t2}� discard c : t1

{c : t3, d : t2}� a=b+d : t1

(3) The proof without discard:

{c : t3, d : t2}� goto L : t1
{b : t4, c : t3}� d=b+c : t1
{a : t5, b : t4}� c=a+b : t1
{a : t5, d : t2}� b=a+d : t1
{c : t3, d : t2}� a=b+d : t1

(4) The proof in SSC(LE, k):

∅ | {c : t3, d : t2}�2 goto L : t1
∅ | {b : t4, c : t3}�2 d=b+c : t1
∅ | {a : t5, b : t4}�2 c=a+b : t1
∅ | {a : t5, d : t2}�2 b=a+d : t1
∅ | {c : t3, d : t2}�2 a=b+d : t1

(5) The proof in SSC(LEA, k):

∅ | {c : t3[r0], d : t2[r1]}�2 goto L : t1
∅ | {b : t4[r1], c : t3[r0]}�2 d=b+c : t1
∅ | {a : t5[r0], b : t4[r1]}�2 c=a+b : t1
∅ | {a : t5[r0], d : t2[r1]}�2 b=a+d : t1
∅ | {c : t3[r0], d : t2[r1]}�2 a=b+d : t1

(6) The extracted machine code

L: r0 = r1 + r0
r1 = r0 + r1
r0 = r0 + r1
r1 = r1 + r0
goto L

Fig. 8. Example for a code whose interference graph forms a “diamond”

Liveness analysis and SSA-style optimization. The main strength of our
method is the representation of liveness as type system of code itself. For exam-
ple, as far as liveness analysis is concerned, our system already contains the effect
of SSA (static single assignment) transformation [4] without actually perform-
ing the transformation. The effect of renaming a variable at each assignment is
achieved by allocating a fresh type variable. The effect of φ function at control
flow merge is achieved by unification of the type variables assigned to the same
variable in different blocks connected by a branch instruction. Thanks to these
effects, our liveness analysis achieves the accuracy of those that perform SSA
transformation without introducing the complication of φ functions. Moreover,
we believe that this property also allows us to combine various techniques of
SSA-based optimization in our approach. For example, since each live range has
distinct type variables, it is easy to incorporate constant propagation or dead
code elimination. The detailed study on the precise relationship with our type-
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based approach and SSA transformation is beyond the scope of the current work,
and we would like to report it elsewhere.
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