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Abstract. We study the type inference problem for a distributed π-
calculus with explicit notions of locality and migration. Location types
involve names that may be bound in terms. This requires some accurate
new treatments. We define a notion of principal typing. We provide a
formal description of sound and complete type inference algorithm.

1 Introduction

In wide area distributed systems, such as the Internet, sensitive administrative
domains have to be protected against malicious agents, and tools are required
for the analysis of security properties. In this paper we focus on this topic using
Hennessy and Riely’s distributed π-calculus dπ [6]. It is based on the polyadic
asynchronous π-calculus, involving explicit and simple notions of locality and
migration. The distribution is one dimensional: in contrast with Djoin [5] or
Mobile Ambients [4], locations do not contain sub-locations (as in π� [1]). As
in Mobile Ambients, communication is purely local: only co-located processes
can communicate. Mobility is weak in the sense that we migrate code instead of
computations (as it is the case in Mobile Ambients and Djoin). Thus, this cal-
culus provides a simple but powerful framework to model fundamental features
of distributed computations.

In [6] a type system is proposed for dπ. It does not only deal with arity
mismatch of communications as sorts do for the polyadic π-calculus. It also
investigates an important issue of distributed systems: the controlled access to
system resources. There, a resource is represented by a communication channel
bound to a particular location. Hence, a location type is the set of channels
available to a process at a location. It is of the form:

{a1 : γ1, . . . , an : γn}
where each ai is a channel name and γi a channel type. Locations can be sent
through channels that have a type Ch(ψ) where ψ is a location type. For instance,
a process knowing of a location � with type {a : γ, b : γ′} has permission to use
channels a and b at � and only these. In [2], this type system is required to
guarantee the message deliverability property.
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Even though it checks crucial properties, this type system assumes that all
agents are well-typed. However, in networks such as the Internet, only few lo-
cations may be statically typed, and a dynamic type checking is necessary for
agents coming from untyped or unknown locations. A fundamental question
arises: does a type checking algorithm exist ?

We design a type inference algorithm à la ML for dπ with undecorated terms
(à la Curry). Usually, such an algorithm proceeds in two steps:

– given a term S and its initial typing context Γ (associating a type variable to
each location name of S), generate type constraints involving type variables;

– produce a substitution µ of type variables for types solving the constraints.

If the algorithm succeeds, then the application of the substitution to the initial
context µΓ is a valid typing context for S. Otherwise, S is not typable. Despite
this simple scheme, we have to face two major difficulties described below
together with the solutions worked out in this paper.
Principal typing. Basically, a principal typing is a typing context which repre-
sents all possible types by ground instantiation of type variables. Unfortunately,
this definition is not suitable here because our type system involves subtyping
on location types.

Indeed, consider the term a� | a(k).P that sends the location name � over the
channel a and binds k to � in P , and suppose that a has type Ch({b : γ, c : γ′}).
Then P is allowed to use at most b and c at the received location, that is k has
a type ψ ⊆ {b : γ, c : γ′}. And, all location names sent through a, must have a
type that declares at least b and c, that is � has a type ψ′ ⊇ {b : γ, c : γ′}. We
see that the types of � and k are related to the one of a, and all valid typings
for that term have to satisfy this relation.

Therefore, we define a principal typing for a term S as a pair (Γ ;A) where
Γ is a typing context involving type variables and A is a set of subtyping
constraints. And an instance µΓ is a valid typing for S if and only if µ
satisfies A. Thus, our algorithm generates not only equations of types but also
inequations.
Dependant types. The second and most important difficulty comes from the
fact that location types are so-called dependant types: they involve names that
may be bound in terms. For instance, consider the term Q = a(b).(ν�)P that
receives a name b, creates a location �, and triggers P . Here b is bound to (ν�)P ,
and � may be given a type {b : γ}. If we create the location � before the reception
as in R = (ν�) a(b).P , then � cannot have a type where b occurs. Otherwise typing
would not be preserved by α-equivalence of terms. However, the type inference
algorithm cannot find a type for � before the exploration of P where there is not
anymore difference between the creation of � before the reception of b and the
reverse. Thus, a naive algorithm may assign types to untypable terms!

Our solution introduces a novel notion of binding relation that, intuitively,
keeps track of the order in which channels are bound. It relates channel names
and type variables such that if (a, α), is in the relation, then it is forbidden to
substitute type variable α by a type in which name a occurs. In the first step
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u, v . . . ::= a | � | a@� values

P,Q,R . . . ::= 0 | au | a(u).P | (P | Q) | (νu)P | go �.P | !P processes

S, T, . . . ::= 0 | �[[P ]] | (S | T ) | (νa@�)S | (ν�)S networks

Fig. 1. Syntax of terms

of the algorithm, this relation is updated each time a bound channel is met.
For instance, consider R above, and suppose that � is given a type variable α.
When the algorithm treats the reception, it updates the binding relation by
associating b to each current type variable. In particular, the pair (b, α) is added
to the binding relation, thus preventing � to be assigned a type where b occurs.
In Q, � is given a fresh type variable α when the creation is met, i.e. after the
reception of b. Hence, α is not associated to b and may be substituted by {b : γ}.

We give a sound and complete type inference algorithm that produces a
principal typing. We express our algorithm in the form of a rewriting system,
which allows for neat formal proofs that can be found in [8].
Related works. Our calculus is actually a variant of the one in [6]: the latter
uses a synchronous communication and an explicit typing (terms involve types).
However, we could easily treat synchronous and decorated terms. For instance,
consider the term Q = (νa : τ )P . Applied to (νa)P , either our algorithm fails
and Q is not typable. Or it succeeds and produces a type σ for a. And Q is
typable if and only if τ is an instance of σ. Our location types are very similar
to record types of [13,10,11,7]. However, using techniques developed in these
papers, the use of a binding relation requires some accurate new treatments. To
our knowledge, the type inference algorithm presented in this paper is the first
one dealing with these kind of dependant types.

2 A Calculus with Localities

In this section we introduce our distributed calculus, we give the operational
semantics and the syntax of types. For the sake of simplicity, this calculus is
presented in its monadic version. Apart from that, it is the usual asynchronous π-
calculus with some primitives for spatial distribution and migration of processes
organised as a two-levels model: the processes (or thread) one and the network (or
configuration) one. As in [6] communication is local, that is we cannot directly
send a message from a location � to a remote process at location k: we must
migrate the message to k, and then we can communicate.

In order to state the syntax, we consider a denumerable set N of (simple)
names which is assumed to be partitioned into two sets: the channel names
Nchan = {a, b, . . .} and the location names Nloc = {�, k, . . .}. The objects of
communications may be compound that is a channel name a together with a
location name � denoted by a@� and meaning “the channel a (to be) used at
location �”. We can also abstract and restrict location names. The grammar of
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terms is given in figure 1. We denote by U, V . . . a process or a network, fn(U)
(resp. bn(U),nm(U)) the set free (resp. bound, all) names occurring in U .

Before describing types, we briefly present the operational semantics in the
“chemical style” of Berry and Boudol [3]. To this aim, we define the structural
equivalence as the least equivalence satisfying the commutative monoid laws for
parallel composition, containing the α-equivalence and satisfying the following:

((νu)U | V ) ≡ (νu) (U | V ) if subj(u) �∈ fn(V )

�[[(νu)P ]] ≡ (νu@�) �[[P ]] if subj(u) �= �

!P ≡ (P | !P ) �[[P | Q]] ≡ �[[P ]] | �[[Q]] U ≡ V ⇒ E[U ] ≡ E[V ]

where

u@� =
{
a@� if u = a
u otherwise subj(u) =

{
a if u = a or u = a@�
� if u = �

and E is any evaluation context, defined by: E ::= • | (E | U) | (νu) E | �[[E]]

As usual, in an evaluation context • stands for a “hole” and E[U ] denotes the
substitution of the hole for the term U in E providing that the resulting term is
valid. The reduction is built upon two laws, that is the standard communication
one plus a law of movement for migration:

(av | a(u).P ) → [v/u]P �[[go k.P ]] → k[[P ]]
up to structural equivalence and under evaluation context.

3 The Type System

Let V = {α, β, . . .} be a denumerable set of type variables partitioned into three
sets: the set of general type variables (t, t′, . . .), the set of channel type variables
(h, h′, . . .), and the set of location type variables (or row variables) ranged over by
ρL, ρ

′
L, . . . where L ∈ Pfin(Nchan). Types are based on the following grammar:

τ,σ, . . . ::= ψ | γ | γ@ψ | t types
γ, δ, . . . ::= Ch(τ) | h channel types

ψ, φ, . . . ::= {a : γ,ψ} | {} | ρL location types

We denote by var(τ) the set of the type variables occurring in τ. We denote by
τ, γ, ψ, . . . the ground types that is the types τ such that var(τ) = ∅. We will
often note {a1 : γ1, . . . , an : γn,ψ} for {a1 : γ1, {. . . , {an : γn,ψ}} . . .}. Typing
a location name means: “recording the names and types of channels on which
a communication is possible inside the location”. That is, a location type is a
record of channel names together with their types: this a dependant type since
it contains terms, viz. channel names. Extension of location type is achieved
by means of a row variable that may be substituted with a location type. A
location type that ends with a row variable is called an extensible location type.
In the latter, the row variable is obtained by means of the partial function
ρvar (e.g. ρvar({a : γ, ρL}) = ρL). We also denote the set of names typed in a
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k : ψ �� k : ψ � : {a : γ} �� a : γ � : {a : γ, ψ} �k a@� : γ@ψ

Γ �� u : τ

Γ,∆ �W� u : τ

Fig. 2. Type system for names

Γ,∆ �� P , ∆ �� u : τ

� : {a : Ch(τ)}, Γ �� a(u).P

� : {a : γ}, Γ �� P
Γ �� (νa)P

k : {a : γ}, Γ �� P
Γ �� (νa@k)P

k : ψ, Γ �� P
Γ �� (νk)P

Γ �W� u : τ

� : {a : Ch(τ)}, Γ �� au
Γ �� P , Γ �� Q

Γ �� P | Q
Γ �k P

Γ �� go k.P

Γ �� P
Γ ��!P Γ �� 0

Fig. 3. Type system for processes

Γ � 0

Γ �� P
Γ � �[[P ]]

Γ � S , Γ � T
Γ � S | T

� : {a : γ}, Γ � S
Γ � (νa@�)S

� : ψ, Γ � S
Γ � (ν�)S

Fig. 4. Type system for networks

location type ψ by dom(ψ) (e.g. dom({a : γ, b : δ,ψ}) = {a, b}). As for record
types in {a1 : γ1, . . . , an : γn, ρL} the names a1, . . . , an have to be distinct, an
assumption we will take throughout the paper. In order to preserve this property
by instantiation, the row variable of a type ψ is equipped with a subscript, that
is a set of names which is meant to contain at least dom(ψ). Intuitively, the
subscript L of a row variable ρL allows one to substitute it for a location type
defining channels that do not occur in L, thus avoiding duplicated assignments.
However, in the section 4 we show that with dependant types this is not sufficient.

The type of a compound name a@� is a “located channel type” γ@ψ meaning:
“a has the type γ at a remote location with a type at least ψ”. These types are
existential because γ@ψ should be read as ∃a.{a : γ,ψ}. We assume that in a(u).P
we have u �= a, and in {a1 : γ1, . . . , an : γn, ρL} we have ρL �∈ var(γ1, . . . , γn).

The type system is given in figures 2 to 4. We give a formal definition of
well-formed types in the next section. The type system deals with sequents of
the form Γ 
� P , for checking that the process P , placed at the current location
�, conforms to the typing assumption Γ , and similarly Γ 
 S for systems. We
have two kinds of sequents for names: Γ 
W� u : τ to type names with weakening
of hypotheses and sequents Γ 
� u : τ without weakening. The latter are used to
type formal parameters in input.
A typing context Γ is a mapping from a finite subset dom(Γ ) of Nloc into the set
of ground location types. We use of a partial operation of union ∆,Γ of typing
contexts, defined as follows:



258 C. Lhoussaine

(∆,Γ )(x) =



∆(�) if � ∈ dom(∆)− dom(Γ )
φ � ψ if ∆(�) = φ & Γ (�) = ψ

Γ (�) if � ∈ dom(Γ )− dom(∆)

where ψ�φ denotes the union of ψ and φ, which is only defined if ψ and φ assign
the same types to the names they share. As usual, we assume that bound names
are renamed such that no collision with other bound or free names arises.

We comment the rules and note some elementary properties. In the rules
for names without weakening the conclusion determines the context. Namely, if
Γ 
� u : τ and ∆ 
� u : τ then Γ = ∆. The rule for output involves a form of
subtyping for localities: for instance, the judgement

� : {b : γ, c : δ} , k : {a : Ch({b : γ})} 
k a�
is valid, even though the type of � given by the context is more generous than the
one carried by the channel a. As usual, to type the body of an input the context
is enriched with the information necessary for the typing the formal parameters.
There are three cases for typing a name generation (νu)P and the rules follow
the same pattern as these for typing names. To type a migrating process go �.P ,
one must type P at locality �, while the resulting current locality is immaterial.

The main result concerning this type system is the subject reduction prop-
erty: if Γ 
 S and S → T , then Γ 
 T . The proof can be found in [8].

4 Managing the Dependant Types

In this section, we define and motivate the notions of principal typing and
binding relations. Our type inference algorithm consists, as usual, of two steps:

1. from a term and an initial typing context, generate type schemes constraints,
2. then we search the most general solution to the constraints such that its

application to the initial typing context provides a principal typing. This is
so-called constraint unification.

Let us begin with substitutions. A substitution (µ, λ, . . .) is a finite mapping
from type variables to types. For µ = [τ1/α1, . . . , τn/αn] we denote by dom(µ)
the set {α1, . . . , αn} and by vrang(µ) the set

⋃
i∈{1...n} var(τi). We consider

idempotent substitutions, in particular we have dom(µ)∩vrang(µ) = ∅. Outside
its domain a substitution is intended to be the identity. They are trivially
extended to homomorphisms on types and other objects (as contexts, subtyping
assertions, etc.). We note λµ the composition of λ and µ, and ∅ the empty
substitution.

Principal Typing. Usually, by principal typing for a term U , we mean a context
involving type schemes (denoted by Γ,∆, . . . and called context schemes) and
whose all ground instantiations are valid typing contexts for U . However, this
definition is too permissive because such a principal typing could involve invalid
instantiations as the following example emphasises.
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Example 4.1. Consider S = �[[a� | bc]] where c has some type γ. Then � has type
{a : Ch(ψ), b : Ch(γ), c : γ}

where ψ can be either {b : Ch(γ), c : γ}, {b : Ch(γ)}, {c : γ} or {}. One might
expect the context scheme Γ = � : {a : Ch(ρ′∅), b : Ch(γ), c : γ, ρ{a,b,c}} to be
a most general typing for �. Obviously this is not case since, for instance, the
application of the substitution [{b : Ch(Ch(γ))}/ρ′∅] does not give a valid type
for �. This happens because b is used as a channel of type Ch(Ch(γ)) whereas a
actually sends � where b has the type Ch(γ). �
We introduce a relation ψ <: φ on location types (similar to the one of [6]) that
can be understood as φ ⊆ ψ, seeing location types as sets. More formally,
Definition 4.1. We define the relation <: on location types as follows:

ψ <: {} ψ <: ρL ψ <: φ⇒ {a : τ,ψ} <: {a : τ, φ}
This relation defines subtyping assertions. The subtyping assertions of the form
ψ <: ρL are called atomic. Moreover, we write ψ ≡ φ if ψ <: φ and φ <: ψ. 1

We can observe subtyping in receptions and emissions of location names. For
instance, if P in a(�).P uses channels a1, . . . , an at location � then a must have
a type Ch(ψ) where ψ assigns at least a type to each ai. Therefore, in P , � has
a type φ such that ψ <: φ. Symmetrically, when emitting k on a, k must have a
type φ′ that assigns to each ai the same type as ψ does; that is φ′ <: ψ.
Example 4.2. Let us consider the term S = �[[ak | a(�′).go �′.bd]] | k[[cd]] where
d has some type γ. After the input of k on a, S migrates to k a message on b.
Then any location transmitted on a has to define at least a channel b with type
Ch(γ). Then, S can be associated with the following context scheme:

� : {a : Ch({b : Ch(γ), ρ{b}}), ρ′{a}}, k : {b : Ch(γ), c : Ch(γ), ρ′′{b,c}}
a may also have the type Ch({b : Ch(γ), c : Ch(γ)}) that can be obtained by the
ground substitution [{c : Ch(γ)}/ρ{b}]. Not all substitutions of ρ{b} give valid
typings for a (as for instance [{c : Ch(Ch(γ))}/ρ{b}]). However, whether or not
a substitution gives valid types for S is easily decidable: any substitution µ that
preserves the atomic subtyping assertion {c : Ch(γ), ρ′′{b,c}} <: ρ{b} (that is such
that µ{c : Ch(γ), ρ′′{b,c}} <: µρ{b} is still valid), preserves the typing of S. This
leads to the following definition of principle typing. �
Definition 4.2. Let A be a set of atomic subtyping assertions, we say that Γ;A
is a principal typing for S if 1) for all ground substitution λ that preserves A, we
have λΓ 
 S, 2) for all ∆ such that ∆ 
 S, there exists a ground substitution λ
that preserves A such that ∆ =dom(Γ) λΓ and λΓ 
 S.

Binding relations. In order to keep the names of a location type distinct, as in
[11], a row variable of a type ψ is equipped with a subscript. It is a set of names
which is meant to contain at least dom(ψ). In this case ψ is said well-formed.
Substitutions have to satisfy the following requirements: (i) if µρL = ψ, then
1 We assume that this should not be confused with structural equivalence. Intuitively,

ψ ≡ φ means that ψ and φ are identical modulo their row variables.
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dom(ψ) ∩ L = ∅, (ii) and if ρvar(ψ) = ρ′L′ then L ⊆ L′. Condition (i) forbids
the substitution of a row variable with a type that contains a label belonging
to the subscript. However, in presence of dependant types, those subscripts are
not anymore sufficient. Indeed, the names occuring in location types belongs
to the same syntactic category of the names that may be bound in the terms.
Moreover, the latter are not supposed to occur in the principal typing produced
for it. However, the algorithm “deconstructs” the term, and names that were
initially bound appear later free. For instance, associating the context scheme
� : ρ∅, k : ρ′∅ to the network S = �[[a(b).go k.bc]], after two deconstructions the
term go k.bc appears in which b is free and supposed by known at k. So, we
may substitute ρ′∅ with a location type that assigns a type to b. However, S is
not typable since it tries to use the name b local to � at a remote location k.
To amend this, we could declare that if the generated substitution has bound
names in its range, then it is not a valid one, and conclude that the term is not
typable. However, this would be too strong. Indeed, consider the term

T = �[[d(b).(νa)Q]] where Q = (a� | a(k).go k.bc)

that waits at location � for a channel b, then it creates a channel a carrying the
location �. Since b and c are used by a process spawned at a location received
along a, a must have at least the type Ch({b : Ch(γ), c : γ}). A bound name
(b) appears in the type of a. However, this is not at variance with the fact
that bound names do not appear in the typing context of a term because T is
actually typable with the context � : {d : Ch(Ch(γ))} in which the type of a does
not appear. But in the type inference we have to compute all the types and
produce a substitution that may contains bound names in its range. Therefore,
we generalise the notion of subscripts of row variables to all type variables in a
stronger form. Intuitively, we associate to each variable α, a set L representing
the names not compatibles with α. That is, substitution are not allowed to map
α into a type containing elements from L. Contrary to the row variables, those
generalised subscripts have to be dynamically updated along the type inference.
We formalised this notion by means of finite relations of Nchan × V.

Definition 4.3. A binding relation B is a finite subset of Nchan × V. We note
B(α) the set {a | (a, α) ∈ B} and im(B) the set {a | ∃α.(a, α) ∈ B}.
Binding relations appears as subscripts of row variables: {a : γ, b : δ, ρ{b}} can
be considered well-formed with respect to the binding relation B = {(a, ρ{b})}.
Indeed, a substitution that respects B never substitutes ρ{b} by a type containing
a and therefore never duplicates its typing. However, we must keep the subscripts
of the row variables because the binding relations are stronger constraints. For
instance, we want to be able to extend {b : γ, α} with {a : Ch({b : γ})}. This
would be allowed by subscripts (that is if α = ρ{b}), but not by binding relations
(that is if α = ρ∅ and B(ρ∅) = {b}) because subscripts are only concerned with
the domains of location types, while binding relations are concerned with the
types (in this sense binding relations are stronger). The consequence is that the
well-formedness of types depends on binding relations. We say that ψ is well-
formed with respect to B if the names of dom(ψ) are all distinct, and, if ψ is
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t :: B h :: B
τ :: B

Ch(τ) :: B
γ :: B , ψ :: (L,B)

γ@ψ :: B

ψ :: (L,B)

ψ :: B {} :: (L,B)

γ :: B , ψ :: (L � {a},B)

{a : γ,ψ} :: (L,B)

L′ = L ∪ B(ρL)

ρL :: (L′,B)

Fig. 5. Well-formedness of types with respect to a binding relation

extensible with row variable ρL, then dom(ψ) ⊆ L ∪ B(ρL). More formally, a
type τ is well-formed with respect to B if there exists a proof of the judgement
τ :: B in the inference system given in figure 5 where L is finite set of names.
Definition 4.4. We say that a substitution µ respects a binding relation B if

1. ∀α ∈ dom(µ),nm(µα) ∩ B(α) = ∅ and µα :: B,
2. ∀ρL ∈ dom(µ),dom(µρL) ∩ L = ∅, and if ρvar(µρL) = ρ′L′ , then B(ρL) ⊆
B(ρ′L′) and L ⊆ L′ ∪ B(ρ′L′).

The first point of this definition simply says that µ assigns types to variables
according to what the binding relation allows, and that those types are still
well-formed. The second point is a generalisation of the requirements (i) and (ii)
given above to guarantee that substitution preserves the well-formedness.
Lemma 4.1. 1. if τ :: B and µ respects B, then µτ :: B,
2. if B ⊆ B′ and τ :: B then τ :: B′.

Unfortunately, the composition of two substitutions that respect B does not
necessarily respect B. For instance, µ = [ρ∅/t] and λ = [{a : γ, ρ′{a}}/ρ∅] respect
B = {(a, t)}. However, the composition λµ = [{a : γ, ρ′{a}}/ρ∅, {a : γ, ρ′{a}}/t]
does not respect B, because a ∈ nm(λµt) whereas a ∈ B(t).
Definition 4.5. B is µ-closed if ∀α ∈ dom(µ),∀β ∈ dom(µα).B(α) ⊆ B(β).

Lemma 4.2. Let µ be a substitution that respects B and B be µ-closed, then
for all substitution λ that respects B, λµ respects B.
It is easy, from a binding relation to construct an another one that is µ-closed.
Definition 4.6. We define the µ-closure of B as the following binding relation:

B ∪⋃α∈dom(µ)

⋃
β∈var(µα) B(α)× {β}

The reader can easily check that if µ respects B, then µ still respects its µ-closure.

5 Solving Type Constraints

In this section we give an algorithm solving type constraints in terms of a rewrit-
ing system. The usual unification problem is: given equations between types, does
there exist a substitution for type variables that equates types ? As for unifica-
tion of record types, all type equality is supposed to be modulo the equation E:
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{a : h, {b : h′, ρL}} =E {b : h′, {a : h, ρL}}
That is, the ordering of the fields of location types doesn’t matter. For instance,
{a : γ, b : γ′, ρ{a,b}} and {b : γ′, a : γ, ρ{a,b}} define the same location type.
Definition 5.1. A typing constraint is a set E of equations between type schemes
{τ1

.= σ1, . . . , τn
.= σn}. A subtyping constraint is a set I of inequations between

location types {ψ1 � φ1, . . . ,ψn � φn}. We say that µ is a solution of E (resp. I)
if µτi = µσi (resp. µψi <: µφi) for all 1 ≤ i ≤ n. We note E :: B if τi :: B and
σi :: B for all 1 ≤ i ≤ n and similarly for I :: B. We write ψ≡̇φ for ψ�φ∧φ�ψ.
We write µ =X λ where X is a set of type variables if µα = λα for all α ∈ X .

Definition 5.2. µ is more general on X than λ if and only if there exists a
substitution µ′ such that λ =X µ′µ. In this case we write µ ≤X λ.

Definition 5.3. A constraint is a tuple (E , I)B such that E :: B and I :: B. A
substitution µ is a principal solution of (E , I)B on X , if for all ground solution λ
of E and I that respects B, we have µ ≤X λ.

In figure 6 we define a reduction relation � on tuples (E , I, µ)XB . We make
use of the abbreviation ψ � ρL for [ρL/ρvar(ψ)]ψ. The idea is that starting from
(E , I, ∅)XB – that is a constraint (E , I)B, a set of type variables X containing
those occuring in E and I and the empty substitution – we apply the reduction
relation until we reach either a configuration (∅A, µ)YB where µ is a principal
solution of (E , I)B on X , or the failure configuration ⊥ if E and I have no
common solution. This relation almost consists of the decompositions of pairs
of types until one of these is a type variable. Then (rule (elim)), the current
substitution µ is composed with the substitution of the type variable for the
other type (the latter being also applied to the remaining constraint) provided
that it respects the current binding relation. The condition α �∈ var(τ) ensures
that there is no remaining occurrence of the eliminated variable in the resulting
constraint, thus avoiding infinite reductions. If this condition fails, the occurs
check rule (oc) leads to the failure configuration. The rule (triv) removes trivial
equations. The rules (chan) and (at) simply decompose types. Rule (loc2) unifies
location types with disjoint domains: it extends each location by means of an
appropriate substitution of their row variables.

Rules (st1) and (st2) are used to solve subtyping inequations. The first one
asserts that {a : γ,ψ} � {a : δ, φ} has a solution if we can unify γ with δ and if
ψ � φ has a solution. Rule (st2) applies on ψ � φ when the channels defined in
φ are not in ψ. We then extend ψ with the channels typed in φ with respect to
the current binding relation.

Definition 5.4. We say that (E , I, µ)XB is a well-formed configuration if
dom(µ) ∩ var(E , I) = ∅, var(E , I, µ) ⊆ X , µ respects B that is µ-closed, E :: B
and I :: B.

This definition gives some invariants for the reduction relation of unification.
Lemma 5.1. The property of well-formed configuration is preserved by �.
The following lemma states the preservation of solutions by the reductions.
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(triv) ({α .= α} ∪ E , I , µ)XB � (E , I , µ)XB

(elim) ({α .= τ} ∪ E , I , µ)XB � ([τ/α]E , [τ/α]I , [τ/α]µ)XB′

(chan) ({Ch(τ) .= Ch(σ)} ∪ E , I , µ)XB � ({τ .= σ} ∪ E , I , µ)XB

(at) ({γ@ψ .= δ@φ} ∪ E , I , µ)XB � ({γ .= δ,ψ .= φ} ∪ E , I , µ)XB

(loc1) (
{
{a : γ,ψ} .= {a : δ, φ}

}
∪ E , I , µ)XB � ({γ .= δ} ∪ {ψ .= φ} ∪ E , I , µ)XB

(loc2) ({ψ .= φ} ∪ E , I , µ)XB � (λE , λI , λµ)YB′

(clash) ({σ .= τ} ∪ E , I , µ)XB � ⊥
(oc) ({α .= τ} ∪ E , I , µ)XB � ⊥
(st1) (E ,

{
{a : γ,ψ}� {a : δ, φ}

}
∪ I , µ)XB � ({γ .= δ} ∪ E , {ψ � φ} ∪ I , µ)XB

(st2) (E , {ψ � φ} ∪ I , µ)XB � (λE , {ψ � ρ′′L′′ � ρ′L′} ∪ λI , λµ)YB′

where in
(elim) α �∈ var(τ) ∪ Vloc, , α �∈ dom(µ), nm(τ) ∩ B(α) = ∅,B′ is the [τ/α]-closure of B.
(loc2) Y = X � {ρ′′L′′},ψ′ = ψ � ρ′′L′′ , φ′ = φ � ρ′′L′′ and λ = [ψ′/ρ′L′ , φ

′
/ρL] with

ρL = ρvar(ψ), ρ′L′ = ρvar(φ), and L′′ = (L− B(ρ′L′)) ∪ (L′ − B(ρL)) and if

• dom(ψ) ∩ dom(φ) = ∅, L′ ∩ dom(ψ) = ∅ and L ∩ dom(φ) = ∅
• nm(ψ) ∩ B(ρ′L′) = ∅ and nm(φ) ∩ B(ρL) = ∅
• ρL �∈ var(φ)− ρ′L′ and ρ′L′ �∈ var(ψ)− ρL
• B′ is the λ-closure of B.

(clash) σ and τ are not type variables and have distinct top symbols, or are
locality types with disjoint domains and conditions of (loc2) fail.

(oc) α ∈ var(τ).

(st2) Y = X � {ρ′′L′′}, λ = [φ � ρ′′L′′/ρL] with ρL = ρvar(ψ), ρ′L′ = ρvar(φ), and

if φ �∈ Vloc, dom(ψ) ∩ dom(φ) = ∅, L ∩ dom(φ) = ∅, ρL �∈ var(φ)− ρ′L′ ,
nm(φ) ∩ B(ρL) = ∅, L′′ = (L− B(ρ′L′)) ∪ (L′ − B(ρL)),

B′ = B′′ ∪ B(ρ′L′)× {ρ′′L′′} where B′′ is the λ-closure of B.

Fig. 6. Reduction relation for unification

Lemma 5.2. If (E , I, µ)XB �∗ (E ′, I ′, µ′)YB′ and (E , I, µ)XB is a well-formed con-
figuration, then µ′ = µµ′′ and,

1. for all λ ground solution of E and I that respects B, then there exists λ′ such
that λ =X λ′µ′′ and λ′ is a ground solution of E ′ and I ′ that respects B′.

2. For all solution λ of E ′ and I ′ that respects B′, λµ′′ is a solution of E and
I that respects B′.
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Lemma 5.3 (Termination). All sequence of reductions
(E , I, ∅)XB � (E ′, I ′, µ′)YB′ � . . . terminates either with ⊥ or with (∅,A, µ)YB′′
where A is a set of atomic subtyping assertions.

We can finally state the soundness and completeness of our unification algorithm.

Proposition 5.1 (Soundness). If (E , I, ∅)XB is a well-formed and (E , I, ∅)XB
�∗ (∅,A, µ)YB′ ��, then µ is a principal solution of (E , I)B on X and µ respects
B′.
Lemma 5.4. (E , I, ∅)XB �∗⊥ iff E and I have no solution that respects B.

Proposition 5.2 (Completeness). If E and I have a solution that respects
B, if E :: B and I :: B, then (E , I, ∅)XB �∗ (∅,A, µ)YB′ �� where X = var(E , I).

6 Constraint Generation

In this section we describe the inference of types, that is starting from a network
term and a minimal typing context, we generate a constraint whose principal
solution applied to the initial context gives a principal typing. By initial context,
for a term S, we mean the set of location names occurring free in S, associated
with a row variable as type. The idea of the algorithm is to build incrementally
the inference tree of the typing of a term, i.e. is the inference tree in the inference
system described in section 3. This is done by means of a rewriting system which
acts on tuples (J , E , I)XB where J is a set of sequents involving context schemes
and (E , I)B is the constraint being generated. The reduction is very close to
the inference system. Indeed, given a sequent in the tuple, the reduction mostly
consists in replacing it by the sequents that are premises of the corresponding
rule in the inference system. Possibly, constraints are also generated accordingly.

The rules are collected in figures 7 where an underscore ( ) denotes an ir-
relevant component. We just comment the rules for the binding constructs, the
others being relatively straightforward. For an input process the type system
uses the auxiliary type system without weakening for names. Since it is very
simple and completely deterministic, given a name u, a type τ and a location
� we can easily determine Γ such that Γ 
� u : τ. Actually, τ only needs to be
a type variable and u a location or a compound name. We use gen(u : α, �) to
generate adequate context schemes and typing constraints for the typing of u.

Definition 6.1. We define the function gen(u : t, �) = (Γ, E ,X ) as follows:

gen(k : t, �) = (k : ρ∅, {t .= ρ∅}, {ρ∅})
gen(a@k : t, �) = (k : {a : h, ρ∅}, {t .= h@ρ∅}, {h, ρ∅})

where � �= k, ρ∅ and h are fresh type variables.

In the rule (p2b), the body of an input (of a location or a compound name) is
typed in the initial context extended with the context provided by gen. This
extension is allowed since the name(s) received does not already occur in the
context and all type variables of the extending context are assumed to be fresh.
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(n1) ({Γ �W� k : t} ∪ J , E , I)XB � (J , E ∪ {t .= ρ∅}, I ∪ {Γ(k) � ρ∅})X�{ρ∅}B

(n2) ({Γ �W� a : t} ∪ J , E , I)XB � (J , E ∪ {t .= h}, I ∪
{

Γ(�) � {a : h, ρ{a}}
}

)
X�{ρ{a},h}
B

(n3) ({Γ �W� a@k : t} ∪ J , E , I)XB � (J , E ∪ {t .= h@ρ′∅},
I ∪

{
ρ{a}≡̇ρ′∅,Γ(k) � {a : h, ρ{a}}

}
)
X�{h,ρ{a},ρ′∅}
B

(p0) ({Γ �� 0} ∪ J , , )XB � (J , , )XB
(p1) ({Γ �� au} ∪ J , E , )XB � (J ∪ {Γ �W� u : t} ,

E ∪
{

Γ(�) .= {a : Ch(t), ρ{a}}
}
, )
X�{t,ρ{a}}
B

(p2a) ({Γ �� a(b).P} ∪ J , E , I)XB � ({∆ �� P} ∪ J ,
{

Γ(�) .= {a : Ch(h), ρ′′{a}}
}
∪ E ,

{ρ∅≡̇ρ′∅} ∪ I)YB′
(p2b) ({Γ �� a(u).P} ∪ J , E , I)XB � ({Γ,∆ �� P} ∪ J ,{

Γ(�) .= {a : Ch(t), ρ{a}}
}
∪ E ∪ E ′, I)YB′

(p3) ({Γ �� P | Q} ∪ J , , )XB � ({Γ �� P,Γ �� Q} ∪ J , , )XB

(p4) ({Γ �� (νa)P} ∪ J , , I)XB � (∆ �� P} ∪ J , , {ρ∅≡̇ρ′∅} ∪ I)
X�{ρ′∅,h}
B′

(p5) ({Γ �k (νa@�)P} ∪ J , , I)XB � ({∆ �k P} ∪ J , , {ρ∅≡̇ρ′∅} ∪ I)
X�{ρ′∅,h}
B′

(p6) ({Γ �� (νk)P} ∪ J , , )YB � ({k : ρ∅,Γ �� P} ∪ J , , )X�{ρ∅}B
(p7) ({Γ �� go k.P} ∪ J , , )XB � ({Γ �k P} ∪ J , , )XB
(p8) ({Γ ��!P} ∪ J , , )XB � ({Γ �� P} ∪ J , , )XB
(s0) ({Γ � 0} ∪ J , , )XB � (J , , )XB
(s1) ({Γ � �[[P ]]} ∪ J , , )XB � ({Γ �� P} ∪ J , , )XB
(s2) ({Γ � S | S′} ∪ J , , )XB � ({Γ � S,Γ � S′} ∪ J , , )XB

(s3) ({Γ � (νa@�)S} ∪ J , , I)XB � ({∆ � S} ∪ J , , {ρ∅≡̇ρ′∅} ∪ I)
X∪{t,ρ′∅,h}
B′

(s4) ({Γ � (ν�)S} ∪ J , E , )XB � ({� : ρ∅,Γ � S} ∪ J , E , )X�{ρ∅}B
(f) (J , , )XB � ⊥

where in
(p2a) ∆ =dom(Γ)−� Γ,∆(�) = [{b : h, ρ′∅}/ρ∅]Γ(�) with ρ∅ = ρvar(Γ(�)),

Y = X � {h, ρ′∅, ρ′′{a}}, and B′ = B ∪ (B(ρ∅)× {ρ′∅}) ∪ ({b} × Y)

(p2b) (∆, E ′,X ′) = gen(u : t, �),Y = X � X ′ � {t, ρ{a}},B′ = B ∪ (chan(u)× Y),

(p4,5) (s3) ∆ =dom(Γ)−� Γ and ∆(�) = [{a : h, ρ′∅}/ρ∅]Γ(�) with ρ∅ = ρvar(Γ(�)),

and B′ = B ∪ (B(ρ∅)× {ρ′∅}) ∪ ({a} × X � {ρ′∅, h})
(f) ∃Γ ∈ J that is not legal or if conditions of the previous rules fail.

Fig. 7. Constraints generation for processes and networks

Moreover, the binding relation is updated in order to forbid the substitution
of any current type variables with a type in which the bound channel occurs.
When the name received is simple (say b, in rule (p2a)), the type ψ assigned to
the current location � in Γ have to be extended with a type assignment for b. This
is performed by the substitution of the row variable ρ∅ of ψ with a location type
assigning a type (variable) to b. We have to maintain the coherence between the
fresh row variable of the type assigned to � in the new context (∆) and the one in
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Γ (that may still occurs in the remains tuple). This is achieved by equating those
two row variables. As in (p2b), we update the binding relation but so as to keep
∆ well-formed with respect to the new binding relation. Rules for restrictions
(p4, p5 and s3) are very similar.

We give some invariants and states the termination of the reduction. We
denote by bn(J ) the set of bound names of terms in J .

Definition 6.2. We say that (J , E , I)XB is a well-formed configuration if:

1. var(J , E , I) ⊆ X ,
2. E :: B, I :: B and all types in J are well-formed with respect to B.
3. bn(J ) ∩ im(B) = ∅,
4. for all Γ ∈ J we have dom(Γ) ∩ bn(J ) = ∅ and for all � ∈ dom(Γ) we have

Γ(�) has the form {a1 : h1, . . . , an : hn, ρ∅} with B(ρ∅) = im(B).

Lemma 6.1. The property of well-formed configuration is preserved by �.

Lemma 6.2. All sequence of reductions (J , E , I)XB � (J ′, E ′, I ′)X ′B′ � . . .
terminates either with ⊥ or with (∅, E ′′, I ′′)YB′′ .
We say that a substitution λ is solution of (J , E , I) if it is a solution of E and
I, and if it validates the sequents in J .

Proposition 6.1. Let (J , E , I)XB be well-formed, and (J , E , I)XB �∗
(J ′, E ′, I ′)YB′
1. if λ is a ground solution of (J , E , I) that respects B with nm(im(λ)) ∩

bn(J ) = ∅, then there exists µ =X λ with nm(im(µ)) ∩ bn(J ′) = ∅, and
µ is a solution of (J ′, E ′, I ′) that respects B′.

2. if λ is a ground solution of (J ′, E ′, I ′) that respects B′, then λ is also a
solution of (J , E , I).

The unification combined with this reduction provide a sound and complete type
inference algorithm.

Theorem 6.1 (Soundness). Let Γ be an initial context for S, and X = var(Γ),
if ({Γ 
 S}, ∅, ∅)X∅ �∗ (∅, E , I)YB and (E , I, ∅)YB �∗ (∅,A, µ)ZB′ �� then µΓ;A is
a principal typing for S.

Lemma 6.3. Let Γ be an initial context for S, if ({Γ 
 S}, ∅, ∅)var(Γ)
∅ �∗⊥

then S is not typable.

Theorem 6.2 (Completeness). Let Γ be a initial context for S, if S is
typable then ({Γ 
 S}, ∅, ∅)var(Γ)

∅ �∗ (∅, E , I)XB and (E , I, ∅)XB �∗ (∅,A, µ)YB′ ��.

This completeness theorem combined with the soundness one allows us to say
that, whenever a term is typable our algorithms of constraint generation and
unification compute a principal typing for it.
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7 Conclusion

In this paper we studied the problem of type inference for a distributed π-calculus
with code migration and local communication. Using an explicit subtyping rela-
tion on location types we define a notion of principal typing leading to a practical
type inference problem à la ML.

Technically, we proposed a unification algorithm that computes the principal
solution of a constraint. We gave a sound and complete algorithm that, given a
system S, generates a constraint whose solution yields a principal typing for S.
Since we considered dependant types, we showed how to manage substitutions
carefully with respect to bound names. To this aim we introduced the novel
notion of binding relation. For the sake of simplicity, in this paper we considered a
monadic calculus, however we could easily extend our results to the full polyadic
version. In [8], we also deal with (mis)matching of values and recursion. We have
not yet addressed the simplification of the atomic subtyping assertions generated
by the algorithm ([9]).

We believe that this work could be easily adapted to the type system of [6].
Moreover, the presentation of algorithms by means of reduction relations, and
the fact that we compute a principal type, should be useful for a formal definition
of “dynamic” typing and its integration in process reduction. For instance, in
[12], Hennessy and Reily, study a partial typing for open systems where only
some sites may be typed. However, they informally assume the existence of a
type checker, and their terms are explicitly typed. We think that their work
could be extended to allow dynamic computation of type information.
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