Guess-and-Determine Attacks on SNOW

Philip Hawkes and Gregory G. Rose

Qualcomm Australia, Level 3, 230 Victoria Rd, Gladesville, NSW 2111, Australia
{phawkes, ggr}@qualcomm.com

Abstract. This paper describes guess-and-determine attacks on the
stream cipher SNOW. The first attack has a data complexity of O(2%%)
and a process complexity of 0(2256). The second attack has process com-
plexity of O(2%2%), and a data complexity of O(2%%).

1 Introduction

SNOW is synchronous stream cipher proposed by Patrik Ekdahl and Thomas
Johansson [3|. The cipher accepts both 128-bit and 256-bit keys. SNOW has
been selected as a contender in the second phase of the NESSIE crypto-algorithm
evaluation project (see www.cryptonessie.org).

This paper presents guess-and-determine attacks (GD attacks) on SNOW.
GD attacks have proven effective in analyzing word-oriented stream ciphers.
For example, the best known attacks on the SOBER family of stream ciphers
(SOBER-t16 [5] and SOBER-~t32 [0] are also contenders in the NESSIE project),
are GD attacks [1l2/4]. These attacks exploit the relationships between internal
values (such as the recurrence relationship in a shift register), and the relation-
ship used to construct the key-stream values from the internal values. A GD
attack guesses some internal values and then exploits the relationships to de-
termine other internal values; hence the name. The cipher is “broken” when a
complete internal state has been determined from the guessed values. The basic
attack on SNOW has a data complexity of O(2%4) and a process complexity of
O(22°%). The other attack is based on this first attack; reducing the process com-
plexity at the cost of increased data complexity. The second attack has process
complexity of O(22%4), and a data complexity of O(2%).

The paper is arranged as follows. Section [2 describes the SNOW algorithm.
Section [3] summarizes the basic attack and describes a “tricks” used in the at-
tack. Section [3:2] describes the steps involved in the third phase of the attack.
Section [B:3]discusses the complexity. The second attack is described in Section

2 SNOW

SNOW is based on a Linear Feedback Shift Register (LFSR) with a recurrence
defined over the Galois field of order 232, denoted GF(23?). The state of the
LFSR at time ¢ is denoted (s¢+15, ..., St), where the values s;1; are 32-bit words.

K. Nyberg and H. Heys (Eds.): SAC 2002, LNCS 2595, pp. 37-[46} 2003.
© Springer-Verlag Berlin Heidelberg 2003

38 Philip Hawkes and Gregory G. Rose

The next state of the LFSR is (st+16, ..., St+1), where s;y16 is defined using a
recurrence over GF(232):

St416 = (St © 5443 © St49), (1)

where @ denotes the field addition (equivalent to the bit-wise exclusive-OR
operation), « is a specified field element and multiplication is performed in
the field. The values of « and the basis for the field are chosen so that for
X = (1'31, ..,LUQ) € GF(232),

aX = ($30, .y TQ, 0) D (l‘gl . OX80421009)

Values from the LFSR are combined with values in a Finite State Machine (FSM)
to generate the key-stream. The FSM contains two 32-bit values; these values
(at time t) are denoted by (R1;, R2;). The 32-bit output of the FSM at time ¢ is

ft = (St+15 EH R].t) (&) RQt,

where FH denotes addition modulo 232. The 32-bit output of the cipher at time
t is computed as

2t = [t ® s¢.
The next state of the FSM is computed as

Rl = Rl @ ROT(f, B R2,,7)
R2,11 = S(R1,),

where ROT'(A, B) denotes the cyclic rotation of A by B bits towards the most-
significant bit (MSB), and S() is defined by four invertible 8-bit S-boxes and

a bit permutation. In this document, S is treated as a single, invertible 32-bit
S-box.

3 The Basic Attack

It is assumed that the attacker has observed a portion of key-stream {z:}, t =
1..N, where N is large enough to give a high probability of the attack succeeding.
The GD attack has four “phases”:

Phase One The attacker make the following assumptions regarding the internal
values of the FSM at time t:

Assumption 1 R2; = S(R1; @ (232 - 1)),
Assumption 2 R2;,14 = S(R1;114 @ (2%2 — 1)).

Phase Two The attacker guesses the values of sy, Siy1, Sey2, Stts, R1ly and
R1¢114, (32-bits each: a total of 192 bits).

Guess-and-Determine Attacks on SNOW 39

Phase Three The attacker determines the LFSR state (s¢+15, ..., s:) from the
values guessed in Phase Two, based on the assumptions in Phase One (the
details of Phase Three are discussed in Section B.2).

Phase Four The attacker tests the correctness of the LFSR state (s¢415, ..., St)
and FSM state (R1y, R2;) by producing a key-stream using these states and
comparing this with the observed key-stream. If the streams agree, then the
states are correct. If the streams do not agree, and the attacker can try
further guesses (Phase Two) for that values of ¢ (Phase One) then return
to Phase Two. If all guesses have been tried for that value of ¢, then the
assumptions in Phase One must be incorrect, so the attacker increases t and
returns to Phase One.

The probability that both assumptions in Phase One are correct is 274, Thus,
around 2%4 values of ¢ will be tried before finding internal states where R2; =
S(R1; & (2°2 — 1)) and R2y414 = S(R14414 @ (2°% — 1)). If the assumptions are
incorrect, then none of the guesses in Phase two will result in the correct LFSR
state and FSM state in Phase Three, so none of the guesses will produce the
correct key-stream in Phase Four.

The bulk of the detail of the attack is in Phase Three. The remainder of
Section Bl describes a “trick” exploited in Phase Three.

3.1 A Trick

The “assumed” relationship between R2; and R1; (in Phase One) is specially
chosen to allow s;114 to be determined from R1;. Note that due to the assumed
form of R2; = (R1, ® (232 — 1))):
th—l = ’LTLUS(RQ,‘)
=invS(S(R1; @ (2*2 - 1)))
=Rl ®(2%2 - 1),
= Rl;_1 ® R1; = (2% - 1),

where invS is the inverse of the S mapping. Furthermore,
Rl;y = R1;®(2°* —1) = —R1; — 1 (mod 2°?),

for all values of R1;. The FSM internal state is updated by computing R1; from
R1; 1, fi—1 and R2;_; as

Rl;=R1; 19 ROT(ft71 H R2¢ 1, 7),
= (R2;_1 H f;_1) = ROT(R1;_1 ® R1;,—7)
= ROT((2** - 1), -7)
= (232 -1).

Note that since (R2;—1 B f;—1) = (232 — 1), this implies that

(R24-1 @ fim1) = (232 = 1).

40 Philip Hawkes and Gregory G. Rose

Now that the attacker knows that (R2;_1® fi—1), the attacker can “reverse” the
FSM to compute s¢414:

St414 = (R24_1 @ fy,) — R1;—1 (mod 2%?)
=(2% —1) — (=R1; — 1) (mod 2%?)
- th

The assumed relationship between R2; and R1; is especially chosen to allow
S¢+14 to be determined from R1;. Similarly, the assumed relationship between
R2;114 and R14414 is especially chosen to allow s;i28 to be determined from
Rlitq4:

St428 = R1iy14.

The assumptions are specially designed to allow s;14 and s¢428 to be determined
“for free”. This is discussed in more detail in Section B3|

3.2 Details of Phase Three

This section concerns the details or Phase Three: determining a full LFSR state
from the values guessed in Phase Two and based on the assumptions in Phase
One. Phase Three is divided into 29 “steps”. In the following description, a
value s¢4; in the LFSR is often represented using the value ”¢”: for example, 0
represents s; and 6 represents sy1¢. Also, the following notation is used:

“F —” denotes exploiting the relationship between s;4;y15, Rliys, R2¢4; and
Jetis

“G —” denotes exploiting the relationship between R1i4iy1, fits, Rliys and
R2t+i;

“S —” denotes exploiting the relationship R2;1 ;11 = S(R1s4s)-

After guessing the values in Phase Two, the attacker has guessed all the bits
in the values for 0, 1, 2, 3 (that is, s¢, S¢+1, St+2, St+s), and Rly, R2; Rly14,
R2;114. For a given guess, all the bits of the following values can be immediately
determined by exploiting the relationships in the FSM:

Step 0.a St D z¢ = ft~
Step 0.b fta R].t, R2t F— St+15-
Step 0.c ft, R].t, RQt G — R1t+1.
Step 0.d th S — R2t+1.

These four steps can be repeated for i = 1,2,3, to determine (among other
values) Si116, St+17 and S¢t1s.

Step 1/2/3.a St+i D Zt+i = ft+i~

Step 1/2/3b ft+ia R1t+i, R2t+i F — St+i4+15-
Step 1/2/3.c fiti, Rli4i, R2t4i G — Rlpgitr.
Step 1/2/3.d R1t+i S — R2t+i+1~

Guess-and-Determine Attacks on SNOW 41

The attacker can also utilize the “trick” described in Section B.1]
Step 4 sy+14 = R1,.
Step 5 sy08 = R1i414.
The attacker has now guessed or determined all the bits in the values:
0-3, 14-18,28, R1444, R2;4, @ € {0-4, 14}.
The four basic steps are now repeated for ¢ = 14,...,18.
Step 6/../10.a St44 D Zt+1 = ft+i.
Step 6/../10.b fiyi, R1;4i, R2,4 F — s41i415.

Step 6/../10.c fi1i, R144i, R2¢4; G — Rlyqit1.
Step 6/./10.d R1t+,j S — R2t+i+1-

(Step 6 has i = 14, Step 7 has ¢ = 15, and so forth). The attacker has now
guessed or determined all the bits of the values:

0-3, 14-18, 28-33, R1,44, R2414, i € {0-4,14-19}.

The attacker can exploit linear relationships between state words s¢, that result
from the linear recurrence. The linear relationships exploited in this attack corre-
spond to the linear recurrence (), denoted by “L —”, and the linear relationship
corresponding to the “square” of the linear recurrence:

2
St432 = (St B St46 P St+18),

denoted by “L2 —”. The attacker determines more internal values using the
following steps:

Step 11 14,17,30 L — 23.

Step 120, 3,16 L— 9.

Step 13 0, 18, 32 L2 — 6.

Step 14 6,9, 15 L — 22

Step 15 15,18,31 L — 24.

Step 16 16, 22,29 L — 13.

Step 17 1, 17 L2 — (St+4 (§5) 3t+10)-
Step 18 (St+4 D 3t+10), 22 L2 — 36.

Step 19 23, 29, 36 L — 20.

Step 20 17, 20,33 L — 26.

Step 21 2,14, 28 L2 — —4.

Step 22 17,31 L2 — (s¢—1 @ st45)-
Step 23 —4, (St—l () St+5) L — 12.

Step 24 3,6,12 L — 19.

Step 25 12,15,28 L — 21.

Step 26 9,12, 18 L — 25.

Step 27 54119 @ 2¢419 fry1o.-

Step 28 fi119, R1i419, R24119 F — S¢134-

Step 29 18,21,34 L — 27.

The attacker has now determined a full LFSR state (s¢127, ... St+12). The LFSR
is “rewound” to determine (S¢415,...,St).

42 Philip Hawkes and Gregory G. Rose

3.3 Complexity

Recall the assumptions that R2; = S(R1;® (232 —1)) and R2; 414 = S(R1;414®
(232 — 1)). The probability that both of these assumptions are correct is 2764,
The attacker will have to try around 2%* values of t before finding internal
states where R2; = S(R1; @ (232 — 1)) and R2;114 = S(Rliy14 @ (232 — 1)).
That is, the attacker will need O(2%%) outputs. For each value of ¢, the attack
requires guessing 192 bits (all 32 bits of s, $¢41, St42, St+3, Rly, R2;114). This
corresponds to 2192 guesses for each value of t. Thus, the data complexity of the
attack is 264 and the process complexity is 264 - 2192 = 2256,

Note that the effect of forcing R2; to be related to R1; (rather than guessing
R2; independently of R1;) is to increase the data complexity by a factor of 232,
while not changing the process complexity. However, by choosing the relationship
between R1; and R2;, the attacker is able to determine more information about
s¢+14- If attacker had simply guessed R2;, then the attacker could determine

(Ri—1 B fi—1) = ROT((R1;—1 @ R1;),—T)
= ROT (invS(R2:) & Rl —T).

However, the attacker may be unable to determine much information about
(R2t—1 @ fi—1) (required to obtain s;y14). For example, if (R;—1 HH f;—1) = 0,
then two possible “solutions” for (R1;_1, fi—1) are (Rl;—1, fi—1) = (0,0) and
(th—laft—l) = (232 — 1,1) If (th—laft—l) = (0,0), then (Rt—l D ft—l) =
0, while if (R1;—1, fi—1) = (232 — 1,1), then (R;—1 & fi—1) = (232 — 2). This
uncertainty in the value of (R¢;—1 @ f;—1) means that the attacker determines
less information about s;y14. This is why the attacker assumes the value of R2;,
rather than guessing it. The same argument applies to R2414.

3.4 Observation

This attack is aided by the choice of inputs to the recurrence relation:

St416 = (St D St+3 D St49)-

There is a gap of 3 words between the inputs s; and s¢y3, and gap of 6 =2 x 3
words between the inputs s;43 and s;49. This difference of 6 words is unfortunate
because it is the same gap as between the first two inputs to the square of the
linear recurrence:

2
Sty32 = @° (St @ Str6 D St118)-

Thus the value of (s;4; @ Si+6+:) can be considered as a single input to either
equation. For example, in Step 17, the values of s;11 and s;y17 are used to
determine the value of (s;r4 @ sty10) by exploiting the linear recurrence. In
Step 18, the value of (s¢14 @ St+10) is then combined with the value of sy129
to obtain s¢436, by exploiting the square of the linear recurrence. The value of
S¢+36 is determined despite the attacker being unable to determine the values

Guess-and-Determine Attacks on SNOW 43

of sty4 and sg410. If the linear recurrence did not have this property, then it
is likely that fewer state words could be derived from the guessed words, and
the attacker would be unable to derive a full state from the guessed words. This
may force the attacker to guess more internal values before being able to derive
a full state, thus increasing the complexity. That is, it is likely that guess-and-
determine attacks could be forced to have a larger complexity by the use of a
different linear recurrence.

4 Reducing the Process Complexity

The process complexity of the attack can be reduced if the attacker can avoid
guessing all of s;y3. We have explored various ways of achieving this: as of yet
we have been unable to decrease the complexity significantly without increasing
the data complexity.

It is assumed that the attacker has observed a portion of key-stream {z;},
t = 1..N, where N is large enough to give a high probability of the attack
succeeding. Like the first attack, this GD attack has four “phases”:

Phase One The attacker make the following assumptions regarding the internal
values of the FSM at time ¢:

Assumption 1 R2; = S(R1; & (232 - 1)),
Assumption 2 R2;,14 = S(R1;114 @ (2%2 — 1)),
Assumption 3 Rl.3 € {0,231},

Phase Two The attacker guesses the values of sy, s¢+1, R1y, Rliy14, (32-bits
each: a total of 128 bits), and Rl,.3 € {0,23'}) (1 bit).

Phase Three The attacker determines the LFSR state (s¢+15, - . -, s:) from the
values guessed in Phase Two, based on the assumptions in Phase One (the
details of Phase Three are discussed below).

Phase Four The attacker tests the correctness of the LFSR state (s¢+15, .- -, St)
and FSM state (R1y, R2;) by producing a key-stream using these states and
comparing this with the observed key-stream.

The probability that both assumptions in Phase One are correct is 27%°. Thus,
around 2% values of ¢ will be tried before finding internal states where R2; =
S(th D (232 - 1)), R2t+14 = S(R1t+14 S (232 - 1)), and R1t+3 € {O, 231}. If the
assumptions are incorrect, then none of the guesses in Phase two will result in
the correct LFSR state and FSM state in Phase Three, so none of the guesses
will produce the correct key-stream in Phase Four.

After guessing the values in Phase Two, the attacker has values for 0, 1, and
R1y, R2y, Rlyys, Rlyy14, R2¢114 (using the assumptions in Phase One). For a
given guess, all the bits of the following values can be immediately determined
for i =0,1;

Step i.a St+i D Zt+i = ft+,j.

Step i.b fiyi, Rli44, R2i i F' — Si1i415.
Step i.c firi, Rliyi, R2t4i G — Rlyqita.
Step i.d R1t+i S — R2t+i+1~

44 Philip Hawkes and Gregory G. Rose
Recall that R1;4+3 has been guessed to be either 0 or 231 = 0x80000000. The
attacker uses the function G to compute fiys.

Step 2.a Rly13, Rli12, 212 G — fiyo.

Now that the attacker has computed fiy2, they can compute sii9, sir17 and
R2t+3.

Step 2.b fi12 @ 242 = Sir2.
Step 2.c fii2, Rliy2, R2t40 F' — 54117
Step 2.d R1t+2 S — R2t+3.

The attacker can utilize the “trick” described in Section [B.1]

Step 3 sy114 = R1,.
Step 4 s;y08 = R1t414.

The attacker has now guessed or determined all the bits in the values:
0-2, 14-17,28, R1444, R244,, i@ € {0-3, 14}.
The four basic steps are now repeated for i = 14, ..., 17.

Step 5/./8& St+i D Zt+i = ft+i-
Step 5/./8.b ft-i-i: th-i-i: R2t+i F — St+i4+15-
Step 5/../8.c firi, Rliyi, R2¢4i G — Rlipiqr.
Step 5/../8.(1 R1t+i S — R2t+i+1~

(Step 5 has ¢ = 14, Step 6 has ¢ = 15, and so forth). The attacker has now
guessed or determined all the bits of the values:

0-2, 14-17, 28-32, R1¢44, R2¢4, © € {0-3,14-18}.

Exploiting the linear recurrence and the linear relationships corresponding to
the square of the connection polynomial, allows the attacker to determine more
internal values:

Step 9 14,17,30 L — 23.
Step 10 2, 14,28 L2 — —4.
Step 11 17,31 L2 — (st—1 @ St45)-
Step 12 —4, (s4—1 @ st45) L — 12.
Step 13 12, 15,28 L— 21.
Step 14 0,16 L — (St+3 () 3,54.9).

Step 15 (St+3 D St+9), 21 L2 — 35.
Note that if R1;,3 € {0,231}, then

fros = (ser18 EH R1i43) B R2443

(St418 ® Rly43) ® R2443,

= 243 = St+3 D fi43

St43 D (St+18 ® Rlpys ® R2¢13),
Zt43 D Rlyys @ R2443.

= (St4+3 D St418)

Guess-and-Determine Attacks on SNOW 45

The attacker can use the value of (si4+3 @ s;+18) to compute other values of s¢4;
by exploiting linear relationships. For example, that attacker can combine the
two equations

St419 = @+ (St43 D St46 D Str12),
-2
St+6 = St D St+18 D @ “St432,

= St419 = - ((St43 B St418) B St P Spy12 P 01728t+32)~

Since the attacker knows (s;y3 @ sir18), 0, 12 and 32, the attacker can perform
the: following step

Step 16 s:4110 = a - (5443 D St118) ® 5t D Spp12 ® O 251432).
The attacker has now guessed or determined all the bits of the values:
0-2, 12,14-17,19,21,23, 28-32,35, R1¢44, R2,44, i € {0-3,14-18}.

Now that the attacker knows s;419, there are many other values that the attacker
can compute.

Step 17 16,19, 32 L — 25.
Step 18 19, 28,35 L — 22.
Step 19 16, 22,29 L — 13.
Step 20 s;113 @ 21413 = fiy1s.
Step 21 R2;414 S — Rlitis.
Step 22 sy198, R14413, ft4+13 I — R2¢413.
Step 23 R2t+13 S — R1t+12.
Step 24 5112 @ 21412 = fiy12-

Step 25 Rli412, R1ty13, fi412 G — R2¢410.
Step 26 Rli112, R2¢112, fi412 I/ — 27.

As an update, the attacker has now guessed or determined the values:
0-2, 12-17,19,21-23, 25, 27-32,35, R144;, R2:44, ¢ € {0-3,12-18}.

The final steps are:

Step 27 1,13,27 L2 — —5.

Step 28 16,30 L2 — (51—9 ® St44).
Step 29 —5, (st—2 D St44) L — 11.

Step 30 11, 14,27 L — 20.

Step 31 si411 @ 2411 = fiy11-

Step 32 R2;412 S — Rl

Step 33 Rli111, Rli112, fiv11 G — R2:411.
Step 34 R1;111, R2¢411, fi4+11 F — 26.

Step 35 17, 20, 26 L — 33.
Step 36 sy133, R14418, R2;418 F' — fit1s.
Step 37 21418 D fit1s = Sty18-

Step 38 15,18, 31 L — 24.

46 Philip Hawkes and Gregory G. Rose

The attacker has now determined a full LFSR state (s¢426, - .. St4+11). The LFSR
is “rewound” to determine (S¢415,...,St).

The probability that the three Phase One assumptions are correct is
The attacker will have to try around 2% values of ¢ before finding internal
states where the assumptions are correct; that is, the attacker will need O(2%)
outputs. For each value of ¢, the attack requires guessing 129 bits (the MSB of
R1445 and all 32 bits of s, si41, R1;, R2¢414). This corresponds to 2129 guesses
for each value of ¢. Thus, the data complexity of the attack is 2°° and the process
complexity is 29 . 2129 = 2224,

It is possible to reduce the data complexity of the second attack by allowing
other values of R1;,3. However, if R1443 is no longer either 0 or 231 then there
will be more than one possible value for (s;13@® s¢1+15). The attacker can test the
possible combinations of (R1¢3, (S¢4+3® st+18)), starting with the most probable
combinations and leading down to the less probable combinations. This results in
an increase in the process complexity. We have not conducted a detailed analysis
of the expected complexity using this approach.

279,

5 Conclusion

This paper demonstrates two guess-and-determine attacks on SNOW. The first
attack has a process complexity of O(22°6) and a data complexity of O(254).
The second attack has a process complexity of O(2%224) and a data complex-
ity of O(2%). It is likely that guess-and-determine attacks could be forced to
have a larger complexity if the linear recurrence were changed, as discussed in

Section B4l

References

1. S. Blackburn, S. Murphy, F. Piper, and P. Wild. A SOBERing remark. Technical
report, Information Security Group, Royal Holloway University of London, Egham,
Surrey TW20 0EX, U.K., 1998.

2. D. Bleichenbacher and S Patel. SOBER cryptanalysis. Fast Software Encryption,
FSE’99 Lecture Notes in Computer Science, vol. 1636, L. Knudsen ed., Springer-
Verlag, pages 305-316, 1999.

3. P. Ekdahl and T. Johansson. SNOW - a new stream cipher, 2000. This paper is
found in the NESSIE webpages:
http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/snow.zip.

4. P. Hawkes and G. Rose. Exploiting multiples of the connection polynomial in word-
oriented stream ciphers. Advances in Cryptology, ASIACRYPT2000, Lecture Notes
in Computer Science, vol. 1976, T. Okamoto ed., Springer-Verlag, pages 302-316,
2000.

5. P. Hawkes and G. Rose. Primitive specification and supporting documentation for
SOBER-t16 submission to NESSIE, 2000. See:
http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/sober-t16.zip.

6. P. Hawkes and G. Rose. Primitive specification and supporting documentation for
SOBER-t32 submission to NESSIE, 2000. See:
http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/sober-t32.zip.

	Introduction
	SNOW
	The Basic Attack
	A Trick
	Details of Phase Three
	Complexity
	Observation

	Reducing the Process Complexity
	Conclusion

