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Abstract. We present the formalization of the rely-guarantee method
in the theorem prover Isabelle/HOL. This method consists of a Hoare-
like system of rules to verify concurrent imperative programs with shared
variables in a compositional way. Syntax, semantics and proof rules are
defined in higher-order logic. Soundness of the proof rules w.r.t. the se-
mantics is proven mechanically. Also parameterized programs, where the
number of parallel components is a parameter, are included in the pro-
gramming language and thus can be verified directly in the system. We
prove that the system is complete for parameterized programs. Finally,
we show by an example how the formalization can be used for verifying
concrete programs.

1 Introduction

The rely-guarantee method introduced by Jones [5] represents the first and most
fundamental compositional method for correctness proofs of parallel imperative
programs with shared variables. It consists of a set of axioms and inference rules
that form a sound and complete system for the derivation of correct programs
in the style of Hoare. It also has the classical advantages of Hoare logic, namely,
it is syntax oriented and compositional. In a compositional proof system, the
specification of a parallel program can be derived from the specification of the
components without knowing the implementation of these components. This is
important for the correct development of complex programs, where one would
like to verify the design at stages where implementation details are still unknown.

The rely-guarantee method can be considered as a reformulation of
the classical non-compositional Owicki-Gries method (also formalized in Isa-
belle/HOL [8]). To apply the Owicki-Gries method, programs have to be anno-
tated with an assertion at every point of interference. The verification process
requires proving that the annotations of each component be preserved by the
atomic actions of the other components. This property, called interference free-
dom, makes the method non compositional because the particular implementa-
tion of the components must be known. The idea of the rely-guarantee method
is to record the interference information in the specification of each component.
Hence, besides the classical pre and postcondition of Hoare logic, each component
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is annotated with a rely and a guarantee condition, which describe the expected
effect of the environment and of the component itself, respectively. Then, the
verification process requires proving correctness of each component separately
and some side conditions about their specifications, for which no knowledge of
the internal implementation of the components is required. That is, the resulting
proof method is compositional.

This paper presents the formalization in the theorem prover Isabelle/HOL
of the rely-guarantee proof system. The main results are:

– A higher-order logic model of: parallel programs, a semantic definition of
correctness and a proof system.

– A formalized theorem that the proof system is sound w.r.t. the semantics.

An interesting by-product of our formalization is that parameterized programs,
where the number of components is a parameter n, are naturally included in
the model. This is a consequence of the representation of parallel programs as
lists of components. Our proof rule for parallel composition allows us to derive
correct specifications of parameterized programs directly, without induction. A
soundness and completeness proof for such a system is new in the literature.

Finally, we show by an example how the formalization can be used to verify
concrete programs. In practice, the real challenge is to identify suitable rely and
guarantee conditions. This requires a full understanding of the program and a
detailed identification of the interactions that occur. Such verification exercises
are tedious and error prone. A theorem prover is a great help in the iterative
process of finding and adjusting the specifications; previous proofs can be easily
reused and details are checked automatically. The user can then concentrate only
on the most interesting steps.

The definitions and theorems shown in the paper are actual fragments of the
Isabelle theories and we hope to convince the reader of the expressiveness of
Isabelle’s syntax. Due to lack of space we cannot show all the definitions and
proofs. For a detailed exposition we refer to [11]. The full theories and proof
scripts are available at http://isabelle.in.tum.de/library/HOL/HoareParallel/.

2 Related Work

The formalization presented here is mostly inspired by [15], where the system is
proved to be sound and complete. The preciseness required by a theorem prover,
however, leads to some simplifications and improvements over the original model.
There exists a broad literature on the rely-guarantee and other related systems
that we cannot survey here. The recent book [1] presents systematically and in
a unified notation the work of more than a 100 publications and 15 dissertations
on concurrency verification.

From the theorem prover angle, much work has been done on formalizing
different concurrency paradigms like UNITY, CSP, CCS or TLA among others
(see [8] for a list of references). Remarkable formalizations for compositional ap-
proaches are [2, 9] for the UNITY framework in Isabelle/HOL and the soundness
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proof of McMillan assume-guarantee rule [6] in PVS [12]. Surprisingly, there is
not much work on embedding Hoare logics for parallelism in theorem provers.
A Hoare-style compositional proof system for distributed real-time systems has
been formalized and proved correct in PVS [4]. In this formalization, variables
are local, i.e. not shared by parallel components and communication is achieved
by means of events which are then used to model different forms of communica-
tion. Also a static checker for parallel programs has been presented in [3], where
given a suitable rely-guarantee specification for a parallel program, the tool de-
composes it in a verification problem for the sequential components, which can
be checked by an automatic theorem prover. This tool is focused on the verifica-
tion and no soundness proof has been formalized. To the best of our knowledge,
the work presented in this paper is the first formalization in a theorem prover of
a compositional system and its soundness proof for shared-variable parallelism
in the style of Hoare.

3 Isabelle/HOL

Isabelle is a generic interactive theorem prover and Isabelle/HOL is its instan-
tiation for higher-order logic. For a gentle introduction to Isabelle/HOL see [7].
Here we summarize the relevant notation and some predefined functions used in
the paper. Others will be explained as they appear.

The product type α × β comes with the projection functions fst and snd.
Tuples are pairs nested to the right, e.g. (a, b, c) = (a, (b, c)). They may also
be used as patterns like in λ(x, y). f x y. List notation is similar to ML (e.g. @ is
‘append’) except that the ‘cons’ operation is denoted by # (instead of ::). The
ith component of a list xs is written xs!i. The last element of a non-empty list
is last xs. The functional map :: (α ⇒ β) ⇒ α list ⇒ β list applies a function
to all elements of a list. The syntax xs[i := x] denotes the list xs with the ith
component replaced by x.

The datatype α option = None | Some α is frequently used to add a dis-
tinguished element to some existing type. It comes with the function the such
that the (Some x) = x. Set comprehension syntax is {x. P x} expressing the set
of all elements that satisfy the predicate P . The complement of a set A is −A.
The notation [[A1; . . . ;An]] =⇒ A represents an implication with assumptions
A1, . . . , An and conclusion A.

4 The Programming Language

We formalize a simple while-language augmented with shared-variable paral-
lelism (‖) and synchronization via an await-construct. For simplicity, each Pi
in cobegin P1‖ . . . ‖Pn coend must be a sequential command, i.e. nested par-
allelism is not allowed. We encode this stratification by defining the syntax in
two layers, one for sequential component programs and another for parallel pro-
grams. We start by defining boolean expressions as sets of states, where the state
is represented by the parameter α:
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types α bexp = α set

The syntax of component programs is given by the following datatype:

datatype α com = Basic (α ⇒ α)
| Seq (α com) (α com) (-; - )
| Cond (α bexp) (α com) (α com)
| While (α bexp) (α com)
| Await (α bexp) (α com)

The Basic command represents an atomic state transformation, for example, an
assignment, a multiple assignment, or the skip command. The Await command
executes the body atomically whenever the boolean condition holds. The rest are
well-known. Parallel programs, on the other layer, are simply lists of component
programs:

types α par-com = ((α com) option) list

The option type is used to include the empty program None as a possible com-
ponent program. For the moment, we only introduce concrete syntax of the
form c1; c2 for sequential statements. Concrete syntax is nice for representing
and proving properties of concrete programs. The main difficulty for defining
concrete syntax lies in finding a convenient representation of the state, or more
precisely, of program variables. We will come back to this issue in the example
of section 10. The rest of the paper, however, deals with meta-theory, i.e. defi-
nitions and proofs about the language itself, so we use the abstract syntax and
leave the state completely undetermined.

5 Operational Semantics

Semantics of commands is defined via transition rules between configurations. A
configuration is a pair (P , σ), where P is some program (or the empty program)
and σ is a state. A transition rule has the form (P , σ) −δ → (P ′, σ ′) where δ is
a label indicating the kind of transition. A component program can perform two
kinds of transitions: component transitions (labeled with c), performed by the
component itself, and environment transitions (labeled with e), performed by a
different component of the parallel composition or by an arbitrary environment.

5.1 Transition Rules

Rules for Component Programs: The rule for environment transitions is

Env : (P , s) −e→ (P , t)

Intuitively, a transition made by the environment of a component program P
may change the state but not the program P. The program part is only modified
by transitions made by the component itself. Such transitions are inductively
defined by the following rules:
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Basic: (Some (Basic f ), s) −c→ (None, f s)

Await : [[ s∈b; (Some P , s) −c∗→ (None, t) ]]
=⇒ (Some (Await b P), s) −c→ (None, t)

Seq1: (Some P0, s) −c→ (None, t) =⇒ (Some (P0; P1), s) −c→ (Some P1, t)
Seq2: (Some P0, s) −c→ (Some P2, t)

=⇒ (Some (P0; P1), s) −c→ (Some (P2; P1), t)

CondT : s∈b =⇒ (Some (Cond b P1 P2), s) −c→ (Some P1, s)
CondF : s /∈b =⇒ (Some (Cond b P1 P2), s) −c→ (Some P2, s)

WhileF : s /∈b =⇒ (Some (While b P), s) −c→ (None, s)
WhileT : s∈b =⇒ (Some (While b P), s) −c→ (Some (P ; While b P), s)

where P −c∗→ Q is the reflexive transitive closure of P −c→ Q. Basic actions
and evaluation of boolean conditions are atomic. The body of an await-statement
is executed atomically, i.e. without interruption from the environment, thus no
environment transitions can occur.

Rules for Parallel Programs: Parallel programs may also interact with the
environment, thus an analogous environment transition, labeled with pe, is de-
fined:

ParEnv : (Ps, s) −pe→ (Ps, t)

Execution of a parallel program is modeled by a nondeterministic interleaving
of the atomic actions of the components. In other words, a parallel program
performs a component step when one of its non-terminated components performs
a component step:

ParComp: [[ i<length Ps; (Ps!i , s) −c→ (r , t) ]] =⇒ (Ps, s) −pc→ (Ps[i :=r ], t)

Ps[i :=r ] is the list of programs Ps with the program i replaced by r. A parallel
program terminates when all the components terminate, i.e. when all component
programs are None.

5.2 Computations

A computation of a sequential program records the sequence of transitions. In [15]
it is defined as any sequence of the form

(P0, σ0)− δ1 → (P1, σ1)− δ2 → . . .− δn → (Pn, σn)− δn+1 → . . . , δi ∈ {e, c}
There are several ways to formalize this intuitive definition. We present two
formalizations that are equivalent but serve different purposes. The first one
directly follows the definition and is “obviously” the right one. The second one
is more elaborated and is useful for the proofs.
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Direct Definition of Computation: We define the set of computations, called
cptn, as the set of lists of configurations inductively defined by the following rules:

One: [(P , s)] ∈ cptn
Env : (P , t)#xs ∈ cptn =⇒ (P , s)#(P , t)#xs ∈ cptn
Comp: [[ (P , s) −c→ (Q , t); (Q , t)#xs ∈ cptn ]] =⇒ (P , s)#(Q , t)#xs ∈ cptn

The one-element list is always a computation. Two consecutive configurations are
part of a computation if they are the initial and final configurations of an environ-
ment or a component transition. Computations of parallel programs (par-cptn)
are defined analogously.

Modular Definition of Computation: The previous definition of compu-
tation clearly formalizes the one proposed in [15]. However, it represents the
execution of a program in a simplified linear way without taking the structure of
the development of a computation into account. For example, the computation
of a sequential composition is formed by the computation of the two parts and
the computation of a while-statement is formed by several computations of the
body. Retrieving this information out of the linear representation of the com-
putation is unnecessarily cumbersome. It can be elegantly avoided by defining
computations in a modular way. We propose a new definition of computation
which maintains the structure and considerably simplifies some proofs, especially
those concerning properties of while-programs.

First, we define the auxiliary function seq-with that returns, given a program
Q and a configuration (P , s), the same configuration where the program has
been sequentially composed with Q. If the concerned program is finished, i.e.
None, the returned program is just Q1:

seq-with Q ≡ λ(P ,s). if P=None then (Some Q , s) else (Some((the P); Q), s)

We define the set of computations mcptn as the lists of configurations formed
by the following rules:

MOne: [(P , s)] ∈ mcptn

MEnv : (P , t)#xs ∈ mcptn =⇒ (P , s)#(P , t)#xs ∈ mcptn

MNone: [[ (Some P , s) −c→ (None, t); (None, t)#xs ∈ mcptn ]]
=⇒ (Some P , s)#(None, t)#xs ∈mcptn

MCondT : [[ (Some P0, s)#ys ∈ mcptn; s ∈ b ]]
=⇒ (Some (Cond b P0 P1), s)#(Some P0, s)#ys ∈ mcptn

MCondF : [[ (Some P1, s)#ys ∈ mcptn; s /∈ b ]]
=⇒ (Some (Cond b P0 P1), s)#(Some P1, s)#ys ∈ mcptn

1 Isabelle’s notation does not allow tuples as arguments on the left-hand side of a
definition. Thus, λ-notation is used on the right-hand side.
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MSeq1: [[ (Some P0, s)#xs ∈ mcptn; zs = map (seq-with P1) xs ]]
=⇒ (Some (P0; P1), s)#zs ∈ mcptn

MSeq2: [[ (Some P0, s)#xs ∈ mcptn; fst (last ((Some P0, s)#xs)) = None;
(Some P1, snd (last ((Some P0, s)#xs)))#ys ∈ mcptn;
zs = (map (seq-with P1) xs)@ys ]] =⇒ (Some (P0; P1), s)#zs ∈ mcptn

MWhile1: [[ (Some P , s)#xs ∈ mcptn; s ∈ b; zs = map (seq-with (While b P)) xs ]]
=⇒ (Some (While b P), s)#(Some (P ; While b P), s)#zs ∈ mcptn

MWhile2: [[ (Some P , s)#xs ∈ mcptn; fst (last ((Some P , s)#xs)) = None;
s ∈ b; zs = (map (seq-with (While b P)) xs)@ys;
(Some (While b P), snd (last ((Some P , s)#xs)))#ys ∈ mcptn ]]

=⇒ (Some (While b P), s)#(Some (P ; While b P), s)#zs ∈ mcptn

The first two rules are the same as in the set or rules defining cptn. The rule
Comp, however, is now replaced by seven rules which correspond to different
kinds of component transitions.

The rule MNone stands for the three possible component transitions where
the program terminates, i.e. Basic, Await or WhileF. The two rules for the
conditional are obvious. (Observe that for these five cases the new definition
does not provide any richer information than the rule Comp with case analysis
on the corresponding c-step.) Rule MSeq1 represents the case where the second
program of the sequential composition is not started, whereas MSeq2 stands for
the case where at least the first program is finished. MWhile1 represents the
computations where the body is started but not finished and MWhile2 those
where the body has been executed at least once.

The new definition is specially useful for the proof of soundness of the rule
for while-programs. By using rule induction on mcptn we directly obtain the
three following cases:

1. The while-body is not entered.
2. The execution of the body is at least started.
3. The body is executed completely at least once followed by a new computation

of the same while-program, on which the induction hypothesis holds.

In contrast, the information obtained by using the same proof method on cptn
was almost useless. The equivalence of both definitions is proven in the following
theorem:

theorem cptn-iff-mcptn: cptn = mcptn

6 Validity of Correctness Formulas

In this section we formally define what it means for a program P to satisfy a
rely-guarantee specification (pre, rely , guar , post). These four conditions can be
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classified in two parts: assumptions, represented by the pre and rely condition,
describe the conditions under which the program runs, and commitments, com-
posed by the guarantee and postcondition, describe the expected behaviors of
the program when it is run under the assumptions.

The pre and postcondition are, like in the traditional Hoare logic, sets of
states. They impose conditions upon the initial and final states of a computation,
respectively. The rely and guarantee conditions describe properties of transitions
from the environment and transitions of the program, respectively. Thus, they
are sets of pairs of states, formed by the state before and after the transition.

P satisfies its specification, written |= P sat [pre, rely , guar , post ], if under
the assumptions that

1. P is started in a state that satisfies pre, and
2. any environment transition in the computation satisfies rely,

then P ensures the following commitments:

3. any component transition satisfies guar, and
4. if the computation terminates, the final state satisfies post.

Formally, validity of a specification for a sequential component program is
defined as follows:

|= P sat [pre, rely , guar , post ] ≡ ∀ s. cp (Some P) s ∩ assum (pre, rely) ⊆ comm
(guar , post)

where cp (Some P) s represents the set of computations of the component pro-
gram P starting from some initial state s, i.e. cp (Some P) s ≡ {c. c!0 = (Some
P , s) ∧ c ∈ cptn}. The definitions of assum and comm are:

assum ≡ λ(pre, rely). {c. snd (c!0) ∈ pre ∧ (∀ i . i+1 <length c −→
c!i −e→ c!(i+1) −→ (snd (c!i), snd (c!(i+1))) ∈ rely)}

comm ≡ λ(guar , post). {c. (∀ i . i+1<length c −→
c!i −c→ c!(i+1) −→ (snd (c!i), snd (c!(i+1))) ∈ guar) ∧
(fst (last c) = None −→ snd (last c) ∈ post)}

In other words, P satisfies its specification iff all computations of P that satisfy
the assumptions satisfy the commitments.

Validity of a specification of a parallel program Ps (of type α par-com),
written ||= Ps sat [pre, rely , guar , post ], is defined analogously. (Note the syn-
tactic difference between |= used for component programs and ||= for parallel
programs.)

Jones [5] first suggested that the rely and guarantee conditions be reflexive
and transitive. However, for the soundness proof only the reflexivity of the guar-
antee condition is necessary. This is to ensure that transitions corresponding to
the evaluation of boolean conditions (which do not affect the state) also satisfy
the guarantee condition. If transitivity is also required another property, namely,
observational equivalence, can be proven. In [14], the author discusses this point
in more detail. Similarly, he requires only reflexivity since in practice finding
guarantee conditions that are transitive is not easy.
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7 The Proof System

First, we define stable p q ≡ ∀ x y . x ∈ p −→ (x , y) ∈ q −→ y ∈ p. Thus, stable
pre rely reads as “pre is stable when rely holds” meaning that if a state from the
precondition performs a transition satisfying the rely condition, then the next
state still satisfies the precondition.

The derivable correctness formulas 	 P sat [pre, rely , guar , post ] are induc-
tively defined by the following set of rules:

Basic: [[ pre ⊆ {s. f s ∈ post}; {(s, t). s ∈ pre ∧ (t = f s ∨ t = s)} ⊆ guar ;
stable pre rely ; stable post rely ]] =⇒ � Basic f sat [pre, rely , guar , post ]

Seq : [[ � P sat [pre, rely , guar , mid ]; � Q sat [mid , rely , guar , post ] ]]
=⇒ � P ; Q sat [pre, rely , guar , post ]

Cond : [[ � P1 sat [pre ∩ b, rely , guar , post ]; � P2 sat [pre ∩ −b, rely , guar , post ];
stable pre rely ; ∀ s. (s, s)∈guar ]] =⇒ � Cond b P1 P2 sat [pre, rely , guar , post ]

While: [[ � P sat [pre ∩ b, rely , guar , pre]; pre ∩ −b ⊆ post ; stable post rely ;
stable pre rely ; ∀ s. (s, s)∈guar ]] =⇒ � While b P sat [pre, rely , guar , post ]

Await : [[ ∀V . � P sat [pre ∩ b ∩ {V }, {(s, t). s = t}, UNIV ,

{s. (V , s) ∈ guar} ∩ post ]; stable pre rely ; stable post rely ]]
=⇒ � Await b P sat [pre, rely , guar , post ]

Conseq : [[ pre ⊆ pre ′; rely ⊆ rely ′; guar ′ ⊆ guar ; post ′ ⊆ post ;
� P sat [pre ′, rely ′, guar ′, post ′] ]] =⇒ � P sat [pre, rely , guar , post ]

In the computation of a Basic command there is exactly one component
transition that updates the state. Before and after this component transition
there can be a number of environment transitions. The initial state satisfies
pre, thus from stable pre rely it follows that pre holds immediately before the
component transition takes place. From pre ⊆ {s. f s ∈ post} it follows that post
holds immediately after the component transition, and because post is stable
when rely holds, post holds after any number of environment transitions.

The rules for the sequential composition and conditional statements are stan-
dard. In the while-rule the precondition plays the role of the invariant; it must
hold before and after execution of the body at every iteration.

The rule for the await-statement is less obvious. By the semantics of the
await-command, a positive evaluation of the condition and the execution of the
body is done atomically. Thus, the state transition caused by the complete exe-
cution of P must satisfy the guarantee condition. This is reflected in the precon-
dition and postcondition of P in the assumptions; since these are sets of single
states, the relation between the state before and after the transformation is es-
tablished by fixing the values of the first via a universally quantified variable V.
The intermediate state changes during the execution of P must not guarantee
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anything, thus the guarantee condition is the universal set UNIV, defined as
{s. True}. However, since they are executed atomically, the environment can-
not change their values. This is reflected by the rely condition {(s, t). s = t}.
To ensure that the postcondition holds at the end of the computation, regard-
less of possible environment transitions, stable post rely is required. Finally, the
rule of consequence allows us to strengthen the assumptions and weaken the
commitments.

We now introduce the proof rule for parallel composition. Recall that in a
validity formula for a parallel program ||= Ps sat [pre, rely , guar , post ], Ps has
type α par-com with no information about the pre, post , rely and guar conditions
of each component program. This is fine to define validity, however, for concrete
verification of programs, we want to apply the rules backwards. Therefore, the
conclusion of the rule should include all the information needed in the premises.
Hence, in a derived formula for a parallel program, denoted 		 Ps sat [pre, rely ,
guar , post ], Ps is a list of tuples, each one formed by the code of the component
program and its specification. The functions Pre, Post , Rely , Guar and Com
(with obvious definitions) extract the different parts when applied to such a
“component tuple”.

Parallel :
[[ ∀ i<length Ps. � Com(Ps!i) sat [Pre(Ps!i), Rely(Ps!i), Guar(Ps!i), Post(Ps!i)];
∀ i<length Ps. rely ∪ (

⋃
j∈{j . j<length Ps ∧ j 
=i}. Guar (Ps!j )) ⊆ Rely (Ps!i);

(
⋃

j∈{j . j<length Ps}. Guar (Ps!j )) ⊆ guar ;
pre ⊆ (

⋂
i∈{i . i<length Ps}. Pre (Ps!i));

(
⋂

i∈{i . i<length Ps}. Post (Ps!i)) ⊆ post ]] =⇒ �� Ps sat [pre, rely , guar , post ]

We explain the five premises. The first one requires that each component together
with its specification be derivable in the system for sequential program.

The second one is a constraint on the rely condition of component i. An
environment transition for i corresponds to a component transition of another
component j with i �=j, or of a transition from the overall environment (which
satisfies rely). Hence, the strongest rely condition for component i is rely ∪
(
⋃

j∈{j . j<length Ps ∧ j �=i}. Guar (Ps!j )).
The third requirement imposes a relation among the guarantee conditions of

the components and that of the parallel composition: since a component transi-
tion of the parallel program is performed by one of its components, the guarantee
condition guar of the parallel program must be at least the union of the sets
specified by the guarantee conditions of the components.

The forth premise requires that the precondition for the parallel composition
imply all the component’s preconditions. Finally, the overall postcondition must
be a logical consequence of all postconditions.

This rule generalizes the particular case of composing two programs, as
known from the literature [1, 15], to composing any number of programs. As
a consequence, also parameterized parallel programs can be proved correct in a
single derivation even though they represent an infinite family of programs (see
section 9).
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8 Soundness

To prove soundness of the rule for parallel composition we first need to prove
soundness of the system of rules for sequential component programs:

theorem sound : � P sat [pre, rely , guar , post ] =⇒ |= P sat [pre, rely , guar , post ]

To state soundness of the parallel composition rule, we define a function Par-
allelCom which, given a list of “component tuples” formed by each component
program’s code and its corresponding four conditions it returns the same list
with only the component programs, i.e. the parallel program. The soundness
theorem is formulated using this function as follows:

theorem par-sound :
�� Ps sat [pre, rely , guar , post ] =⇒ ||= ParallelCom Ps sat [pre, rely , guar , post ]

Both proofs are done by rule induction. For the soundness of the system for
component programs the most interesting case is the rule for while, where the
use of the modular definition of computation results in an elegant and well-
structured proof. Soundness of the parallel rule relies on an important lemma
stating that the computation of a parallel program can be described in terms
of the computations of its components, i.e. that the semantics is compositional.
This result alone has the longest proof (about 500 lines).

9 Completeness for Parameterized Parallel Programs

By using lists to model parallel composition (see section 4) we can easily rep-
resent parameterized parallel programs via the predefined HOL functional map
:: (α ⇒ β) ⇒ α list ⇒ β list, and the construct [i ..j ], which represents the list
of natural numbers from i to j. For example, the program cobegin P 0 ‖ . . .
‖ P (n−1) coend representing the parallel composition of n components which
differ only on the index number can be represented by map (λi . P i) [0..n−1],
for which concrete syntax of the form scheme [0 ≤ i < n] P i has also been
defined.

Consequently, the rule for parallel composition and its soundness proof also
include the case of parameterized parallel programs. This means that correctness
for such programs can be proven by a single derivation (typically parameterized
by the number of components) which can then be instantiated for any parameter.
This leads to the question whether finding such a derivation is always possible,
i.e. whether the system is complete for this kind of programs.

In [10] we proved that the extended Owicki-Gries system of [8] is complete
for parameterized programs. Using this result, we prove completeness of the
rely-guarantee system for parameterized programs by reduction. The idea comes
from [13], where the author proves that the rely-guarantee system is complete rel-
ative to the Owicki-Gries system, i.e. a rely-guarantee proof can be constructed
from an Owicki-Gries proof of the same program. Thus, from the completeness of
the Owicki-Gries system for parameterized programs it follows that the extended
rely-guarantee system is also complete.
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10 Example

We verify a simple parameterized parallel program presented in [13]. The pro-
gram searches for the first element satisfying some predicate P in an array B
of length m (represented by a list). If there is one, we call it min-el, otherwise
min-el = m. Upon termination the program establishes the postcondition

min-el < m+1 ∧ (∀ i<min-el . ¬ P(B !i)) ∧ min-el < m −→ P(B !min-el).

We use n concurrent programs, S 0 ‖ . . . ‖ S (n−1) (for simplicity let n divide
m) such that S i visits the array indices i , n+i , 2∗n+i ,. . ., m+i. Each S i
uses two variables xi and yi ranging over natural numbers. There exist several
ways of formalizing program variables in such formalizations [9]. In the approach
used here the state is represented by an Isabelle record type, whose fields are
the program variables . For example, if a program has a boolean variable a
and a variable b ranging over the natural numbers, the program state would be
represented by the record:

record Example =
a :: bool
b :: nat

The advantages of this representation w.r.t. other approaches are discussed
in [11]. In our example, parameterized variables are used. These can be im-
plemented by lists or, more abstractly, functions from naturals into the corre-
sponding value domain:

record Parameterized-Example =
x :: nat ⇒ nat
y :: nat ⇒ nat

Then, an indexed variable xi in our program is represented by the function x
applied to index i, i.e. x i. To distinguish program variables we write them in
sans serif (e.g. x) in the following.

Each component program S i is a while-program which uses the variable x i,
initially set to i, for searching. It terminates if

1. P (B !(x i)) or,
2. x i > m or,
3. S k, with k �=i, has found that P (B !(x k)) for x k < x i.

Another variable y i is initially set to m+i and, if P(B !(x i)) holds, then y i is
set to x i. Then, the termination condition for S i is: ∃ j<n. y j ≤ x i. The code
of the parameterized parallel program is:

scheme [0 ≤ i < n]
while (∀ j < n. x i < y j ) do
if P (B !(x i)) then y := y (i := x i) else x := x (i := (x i)+ n) fi od
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where f (i := t) is Isabelle syntax for function update. Assignment to a param-
eterized variable is written y := y (i := x i) meaning that the variable y i is
updated to x i. The loop invariant is the predicate:

(x i) mod n = i ∧ (∀ z < x i . z mod n = i −→ ¬P (B ! z )) ∧
(y i < m −→ P (B ! (y i)) ∧ y i ≤ m+i).

Now we need to find rely and guar conditions for each component program.
Observe that for each S i the following holds:

1. The variables x i and y i are only changed by component i, thus the envi-
ronment cannot affect their values or increase y j for j �=i.

2. The program S i cannot affect the variables x j and y j for j �=i, and it does
not increase the initial value of y i.

We represent the value of a variable x after a transition by x. In the theorem
below, we show each component i of the parallel composition as a tuple formed by
the program code and its corresponding specification, i.e. the pre, rely, guar and
postcondition. This theorem states that the full annotated program is derivable
in the formalized rely-guarantee system:

theorem Parameterized-Example: m mod n = 0 =⇒
�� cobegin
scheme [0 ≤ i < n]
(while (∀ j < n. x i < y j ) do

if P (B ! (x i)) then y := y (i := x i)
else x := x (i := (x i)+ n) fi

od,
{| (x i) mod n = i ∧ (∀ z < x i . z mod n = i −→ ¬P (B ! z )) ∧

(y i < m −→ P (B ! (y i)) ∧ y i ≤ m+i) |},
{| (∀ j < n. i 
= j −→ y j ≤ y j ) ∧ x i = x i ∧ y i = y i |},
{| (∀ j < n. i 
= j −→ x j = x j ∧ y j = y j ) ∧ y i ≤ y i |},
{| (x i) mod n = i ∧ (∀ z < x i . z mod n = i −→ ¬P (B ! z )) ∧

(y i < m −→ P (B ! (y i)) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i) |})
coend
sat [{| ∀ i < n. x i = i ∧ y i = m+i |}, {| x = x ∧ y = y |}, {| True |},
{| ∀ i < n. (x i) mod n = i ∧ (∀ z < x i . z mod n = i −→ ¬P (B ! z )) ∧
(y i < m −→ P (B ! (y i)) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i) |}]

The expressions {| p |} are concrete syntax for the set of states (or pairs of states)
satisfying p. From the specifications of the components we establish the speci-
fication of the parallel program given by the four conditions after the keyword
sat. The precondition of each component is the invariant shown above and the
postcondition corresponds to the invariant and the negation of the loop guard.

The precondition {| ∀ i<n. x i = i ∧ y i = m+i |} of the parallel program
gives the initial values of the variables. We consider the parallel program to
be closed, meaning that the environment is empty. Thus, the corresponding
rely condition simply states that the program variables are not modified by the
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environment. Analogously, the parallel program must not guarantee anything to
the environment, so the guarantee condition is just True.

The proof is done by interactively applying the proof rules backwards until
all the verification conditions are generated. It requires only one application of
the consequence rule. The final verification conditions are proved with standard
Isabelle tactics for simplification and natural deduction.

When all component programs terminate, the established postcondition im-
plies that the element we were looking for, namely min-el, is the minimum of
the set {y 0, . . . ,y (n−1)}. This is proven in the following lemma:

[[∀ i<n. (x i) mod n=i ∧ (∀ z < x i . z mod n=i −→ ¬P (B ! z )) ∧
(y i < m −→ P(B ! (y i)) ∧ y i ≤ m+i) ∧ (∃ j < n. y j ≤ x i);
min-el = minimum (map y [0..n−1])]] =⇒ min-el < m+1 ∧

(∀ i < min-el . ¬ P (B ! i)) ∧ min-el < m −→ P (B ! min-el)

where the function minimum returns the least element of a list, in this case the
list [y 0,. . ., y (n−1)]. Hence, upon termination, the program establishes the
postcondition announced at the beginning of the section for the indicated value
of min-el.

11 Conclusions

We have presented the first formalization of the rely-guarantee system and its
soundness proof in a theorem prover. This work represents another successful
step towards the embedding of programming languages and their verification
calculi in theorem provers. Another interesting contribution of this work is the
extension of the formal treatment from the two-process to the n-process case,
which is a technical challenge in formal verification, and whose soundness and
completeness proofs have not been considered before.

The total number of specification lines for this formalization is 330. For the
proof of soundness we proved 90 lemmas which were proven in 2200 lines (number
of interactions with the theorem prover). Comparing it to the formalization of
the Owicki-Gries system [8] with 220 lines of specification, 49 lemmas and 340
lines of proofs, it is clear that the rely-guarantee method is more involved. This
is the price to obtain a compositional method: the underlying theory requires
more work, but yields a simpler proof system.

Machine-checking soundness proofs is labour intensive, however, it produces
not only highest confidence in the proof but also leads to optimizations and
simpler formulations, which becomes crucial as languages are enriched with more
complicated features. We hope that this work encourages further development
in this area.
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