Requirements on the Execution of Kahn Process
Networks*

Marc Geilen and Twan Basten

Dept. of Elec. Eng., Eindhoven University of Technology, The Netherlands
{m.c.w.geilen, a.a.basten}@tue.nl

Abstract. Kahn process networks (KPNs) are a programming
paradigm suitable for streaming-based multimedia and signal-processing
applications. We discuss the execution of KPNs, and the criteria for
correct scheduling of their realisations. In [12], Parks shows how process
networks can be scheduled in bounded memory; the proposed method
is used in many implementations of KPNs. However, it does not result
in the correct behaviour for all KPNs. We investigate the require-
ments for a scheduler to guarantee both correct and bounded execution
of KPNs and present an improved scheduling strategy that satisfies them.

Keywords: Kahn process networks, Kahn Principle, dynamic schedul-
ing, deadlock resolution, multi-processor architectures, media processing,
signal processing, streaming

1 Introduction

Process networks are a popular model to express behaviour of data flow and
streaming nature. This includes audio, video and 3D multimedia applications
such as encoding and decoding of MPEG video streams. Using process networks,
an application is modelled as a collection of concurrent processes communicating
streams of data through FIFO channels. Process networks make task-level par-
allelism and communication explicit, have a simple semantics, are compositional
and allow for efficient implementations without time-consuming synchronisa-
tions. There are several variants of process networks. One of the most general
forms are Kahn process networks [7,8], where the nodes are arbitrary sequential
programs, that communicate via channels of the process networks with blocking
read and non-blocking write operations. Although harder to analyse than more
restricted models, such as synchronous dataflow networks [11], the added flexi-
bility makes KPNs a popular programming model. Where synchronous dataflow
models can be statically scheduled at compile time, KPNs must be scheduled
dynamically in general, because their expressive power does not allow them to
be statically analysed. A run-time system is required to schedule the execution
of processes and to manage memory usage for the channels. The goal is to create
an execution that is as efficient as possible w.r.t. speed and memory and that is
faithful to the process network specification.

* This work is supported in part by the IST-2000-30026 project, Ozone.

P. Degano (Ed.): ESOP 2003, LNCS 2618, pp. 319-334, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

320 M. Geilen and T. Basten

In this paper, we investigate the fundamental requirements for a run-time
system for KPNs to be faithful to the semantics of the KPN specification and
to use bounded memory resources when possible. In particular, we study the
issues that arise when the conceptually unbounded FIFO channels of the KPN
are realised using bounded FIFOs.

Related Work. Reasoning about realisations of KPNs touches on the Kahn
Principle, stating that the solution to the network equations formulated by Kahn
[7] is the same as the behaviour of a model of (sequential) programs reading and
writing tokens on channels. The Principle was introduced, but not proved, by
Kahn in [7]. It was proved [5,13] for an operational model of transition systems.

Scheduling process networks using static bounded channels is extensively ad-
dressed by Thomas Parks in [12], introducing an algorithm that uses bounded
memory if possible. Based on this scheduling policy, a number of tools and li-
braries have been developed for executing KPNs. YAPI [9] is a C++ library
for designing stream-processing applications. Ptolemy II [10] is a framework for
codesign using mixed models of computation. The process-network domain is de-
scribed in [6]. The Distributed Process Networks of [15] form the computational
back end of the Jade/PAGIS system for processing digital satellite images. [14]
covers an implementation of process networks in Java. [1] is another implementa-
tion for digital signal processing. Common among all these implementations is a
multi-threading environment in which processes of the KPN execute in their own
thread of control and channels are allocated a fixed capacity. Semaphores control
access to channels and block the thread when reading from an empty or writing
to a full channel. This raises the possibility of a deadlock when one or more pro-
cesses are permanently blocked on full channels. A special thread (preempted by
the other threads) is used to detect a deadlock and initiate a deadlock resolution
procedure when necessary. This essentially realises the scheduling policy of [12].
The algorithm of Parks leaves some room for optimisation of memory usage by
careful selection of initial channel capacities (using profiling) and clever selection
of channels when the capacity needs to be increased; see [2]. [2] also introduces
causal chains, also used in this paper to define deadlocks.

Contribution. All work on practical implementations of KPNs that we found
builds on Parks’ scheduling algorithm. We show that this algorithm does not
execute all KPNs correctly and propose an improved scheduling strategy.

Organisation. Section 2 discusses the challenges related with implementing
process networks, such as memory management, scheduling and deadlock detec-
tion and resolution. An operational semantics of process networks is introduced
in Section 3 to enable reasoning about realisations of KPNs. Section 4 discusses
the properties of realisations of process networks with bounded channels and
Section 5 introduces a correct scheduling strategy. Section 6 concludes.

Requirements on the Execution of Kahn Process Networks 321

Fig. 1. An artificial deadlock

2 Implementing Kahn Process Networks

Conceptually, the FIFO communication channels of a KPN have an unbounded
capacity. A realisation of a process network has to run within a finite amount of
memory. Rather than dynamically allocating memory to channels when needed,
it is for reasons of efficiency better to allocate fixed amounts of memory to chan-
nels and change this amount only sporadically, if necessary. An added advantage
of the fixed capacity of channels is that one can use Parks’ [12] model of exe-
cution, where a write action on a full FIFO blocks until there is room again in
the FIFO. This gives an efficient intermediate form of data-driven and demand-
driven scheduling [12,2] in which a process can produce output (in a data-driven
way) until the channel it is writing to is full. Then it blocks and other processes
take over. Unfortunately, it is undecidable in general, how much buffer capac-
ity is needed in every channel [4]. If buffers are chosen too large, memory is
wasted. If buffers are chosen too small, artificial deadlocks (i.e., processes being
permanently blocked on a full channel) may occur that are not in the original
KPN. Therefore, a scheduler is needed that determines the order of execution of
processes and that manages buffer sizes at run-time.

In practice, such a scheduler should satisfy two requirements. Output should
be complete; it must coordinate progress of all processes and manage channel
capacity in such a way that the output produced by the KPN corresponds to the
output predicted by the denotational semantics introduced in [7]. Secondly, it is
important that this is achieved within bounded memory. Since memory usage of
the individual processes is not under control of the scheduler, this amounts to
keeping the FIFOs bounded, also in (conceptually) infinite computations.

An important aspect of a run-time scheduler for KPNs is dealing with dead-
locks. One should discern different kinds of deadlocks. A process network is in
global deadlock if none of the processes can make progress. In contrast, a local
deadlock arises if some of the processes in the network cannot progress and their
further progress cannot be initiated by the rest of the network. In a realisation
of a KPN, processes may be blocked if an output channel is full. This is not the
case for the conceptual KPNs. As a result, some of the deadlocks in realisations
are artificial in the sense that they do not exist in the KPN. Figure 1 shows a
process network in an artificial deadlock situation. Process w cannot continue
because its input channel to process v is empty; it is blocked on a read action
on the channel to v, denoted by the ‘r’ in the figure. The required input should
be provided by v, but this is in turn waiting for input from u. u is waiting for g.
Process ¢ is blocked, because it is trying to output a token on the full channel
to 7; the block on the write action is denoted by a ‘w’. Similarly processes r, s

322 M. Geilen and T. Basten

deadlock ‘

Fig. 2. A local deadlock Fig. 3. Non effective network

and t are blocked by a full channel. Only w could start emptying these channels,
but w is blocked. The processes are in artificial deadlock (g, r, s and ¢ would
not be blocked in the KPN) and can only continue if the capacity of one of the
full channels is increased. The deadlock is local as long as process p can con-
tinue. To guarantee the correct output of a network, a run-time scheduler must
detect and respond to artificial deadlocks. Parks proposes to respond to global
artificial deadlocks. Detection is (in [1,6,9,14,15]) realised by detecting that all
processes are blocked, some of which on a full FIFO. Although this guarantees
that execution of the process network never terminates because of an artificial
deadlock, it does not guarantee the production of all output required by the
KPN semantics; output may not be complete. E.g., in the network of Figure 2,
if the upper part reaches a local artificial deadlock, then the lower, independent
part is not affected. Processes may not all come to a halt and the local deadlock
is not detected and not resolved. The upper part may not produce the required
output. Such situations exist in realistic networks. Further, when multiple KPNs
are controlled by a single run-time scheduler, one entire process network may get
stuck in a deadlock. A deadlock detection scheme has to detect local deadlocks.

It is well known that the Kahn Principle hinges on fair scheduling of pro-
cesses [3,7,13]. Fairness means that all processes that can make progress should
make progress at some point. This is often a tacit but valid assumption if the
underlying realisation is truly concurrent, or fairly scheduled. In the context
however of bounded FIFO channels where processes appear to be inactive while
they are blocked for writing, fairness of a schedule is no longer evident. This
issue is neglected in Parks’ algorithm by responding to global deadlocks only,
leading to a discrepancy with the behaviour of the conceptual KPN.

To come to an improved scheduling strategy, we must restrict our attention to
particular classes of KPNs. It is observed in [12] that the scheduling requirements
cannot always be met; some KPNs cannot be scheduled with bounded channel
capacity meaning the second scheduling requirement cannot be achieved. Thus,
the existence of a bounded execution must be required. We argue that one further
restriction on KPNs is needed to meet the requirement of output completeness. A
problem is posed by the production of data that is never used. This is illustrated
with Figure 3. Process p writes n data elements (tokens) on channel ¢ connecting
p to process q; after that, it writes tokens to output channel a forever. ¢ never
reads tokens from c and outputs tokens to channel b forever. If the capacity of ¢ is
insufficient for n tokens, then output a will never be written to unless the capacity
of ¢ is increased. ¢ doesn’t halt and execution according to Parks’ algorithm
does not produce output on channel a. In the KPN however, infinite output is
produced on both channels. The above suggests that a good scheduler should
eventually increase the capacity of channel ¢ so that it can contain all n tokens.
However, such a scheduler fails to correctly schedule another KPN. Consider a

Requirements on the Execution of Kahn Process Networks 323

process network with the same structure as the one of Figure 3, but this time,
p continuously writes tokens on output a, mixed with infinitely many tokens to
channel c. ¢ writes infinitely many tokens to b and reads infinitely many tokens
from ¢, but at a different rate than p writes tokens to c. Note that a bounded
execution exists; a capacity of one token suffices for channel c. If process p writes
to ¢ faster than ¢ reads, channel ¢ may fill up and the scheduler, not knowing
if tokens on channel ¢ will ever be read, decides to increase channel capacity. A
process ¢ exists that always postpones the read actions until after the scheduler
decides to increase the capacity; the execution will be unbounded, although a
bounded execution exists. The above demonstrates that KPNs producing unread
tokens cannot be scheduled correctly. Our solution is to assume that every token
that is written to a channel, is eventually also read. We call such KPNs effective.

The development of a correct scheduling algorithm is based on the use of
blocking write operations to full channels as in [12]. In order to deal with local
deadlocks, we build upon the notion of causal chains as introduced in [2]. Any
blocked process depends for its further progress on a unique other process that
must fill or empty the appropriate channel. These dependencies give rise to
chains of dependencies. If such a chain of dependencies is cyclic, it indicates
a local deadlock; no further progress can be made without external help. In
Figure 1, such a causal chain is indicated by the dashed ellipse indicating the
cyclic mutual dependencies of the processes ¢, 7, s, t, u, v and w.

3 An Operational Model of Process Networks

The denotational semantics of KPNs of [7] is attractive from a mathematical
point of view, because of its abstractness and compositionality. It (purposely)
abstracts from implementation related aspects such as scheduling, performance
and resources such as channel capacities. In a realisation of a process network,
FIFO sizes and contents play an important role and are influenced by a runtime
environment that governs the execution of the network. It is for this reason that
we give a simple operational semantics of process networks, similar to [5,13].

3.1 Labelled Transition Systems

We give an operational semantics to KPNs in the form of a labelled transition
system (LTS). We use, more specifically, an LTS with an initial state, with
designated input and output actions in the form of reads and writes of tokens
on channels, as well as internal actions. For convenience, we assume a universal
set Chan of channels and for every channel ¢ € Chan a corresponding channel
alphabet X.. We use X to denote the union of all channel alphabets, and A*
(A) to denote the set of all finite (and infinite) strings over alphabet A. If 4
and j are functions from channels to strings over the corresponding alphabets,
we write ¢ < j iff for every channel ¢ in the domain of i, i(c) is a prefix of j(c).

An LTS is a tuple (S, so,I,0, Act,—>) consisting of a set S of states, an
initial state so € S, a set I C Chan of input channels, a set O C Chan (distinct
from I) of output channels, a set Act of actions consisting of input actions

324 M. Geilen and T. Basten

{c?a | ce€ I,a € X.} C Act, output actions {cla | ¢ € O,a € X.} C Act and
(possibly) internal actions (all other actions), and a labelled transition relation
— C 5 x Act x S. Thus, cla is a write action to channel ¢ with token a; c?a
models passing of a token from input channel ¢ to the LTS. We write s; —%> s
if (s1, 0, 89) € = and s; —%> if there is some so € S such that s; —2> ss.

With a write operation, the token on the output channel is determined by
the LTS. With a read operation, the token that appears on the input channel
is determined by the environment of the LTS. Therefore, a read operation is
modelled with a set of input actions that provides a transition for every possible
token of the alphabet. Kahn process networks do not exhibit non-determinism.
Transitions are deterministic and if multiple actions are available at the same
time, then they are truly concurrent (i.e., they can be executed in any order
with an identical result). We call such LTSes determinate.

Definition 1. (DETERMINACY) LTS (S, so, I, O, Act,—>) is determinate iff for
any s, 81,82 €5, oy, a0 € Act, if s 1> 51 and s —22> sq, the following hold:

1. (DETERMINISM) if a1 = «ua, then s1 = sa, i.e., executing a particular action
has a unique deterministic result;

2. (CONFLUENCE) if ay and agy are not two input actions on the same channel
(i.e., instances of the same read operation), then there is some s3 such that
51 2> 53 and s9 > s3.

3. (INpuT COMPLETENESS) if a3 = c?a for some ¢ € I and a € X, then
for every o’ € X, s %7 i.e., input tokens are completely defined by the
environment, the LTS cannot be selective in the choice of tokens;

4. (OuTPUT UNIQUENESS) if a; = cla and ay = cla’ for some ¢ € O and
a,a’ € X., then a = d’, i.e., output tokens are determined by the LTS.

A sequential LTS is a determinate LTS with the additional property that

5. (SEQUENTIALITY) if ay = cta (§ € {!,?}), for some c € TUO, a € X, then
ag = cfd’ for some a’ € X, i.e., the LTS accepts at most one input/output
operation at any point in time and no other (internal) actions.

An execution of the transition system is a sequence sy —2> s; —> ... of states
s; € S and actions «; € Act, such that s; —*> s;,1 for all ¢ > 0 (up to the
length of the execution). If p is such an execution, then we use |p| € NU {00}
to denote the length of the execution. |p| = oo if p is inﬁnite and |p| = n if
p =8y —0> 5 —H ==L s,. For k < |p|, we use p* to denote the prefix

of the execution up to and including state k.

3.2 Operational Semantics of Process Networks

We formalise an operational notion of a KPN as an LTS.
Definition 2. (KAHN PROCESS NETWORK) A Kahn process network is a tuple
(P,C,I,0,Act,{LTS, | p € P}) that consists of the following elements.

— A finite set P of processes.
— A finite set C C Chan of internal channels, a finite set I C Chan of input
channels and o finite set O C Chan of output channels, all distinct.

Requirements on the Execution of Kahn Process Networks 325

— The set Act of actions consisting of reads and writes of tokens on the chan-
nels ¢ in CUTUO: Act = {c?a,cla|ce CUIUO,a € X.}.

— FEvery process p € P is defined by a sequential labelled transition system
LTS, = (Sp, $p,0, Ip, Op, Act,5>), with I, CTUC and O, COUC.

— For every channel ¢ € C U I, there is exactly one process p € P that reads
from it (c € I,,) and for every channel c € CUQ, there is exactly one process
p € P that writes to it (c € Op).

To define the operational semantics of a KPN, we need a notion of global state
of the network; this state is composed of the individual states of the processes
and the contents of the internal channels.

Definition 3. (CONFIGURATION) A configuration of a process network is a pair
(m,7y) consisting of a process state m and a channel state v, where

— a process state 7 : P — S = UpeP Sp s a function that maps every process
p € P on a local state w(p) € Sy, of its transition system;

— a channel state v : C — X* is a function that maps every internal channel
c € C on a finite string v(c) over X..

The set of all configurations is denoted by Confs and there is a designated initial
configuration co = (mg,7Y0), where g maps every process p € P to its initial state
sp.0 and o maps every channel c € C' to the empty string e.

Definition 4. (OPERATIONAL SEMANTICS OF A KPN) We assign to a KPN
an operational semantics in the form of an LTS (Confs,co, 1,0, Act,—>). The
labelled transition relation — is the smallest relation satisfying the following
four induction rules. For reading from and writing to internal channels:

ﬂ(p)%s ~v(c) = ao,ce C W(p)%s v(c) =0,c€C

(m,7) == (w{s/p}, {0 /c}) (m,7) == (w{s/p}, r{oa/c})

(The notation f{y/x} denotes the function with the same domain as f and
identical to f, except that f(x) = y.) Input channels and output channels are
open to the environment:

(p)%scef (p)%sceo
(m,7) =4 (m{s/p},7) (m,7) =4 (m{s/p},7)

It is easy to show that if the labelled transition systems of the individual pro-
cesses P are sequential, then the labelled transition system of the KPN is de-
terminate. From a given execution p of a KPN, we extract the consumed input
and the produced output on a set D C C'U T U O of channels as follows.

— For a channel ¢ € D, p?. is a (finite or infinite) string over X, that results
from projecting p onto read actions on c;

— similarly, p!. is a (finite or infinite) string over X, that results from projecting
p onto write actions on c;

— finally, p?p = {(¢,p?:) | c € D} and plp = {(c¢,pl.) | c € D}.

326 M. Geilen and T. Basten

Thus p?; denotes the input consumed by the network in execution p and plo
denotes the output of the network. To reason about the input offered to the
network (consumed or not consumed), we say that p is an execution with input
il — XU p?r <.

In the remainder, we assume that (P,C, I, 0, Act, {LTS, | p € P}) is a Kahn
process network with LTS (Confs,co, I, O, Act,—). We can now formalise the
notions of fairness, maximality, effectiveness and boundedness.

Definition 5. p = (m,v0) —=2> (71, 71) —2> ... is an evecution of the KPN.

— (FAIRNESS) Ezecution p with input ¢ is fair iff it is finite, or it is infinite
and if at some point an input, internal or output action is enabled, it must
eventually be executed, i.e.,

o if for somen €N, ce C and a € X, (T, Yn) —<%>, then there is some
k > n such that g, = c?a;

o if forsomen €N, c€ 1l anda € X, (Tn,Vn) %>, and i(c) = (p"?.)ac
for some o € X2°, then there is some k > n such that oy = c?a;

o if for somen €N, c€ CUO and a € X, (T,) —<%>, then there is
some k > n such that oy, = cla.

— (MAXIMALITY) FEzecution p with input i is called maximal iff it is infinite
or, in its last configuration, only read actions on input channels from which
all input of i has been consumed are possible, i.e., if |p| = n and (w,,vn) 2>
then oo = c?a for some c € I and a € X and p?. =i(c).

— (EFFECTIVENESS) FEzecution p is effective iff every token produced on an
internal channel is ultimately consumed, i.e., if p?7c = plc. A KPN is called
effective iff for all inputs there exists an effective fair and maximal execution.

— (BOUNDEDNESS) Ezxecution p is bounded iff for every internal channel there
is an upper bound to the number of tokens that accumulate in it during the
ezecution, i.e., Vece€ C:IneN:VieNO0<i<|p|:|v(c) <n.AKPN
is bounded iff for all inputs there is a bounded fair and mazimal execution.

Corollary 1. Any two fair and mazimal executions of a KPN with the same
iput execute the same actions.

The question whether a KPN is bounded or effective is unfortunately undecidable
in general; this follows immediately from the fact that processes are arbitrary
sequential programs and thus Turing complete.

3.3 The Kahn Principle

The operational semantics given in the previous subsection is a model for a
realisation of a KPN. Its behaviour corresponds to the function given by Kahn’s
semantics as the least solution to a set of network equations [7] for the KPN.
This is referred to as the Kahn Principle. It was stated convincingly, but without
proof, by Kahn in [7] and was later proved by Faustini [5] for an operational
model similar to ours. Based on the operational semantics, we can derive a
functional relation between inputs and outputs. This function can then be shown
to correspond to the least solution of Kahn’s network equations. The maximal
and fair executions capture the input/output relation of the network.

Requirements on the Execution of Kahn Process Networks 327

Definition 6. (INPUT/OUTPUT RELATION) The input/output relation I0 of a
KPN is the relation {(i, plo) | p is a mazimal and fair execution with input i}.

10 is a so-called continuous function, which is the basis of the following theorem.

Theorem 1. (KAHN PRINCIPLE) [7,5] The function IO of input strings and
output strings for mazximal and fair executions corresponds to the least solution
of Kahn’s network equations of [7].

A proof of the Kahn Principle is beyond the scope of this paper and can be found
in (for instance) [5] for a similar operational model and in [13] for an operational
semantics in terms of so-called concurrent transition systems.

4 Process Networks with Channel Bounds

In this section, we study the effects of imposing channel bounds on KPNs. We
consider what happens if we execute a process network when offered some fixed
input ¢. We assume that all input offered is initially available, i.e., an input
action only blocks if all input has been consumed. When we mention executions,
we mean executions with input .

4.1 Bounded Channels

The bounded memory requirement is enforced on a process network by bounds
on the number of tokens that can accumulate in every channel. These bounds
need not be the same for all channels. We can model a realisation by an LTS,
as presented in the previous section, and an execution of the realisation by an
execution of this LTS. Choices are resolved by a scheduling mechanism that
controls when and how processes are executed on processors and that manages
memory that is used for the channels. Hence, the scheduler is a mechanism that
guides the execution through the LTS.

Definition 7. (CHANNEL BOUND) A bound b on channel contents is a mapping
C — N that maps every internal channel to the (positive) mazimum number of
tokens it can simultaneously contain. If by and by are both channel bounds, we
write by =< by to denote that for every c € C, by(c) < ba(c).

In the remainder, we refer to a KPN and a corresponding bound on its chan-
nel sizes as a process network with bounds (PNB). The operational semantics
of a PNB conforms to the operational semantics of the corresponding KPN ex-
cept that those configurations (7,v) are missing that do not respect the FIFO
bounds, i.e., if |y(c)| > b(c) for some ¢ € C. Also transitions from or to these
configurations are removed. As a consequence, where the KPN may be able to
write to a channel, a PNB may not be able to do the same if the channel is full.
This write may have to be postponed, until there is room in the channel, but
also, artificial deadlocks may arise in the transition system as a result of this
[12]. We first show that PNBs also have determinate transition systems.

Proposition 1. A PNB is determinate.

328 M. Geilen and T. Basten

Proof. The corresponding KPN is determinate. The LTS of the PNB is obtained
from the LTS of the KPN by removing states and transitions; thus determinism
is preserved. By a simple case analysis, one can show that the transitions of the
PNB are confluent, i.e., that the configuration where actions from configurations
respecting the bounds converge also stays within FIFO bounds. Since input
and output actions do not touch internal channels, also input completeness and
output uniqueness are preserved.

Note that executions of a PNB are also executions of the corresponding KPN.
Definition 8. An ezecution of a PNB is fair (maximal, effective) iff it is fair
(mazimal, effective) in the corresponding KPN.

Corollary 2. An execution of a PNB is not fair or not maximal if it perma-
nently blocks on a full channel; in its own LTS there is no enabled write transition
corresponding to the blocked write action, but such an action exists in the LTS
of the KPN implying that the execution is not fair/maximal in the KPN.

4.2 Deadlocks

A PNB behaves the same as the corresponding KPN, except for the fact that
certain write actions may be disabled by full channels. This may lead to artificial
deadlock situations. Since the amount of memory required for channels cannot
be decided upfront [4], a scheduler must provide the means to dynamically (at
run-time) increase channel capacity where needed.

If a process is blocked trying to read from an empty channel or trying to write
to a full channel, this situation can only be resolved by a unique other process
in the network or, in the latter case, by increasing FIFO capacity. These depen-
dencies may give rise to a chain of blocked processes whose blocked condition
depends on each other. In order for a process on this chain to make progress, a
process further on the chain must first make progress. This is impossible however
if the chain leads to an input and all input has been consumed, or if the chain
is cyclic. In the latter case, it is clear that the processes in this cyclic causal
chain are in local deadlock. If all channels in this chain are empty, the deadlock
is real (i.e., also present in the KPN); if not, the deadlock is artificial and can
be resolved by enlarging the capacity of a channel on that cycle.

Definition 9. (WAITING) Let p,q € P; process p is said to be waiting for pro-
cess q in configuration (w,v) of the PNB with bounds b,

— if it can read from an empty internal channel ¢ and q is the process that
writes to channel ¢; i.e., w(p) —%%> for a € L., y(c) = € and c € O;

— if it can write to a full internal channel ¢ and q is the process that reads from
channel ¢; i.e., w(p) —4&> for some a € X, |y(c)| = b(c) and c € I;

— if p=q and it has terminated; i.e., there is no o € Act such that mw(p) —5>.
Note that in the third case the process p has terminated. Saying that in that
case it is waiting for itself, simplifies further definitions. Since processes are
sequential, a process is waiting for a unique other process. This gives rise to
chains of waiting processes.

Requirements on the Execution of Kahn Process Networks 329

Definition 10. ((COMPLETE) CAUSAL CHAIN) A causal chain (of waiting pro-
cesses in configuration (m,v) with bounds b) is a sequence p = popip2 - .. Pk Of
different processes such that for all0 < n < k, p,, is waiting for p,+1 (in configu-
ration (,7y) with bounds b). Such a causal chain is called complete if py, can read
from an input channel, or it is waiting for some p,, (0 <n < k) (in configuration
(m,7) with bounds b).

Based on causal chains, we can define what we consider to be a local deadlock.

Definition 11. (LOCAL DEADLOCK) A local deadlock of a PNB is a complete
causal chain forming a cycle, i.e., the last process waiting for the first. A local
deadlock is artificial if there is a process p in the deadlock that has an enabled
write action in the corresponding KPN to a channel that is full in the PNB. A
local deadlock is called real if it is not artificial, i.e., if all FIFOs on the cycle
are empty. With a local deadlock, we associate its impact as the set of processes
that are waiting (via a causal chain) for a process in the deadlock.

A deadlock is an inherent property of a process network with its particular
FIFO bounds combined with the input provided to the network. As a direct
consequence of Corollary 1, we know that it cannot be avoided by different
scheduling (unless a schedule is unfair and slows progress so that the deadlock
is never reached). Since an artificial local deadlock involves a blocking write to
a full channel, the following proposition follows immediately from Corollary 2.

Proposition 2. If a fair and mazimal execution of a PNB exists, then none of
its executions exhibits an artificial local deadlock.

Now we can show that artificial local deadlocks are caused by a lack of capacity
in the full channels of the corresponding cycle.

Proposition 3. If a PNB with bounds b displays an artificial local deadlock and
there exists a mazimal and fair execution of the corresponding PNB with bounds
b, then in the deadlock there is some full channel ¢ such that b'(c) > b(c).

Proof. The fact that the execution with bounds b’ is maximal and fair implies
that the artificial deadlock is not encountered (Proposition 2). Let causal chain
P be a reachable artificial deadlock of the PNB with bounds b and let FC C C
be the set of full channels on this chain. Assume towards a contradiction that
there is a set b’ of bounds with b'(c) < b(c) for every ¢ € FC, allowing for a
fair and maximal execution . Now we can imagine the set b” of FIFO bounds
where b (c) = max(b(c),b'(c)) for all ¢ € C. Note that both b < b" and b’ < b".
Then the execution leading to the deadlock with bounds b is also an execution
in the PNB with bounds 4”. In that PNB, the causal chain 7 will occur in that
execution (the full channels have the same capacity as in b). But this contradicts
by Proposition 2 the fact that the network with bounds " has a fair and maximal
execution (since the network with smaller bounds b’ has one).

The previous two propositions demonstrate that the channel capacity on a
causal chain causing an artificial deadlock is insufficient and needs to be in-
creased. The deadlock is not caused by wrong scheduling (Proposition 2) and
could not have been avoided if other buffers outside of the deadlock were larger
(Proposition 3). It is not clear however which of the full FIFOs on the chain

330 M. Geilen and T. Basten

should be enlarged. As a consequence of Proposition 3, we do know that if there
exist bounds large enough to prevent the artificial deadlock, then also for all
PNBs with larger bounds, the artificial deadlock cannot occur.

Corollary 3. If a process network with bounds b permits a mazimal and fair
execution, then on the same network with bounds b, with b < V', there is no
execution that leads to an artificial deadlock.

5 Schedulers

We view a scheduler for PNBs as a strategy that determines the order of execu-
tion of individual read and write actions of all processes as well as the increase
(or decrease) of memory allocated to FIFOs. To define the result of a scheduling
strategy, we imagine that it is applied to generate some (possibly infinite) exe-
cution. We capture a series of snapshots by repeatedly observing the PNB. The
snapshots of the output (p!p) form chains of output strings. We can define the
result of the scheduling strategy to be the supremum of this chain.

Definition 12. (SCHEDULER REQUIREMENTS) A scheduling strategy should (if
possible) satisfy the following constraints (taken from [2], adapted from [12]).

— OutpuT COMPLETENESS: the output of the realisation should be equal to the
output prescribed by the denotational semantics of KPNs.

— BOUNDEDNESS: The scheduler should realise an execution where a bounded
amount of memory is used for channels.

Based upon the observation made in Section 4.2, that an artificial deadlock in-
dicates a lack of capacity in the corresponding cyclic chain, we can devise a
deadlock resolution strategy, that establishes a bounded execution if one exists.
Unfortunately, we do not know which of the full buffers on the local deadlock
should be enlarged. Therefore, we employ a strategy, that will (eventually) en-
large all full FIFOs on a local deadlock if necessary.

Definition 13. (SCHEDULING STRATEGY) A correct scheduling strategy is ob-
tained by repeating the following steps forever.

1. Execute the processes of a PNB in a data-driven fashion until either an
artificial (local) deadlock occurs or the PNB terminates. While executing,
use a scheduling policy that guarantees progress for all processes that can
continue within current FIFO bounds.

2. Resolve all artificial deadlocks by increasing the smallest full FIFO on that
deadlock by a finite amount of tokens.

Note the difference with the algorithm of Parks, where the network is executed
until all processes are blocked. In our scheduling strategy, deadlock resolution is
activated also for local artificial deadlocks.

We proceed to show that the proposed scheduling strategy satisfies the re-
quirements of Definition 12. These requirements can only be met if the KPN
is bounded and effective. Blocking because of a full channel must eventually be
resolved when the channel is emptied by another process, or it must lead to a

Requirements on the Execution of Kahn Process Networks 331

local artificial deadlock. To see this, consider a PNB where a process remains
blocked on a full channel. The tokens in the channel are eventually read in an
execution of the (effective) KPN. If this doesn’t happen in the corresponding
PNB, the process that reads the channel must also remain blocked, as well as
the process on which this process waits, and so forth. The corresponding com-
plete causal chain cannot end in an input; such a block can only be caused if all
input has been consumed. But then the contents of the full channel will never
be read contradicting effectiveness. Thus the causal chain must be cyclic, i.e.,
a local deadlock has occurred, and from effectiveness it follows that it must be
artificial.

Lemma 1. If a PNB of an effective KPN 1is scheduled according to the strat-
eqy of Definition 13 with bounds b and a process p is blocked on a write, then
during step 1 of the scheduling strategy, either this write will become unblocked

and subsequently scheduled, or p will eventually be in the impact of an artificial
deadlock.

Proof. Let (m,7) be a configuration where process p is trying to write to a
full channel ¢ € C, n(p) —42> s and |y(c)| = b(c). Process p is waiting for
process ¢ reading from channel ¢. In any execution with bounds b passing through
configuration (7,~), a read action of ¢ on channel ¢ precedes the write action cla
if it occurs. Effectiveness implies that an effective fair and maximal execution
exists on the KPN. Corollary 1 implies that, in the KPN, ¢ performs only a finite
number of read and write operations before executing a read action from c. If
during scheduling step 1, this action never occurs in the PNB, then ¢ must from
some point onward be permanently blocked, waiting for some other process r.
It cannot be blocked because of termination of process ¢ or on a read operation
from an input channel, because that would contradict effectiveness of the KPN.
The argument can be repeated for the processes ¢ and r and so forth. Since the
number of processes is finite, this implies that there is a set of processes that
remain blocked and are waiting for each other, i.e., a local deadlock. Again, this
deadlock must be artificial, because effectiveness of the KPN implies that the
reading of tokens from the full channel ¢ cannot depend on a real local deadlock.

Lemma 2. The scheduling strategy of Definition 13 applied to a PNB of a
bounded and effective KPN leads a finite number of times to an artificial dead-
lock.

Proof. The KPN is bounded, thus there exists a capacity b of tokens, such that
the PNB with bounds b, where b(c) = b for all ¢ € C, has a fair and maximal
execution. Then the sum of positive differences between b and the capacities of
the full FIFOs in some deadlock is a measure that decreases with every resolution
of this deadlock (Proposition 3) and does not increase with the resolution of other
deadlocks. At the latest when this measure reaches zero, this deadlock can no
more occur (Corollary 3). There is only a finite number of different deadlocks
and thus at some point no more artificial deadlock can occur.

Lemma 3. The scheduling strategy of Definition 18 applied to a PNB of a
bounded and effective KPN produces a fair and mazimal execution.

332 M. Geilen and T. Basten

Proof. Step 1 of the scheduling strategy guarantees progress on all actions, ex-
cept write actions to full channels. That these blocking actions cannot persist
follows from the fact that a persisting blocking write action leads to an artificial
local deadlock (Lemma 1). The deadlock is resolved by the scheduling strat-
egy. A new deadlock can occur only a finite number of times (Lemma 2). Thus
eventually, the blocked write actions must become enabled thereby guaranteeing
fairness and maximality.

This brings us to the main result, namely that the introduced scheduling strategy
is correct for the class of KPNs that are bounded and effective.

Theorem 2. The scheduling strategy of Definition 13 applied to a PNB of a
bounded and effective KPN results in an execution that satisfies both correctness
requirements of Definition 12.

Proof. (OutPuT COMPLETENESS) The output conforms to the denotational
semantics if the execution is maximal and fair (Theorem 1). That the execution
is maximal and fair follows from Lemma 3. (BOUNDEDNESS) First note that
the strategy increases the buffer sizes with a finite amount with every deadlock
detected. An unbounded schedule can only be the result of an infinite number
of deadlocks. According to Lemma 2, only a finite number of times a deadlock
can occur.

To conclude, we reflect on the restrictions of boundedness and effectiveness on
the class of KPNs, and on the influence of fairness implicit in these restrictions.

Theorem 3. There exists no scheduler that correctly schedules (i) all effective
KPNs, (ii) all bounded KPNs, or (iii) all KPNs for which a mazimal, bounded
and effective (but possibly unfair) execution exists.

Proof. (i) It is known [12] that there exist KPNs that are not bounded (but still
effective). It is obvious that they cannot satisfy the boundedness and output
completeness requirement. (ii) It follows from the example in Section 2 (Figure
3) that no scheduler exists that can schedule the described collection of KPNs
in bounded memory and with complete output. (iii) A maximal, bounded and
effective execution may exist that is not fair. It may be that it is bounded only
because a part of the network is never scheduled. It may still be output complete
if that part of the network does not produce any output. Then a bounded and
effective execution may exist that doesn’t execute that part of the network. A
scheduler however cannot decide in general whether any part of the network
contributes to the output and must schedule it, leading to unbounded memory
usage.

6 Conclusions

(Kahn) process networks are a suitable model of computation and program-
ming model for streaming-based multimedia applications. The Kahn Principle
states that any operational implementation that respects some loose fairness
constraints realises the behaviour specified by a KPN. The scheduling algorithm

Requirements on the Execution of Kahn Process Networks 333

proposed in [12], and used for many implementations of KPNs [1,6,9,14,15],
employs a scheduling and artificial-deadlock resolution strategy that does not
guarantee fairness. In this paper, we have presented an alternative scheduling
strategy that solves this problem and we have proved that for a very broad class
of KPNs (called bounded and effective), this scheduler realises the correct be-
haviour. As future work, we would like to study an efficient implementation and
the optimisation of scheduling as done in [2] for Parks’ algorithm of [12]. We
would also like to investigate the implications of distributed execution of KPNs.

References

10.

11.

12.

13.

G.E. Allen, B. Evans, and D. Schanbacher. Real-time sonar beamforming on a
UNIX workstation using process networks and POSIX threads. In Proc. of the
32nd Asilomar Conference on Signals, Systems and Computers, pages 1725-1729.
IEEE Computer Society, 1998.

. T. Basten and J. Hoogerbrugge. Efficient execution of process networks. In

A. Chalmers, M. Mirmehdi, and H. Muller, editors, Proc. of Communicating Pro-
cess Architectures 2001, Bristol, UK, September 2001, pages 1-14. I0S Press, 2001.
S. Brookes. On the Kahn principle and fair networks. Technical Report CMU-CS-
98-156, School of Computer Science, Carnegie Mellon University, 1998. Presented
at FMPS’98. Submitted to Theoretical Computer Science.

J.T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the
Token Flow Model. PhD thesis, University of California, EECS Dept., Berkeley,
CA, 1993.

A.A. Faustini. An operational semantics for pure dataflow. In M. Nielsen and
E. M. Schmidt, editors, Automata, Languages and Programming, 9th Colloquium,
Aarhus, Denmark, July 12-16, 1982, Proceedings, pages 212-224. Springer, 1982.
M. Goel. Process networks in Ptolemy II. Technical Memorandum UCB/ERL No.
M98/69, University of California, EECS Dept., Berkeley, CA, December 1998.

. G. Kahn. The semantics of a simple language for parallel programming. In J.L.

Rosenfeld, editor, Information Processing 74: Proceedings of the IFIP Congress 74,
Stockholm, Sweden, August 1974, pages 471-475. North-Holland, 1974.

. G. Kahn and D.B. MacQueen. Coroutines and networks of parallel programming.

In B. Gilchrist, editor, Information Processing 77: Proceedings of the IFIP Congress
77, Toronto, Canada, August 8-12, 1977, pages 993-998. North-Holland, 1977.

. E.A. de Kock et al. YAPI: Application modeling for signal processing systems. In

Proc. of the 37th. Design Automation Conference, Los Angeles, CA, June 2000,
pages 402-405. IEEE, 2000.

E.A. Lee. Overview of the Ptolemy project. Technical Memorandum UCB/ERL
No. M01/11, University of California, EECS Dept., Berkeley, CA, March 2001.
E.A. Lee and D.G. Messerschmitt. Synchronous data flow. IEEE Proceedings,
75(9):1235-1245, September 1987.

T.M. Parks. Bounded Scheduling of Process Networks. PhD thesis, University of
California, EECS Dept., Berkeley, CA, December 1995.

E.W. Stark. Concurrent transition system semantics of process networks. In Proc.
of the 1987 SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, Munich, Germany, January 1987, pages 199-210. ACM Press, 1987.

334

14.

15.

M. Geilen and T. Basten

R.S. Stevens, M. Wan, P. Laramie, T.M. Parks, and E.A. Lee. Implementation
of process networks in Java. Technical Memorandum UCB/ERL No. M97/84,
University of California, EECS Dept., Berkeley, CA, 1997.

J. Vayssiere, D. Webb, and A. Wendelborn. Distributed process networks. Tech-
nical Report TR 99-03, University of Adelaide, Department of Computer Science,
South Australia 5005, Australia, October 1999.

	Introduction
	Implementing Kahn Process Networks
	An Operational Model of Process Networks
	Labelled Transition Systems

	Operational Semantics of Process Networks
	The Kahn Principle
	Process Networks with Channel Bounds
	Bounded Channels
	Deadlocks

	Schedulers
	Conclusions

