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Abstract. This work initiates a study of Luby-Rackoff ciphers when the
bitwise exclusive-or (XOR) operation in the underlying Feistel network
is replaced by a binary operation in an arbitrary finite group. We obtain
various interesting results in this context:
– First, we analyze the security of three-round Feistel ladders over

arbitrary groups. We examine various Luby-Rackoff ciphers known
to be insecure when XOR is used. In some cases, we can break these
ciphers over arbitrary Abelian groups and in other cases, however,
the security remains an open problem.

– Next, we construct a four round Luby-Rackoff cipher, operating over
finite groups of characteristic greater than 2, that is not only com-
pletely secure against adaptive chosen plaintext and ciphertext at-
tacks, but has better time / space complexity and uses fewer random
bits than all previously considered Luby-Rackoff ciphers of equiva-
lent security in the literature. Surprisingly, when the group is of
characteristic 2 (i.e., the underlying operation on strings is bitwise
exclusive-or), the cipher can be completely broken in a constant num-
ber of queries.

Notably, for the former set of results dealing with three rounds (where we
report no difference) we need new techniques. However for the latter set
of results dealing with four rounds (where we prove a new theorem) we
rely on a generalization of known techniques albeit requires a new type
of hash function family, called a monosymmetric hash function family,
which we introduce in this work. We also discuss the existence (and
construction) of this function family over various groups, and argue the
necessity of this family in our construction. Moreover, these functions
can be very easily and efficiently implemented on most current micro-
processors thereby rendering the four round construction very practical.

1 Introduction

Motivation. Let X be the n-bit string which represents the integer 2n − 1,
and let Y be the n-bit string representing 1. Observe that, when we replace X
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by X + Y modulo 2n we get the “zero” string whereas when we replace X by
X ⊕ Y we get the string with n − 1 leading 1’s and a 0 in the least significant
position. In the former, all the bits of the orginial string X are affected, and
in the latter only the least significant bit is affected. Surprisingly, this naive
observation contributes to the complexity of various computational problems.

Consider, for example, the subset sum problem. This problem is known to
be NP-hard when the inputs are treated as elements in the group of integers
modulo 2n [6], [9]. Yet, when we treat the inputs as elements of GF(2n)+ the
subset sum problem can be efficiently solved via a system of linear equations.

Yet another example is the problem of factoring a bit string treated as an
integer. This problem is believed to be hard and is central to various cryptosys-
tems proposed in the past few decades (RSA and its variants). On the other
hand, the same bit string treated as a polynomial in one variable over a binary
field can be very easily factored; for example via Berlekamp’s algorithm [2].

This idea of examining binary operations between bit strings has also been
considered in the context of block ciphers. For example, Biham and Shamir [3]
show that replacing some of the exclusive-or operations in DES with additions
modulo 2n, makes their differential attack less powerful. Carter, Dawson, and
Nielsen [4] show a similar phenomenon when addition in DES is replaced by
addition using a particular Latin Square. While these results show resistance to
one particular type of attack, they are more ad-hoc since they do not demonstrate
provable security against all attacks. Motivated by these examples, we embark
on a formal study of the impact of the underlying binary operation on block
ciphers. We focus our attention on three and four round Luby-Rackoff ciphers.

Luby-Rackoff Ciphers and Variants. Luby and Rackoff [10] formalize the
notion of a provably-secure block cipher as a Pseudorandom Permutation (PRP)
family (indexed by the key). They achieve a construction satisfying this defini-
tion which relies on the existence of one-way functions. This seminal piece of
work has received a lot of attention, and ciphers based on this principle are
now called Luby-Rackoff ciphers. A Luby-Rackoff cipher involves the use of a
Feistel permutation which sends a 2n-bit string (L, R) to (R, L ⊕ f(R)) where
f is a length-preserving function on n bit strings and ⊕ represents the XOR
operation on bit strings. The Feistel permutation appears in a number of well-
known block cipher constructions such as DES. Luby and Rackoff show that
composing three Feistel permutations with independently keyed pseudorandom
functions, which we denote as Ψ(f1, f2, f3), yields a cipher secure against cho-
sen plaintext attacks. They also show that composing four Feistel permutations
with independent keys, denoted as Ψ(f1, f2, f3, f4), yields a cipher secure against
adaptive chosen plaintext and ciphertext attacks. This path-breaking work, has
stimulated much research which can be broadly classified as follows:

– Reducing the number of independent functions in the three or four round
construction, and examine which constructions continue to guarantee pseu-
dorandomness or super pseudorandomness, (example, [15], [17]).
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– Replacing the outer rounds of the four round construction by various flavors
of universal hash functions, and examine which constructions continue to
guarantee super pseudorandomness, (example, [11]).

– Increasing the number of rounds to enhance the security guarantees, (exam-
ple, [12], [13]).

Our work fits in the first two broad areas of research to obtain variants of
Luby-Rackoff constructions where the number of different functions used in the
3 or 4 rounds is minimized. The kind of questions asked by this research are, for
example: is the three-round variant Ψ(f, f, f) pseudorandom? Alternatively, is
the four-round variant Ψ(f1, f2, f2, f1) strongly pseudorandom?

The answer to these questions are important not just because of the ap-
parent savings of key material achieved by minimizing different pseudorandom
functions, but also because of the insight they provide into the design of secure
block ciphers. In this context, negative results are also very useful. For example,
knowing that Ψ(f, f, f) is not a pseudorandom permutation for any pseudoran-
dom function f means that block cipher designers should avoid such symmetrical
structures independent of what is being used for f . Also the description of the
specific attack which works on Ψ(f, f, f) is useful to the designer because he can
check if that attack or similar attacks may also work with many more feistel
rounds used in practical block ciphers. Thus the question of security of variants
of Luby-Rackoff ciphers is fundamental. Similarly variants of Luby-Rackoff ci-
phers where the first and last rounds are replaced by universal hash functions,
should be considered; for example, is Ψ(h, f, f, h) strongly pseudorandom?

Our Contributions. All of the previous constructions rely on the bitwise
exclusive-or (XOR) operation. We depart from this paradigm and we hope that
utilizing different operations, with different algebraic properties, may yield new
more powerful constructions. A more direct motivation is the result in [14],
where the authors optimize a Naor-Reingold variant using “non-XOR” opera-
tions. Naor and Reingold proved that Ψ(h1, f, f, h2) using XOR is super pseu-
dorandom where the universal hash functions h1 and h2 work on 2n bits. Fol-
lowing this Patel, Ramzan, and Sundaram, [14] optimized this construction by
using specialized hash functions and working over addition mod 2n to make h1

and h2 work over n bits. Although, they proved an interesting optimization, their
construction did not further minimize the different kinds of functions when com-
pared to the constructions in the Naor-Reingold construction [11]. Both require
h in round 1 and 4 to be different. Thus it remained an open question whether
there are Luby-Rackoff variants which are secure when a non-XOR operation is
used and are insecure when XOR is used.

Our efforts focus on both three-round and four-round Feistel networks that
permute 2n-bits of data as in the original Luby-Rackoff construction and some
of its variants discussed above. Our point of departure is that we treat the n-bit
strings as elements in an arbitrary algebraic structure which is not necessarily
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GF(2n)+.1 This idea seems to open up new lines of research and we obtain results
which are both surprising and useful. Specifically:

– We examine various three-round Luby-Rackoff ciphers known to be insecure
over GF(2n)+. In some cases, we can break these ciphers over arbitrary
Abelian groups – though we have to employ different attacks. In other cases,
however, the security remains an open problem.

– Next we construct a Luby-Rackoff style cipher, whose Feistel ladder oper-
ates over various finite groups of characteristic greater than 2, that is not
only super-pseudorandom, but has better time/space complexity and uses
fewer random bits than all previously considered Luby-Rackoff ciphers of
equivalent security in the literature. Interestingly, when we use the bit-wise
exclusive-or operation instead, we can distinguish the cipher from random
with near certainty using only two queries.

– We show that the requirements on our construction are precise when oper-
ations are performed in a finite field. In particular, eliminating one of the
statistical requirements on the hash function used in the first and last round
results in the cipher becoming distinguishable from random with near cer-
tainty using only a small constant number of queries.

The four-round construction is fairly interesting since one can then construct a
Luby-Rackoff cipher that can be broken with two plaintext/ciphertext queries
when the bit-wise exclusive-or is the group operation; yet, if one simply changes
four of those bit-wise exclusive-or operations to, for example, additions mod 2n,
the cipher becomes completely secure against both adaptive chosen plaintext
and ciphertext attacks. Note that both operations can be implemented very effi-
ciently on most current microprocessors, and both are frequently used in popular
block ciphers. A more careful analysis shows that we only need to change the
exclusive-or operation in the first and last round to addition mod 2n to achieve
security. Thus, in some sense, there are two very simple operations at the heart
of the cipher’s security. Our construction utilizes the notion of a monosymmet-
ric universal hash function, which we intoduce in this work. In particular the
monosymmetric property does not really hold in groups of characteristic 2, which
explains why our constructions fail to be secure in this case. In addition we dis-
cuss the existence and necessity of this hash function family in our construction.
Organization. The next section provides relevant definitions and reviews prior
art on Luby-Rackoff ciphers; we focus on results that are relevant to this paper.
In sections three and four we analyze three and four-round Luby-Rackoff ciphers
over arbitrary groups. Section five discusses monosymmetric hash functions.

2 Definitions and Prior Work

Notation. We let In denote the set of bit strings of length n. For a bit string
x, if x has even length, then xL and xR denote the left and right halves of
1 Recall that GF(2n)+ refers to the additive group attached to the field GF(2n). The

addition of two elements in this group amounts to computing their bit-wise exclusive-
or.
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the bits respectively; we sometimes write x = (xL, xR) or xL · xR. If S is a
set whose elements can be sampled according to some pre-specified underlying
probability distribution, then x

R← S denotes the process of picking an element x
from S according to this distribution. Unless otherwise specified, the underlying
distribution is assumed to be uniform. We let |x| denote its length.

If n is a positive integer, we let GF(2n) denote the Galois Field of order 2n,
and we let GF(2n)+ denote the additive group attached to the field GF(2n).
Recall that elements of GF(2n) can be represented as bit strings of length n,
and that the addition operation on two elements merely amounts to taking their
bit-wise exclusive-or.

By a finite function (permutation) family F , we mean a set of functions
(permutations) on a fixed domain and range. If k and l are positive integers,
then Randk→l denotes the set of all functions going from Ik to Il. Similarly,
Perml denotes the set of all permutations on the set Il. We call a finite function
(permutation) family keyed if every function in it can be specified (not necessarily
uniquely) by a key a. We denote the function corresponding to a as fa. For a
given keyed function family, a key can be any string from Is, where s is known
as the “key length.” While it is possible to consider key spaces other than Is,
we avoid doing so for clarity of exposition. For functions f and g, where the
range of f is contained in the domain of g, we let g ◦ f denote their functional
composition; i.e. x �→ g(f(x)). If S is a set contained in a universe U , then SC

denotes the set-theoretic complement of S – that is the set of elements of U that
are not in S.

Model of Computation. The adversary A is modeled as a program for a
Random Access Machine (RAM) that has black-box access to some number k
of oracles, each of which computes some specified function. The adversary A
will have a one-bit output. If (f1, . . . , fk) is a k-tuple of functions, then Af1,...,fk

denotes a k-oracle adversary who is given black-box oracle access to each of the
functions f1, . . . , fk. We define A’s “running time” to be the number of time
steps it takes plus the length of its description (to prevent one from embedding
arbitrarily large lookup tables in A’s description). This convention was used by
Bellare, Kilian, and Rogaway [1].

Sometimes we abuse notation by listing an entire function family as the
oracle, rather than just a single function. In this case, the oracle is considered
to be a function (or some set of functions) chosen from the family, according
to some induced probability distribution. That is, we can think of the oracle
as a random variable, which denotes a function, and outputs the value of the
function on any input queries it receives. For example, ARandn→n

would be used
to denote an adversary whose oracle computes a function chosen at random from
the set of all functions with domain and range In. Similarly, it may be the case
that an adversary has access to multiple oracles, all of which are drawn from the
same family. For example, if we deal with oracles chosen from the family Permn,
we could conceive of giving oracle access to the permutations f, f−1 ∈ Permn.
These kinds of scenarios apply when we talk about attacks on block ciphers.
We also remark that oracles need not simply represent deterministic functions.
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Instead there could be some degree of randomness in their answers. In this case
the oracle’s output is determined by the input together with some internal coin
tosses. Both deterministic and randomized oracles are used in this paper.
Pseudorandom Functions and Block Ciphers. The pseudorandomness of
a keyed function family F with domain Ik and range Il captures its computa-
tional indistinguishability from Randk→l. This definition is a slightly modified
version of the one given by Goldreich, Goldwasser and Micali [7].

Definition 1. Let F be a keyed function family with domain D and range R.
Let A be a 1-oracle adversary. Then we define A’s advantage in distinguishing
between F and RandD→R as Advprf

F (A) = Pr[a R← Keys(F) : Afa = 1]− Pr[f R←
RandD→R : Af = 1]. For any integers q, t ≥ 0, we define an insecurity function
Advprf

F (q, t): Advprf
F (q, t) = maxA{Advprf

F (A)}, where the maximum is taken over
choices of adversary A such that A makes at most q queries to its oracle, and
the running time of A, plus the time necessary to select the key a, and answer
A’s queries, is at most t.

We are now ready to formally define security for a block cipher. The first notion
we consider is that of a pseudorandom permutation. This notion, which is due to
Luby and Rackoff [10], captures the pseudorandomness of a permutation family
on Il in terms of its indistinguishability from Perml, where the adversary is given
access to the forward diretion of the permutation. In other words, it measures
security of a block cipher against adaptive chosen plaintext attacks.

Definition 2. Let F be a keyed permutation family with domain and range D.
Let A be a 1-oracle adversary. Then we say that A is an ε pseudorandom permu-
tation distinguisher for F if Advprp

F (A) = Pr[a R← Keys(F) : Afa = 1]− Pr[f R←
PermD : Af = 1] ≤ ε. For any integers q, t ≥ 0, we define an insecurity function
Advprp

F (q, t) just like the one in definition 1. We say that F is a (t, q, ε)-secure
pseudorandom permutation family if Advprp

F (q, t) ≤ ε.

Luby and Rackoff [10] also define the notion of a super pseudorandom permu-
tation which captures the pseudorandomness of a permutation family on Il in
terms of its indistinguishability from Perml, where the adversary is given access
to both directions of the permutation thereby measuring the security of a block
cipher against adaptive interleaved chosen plaintext and ciphertext attacks.

Definition 3. Let F be a keyed permutation family with domain and range D.
Let A be a 2-oracle adversary. Then we define A’s advantage in distinguishing
between F and PermD as Advsprp

F (A) = Pr[a R← Keys(F) : Afa,f−1
a = 1]−Pr[f R←

PermD : Af,f−1
= 1]. For any integers q, t ≥ 0, we define an insecurity function

Asprp
F (q, t) similar to the one in definition 1. We say that F is a (t, q, ε)-secure

super pseudorandom permutation family if Advsprp
F (q, t) ≤ ε.

Universal Hash Functions. We define various families of universal hash func-
tions, which appear in many of the constructions in this paper. Stinson [16] pre-
pared an excellent note accurately outlining the history and evolution of these
function families.
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Definition 4. Let H be a keyed function family with domain D, range R, and
key space K. We assume that the elements of the key space K are picked according
to some underlying distribution. We also assume that the elements of R form
a group with additive notation (’+’ and ’-’). Let ε1, ε2, ε3, ε4 ≥ 1/|R|. Then,
H is an ε1-uniform family of hash functions if for all x ∈ D, z ∈ R, Pr[a R←
K : ha(x) = z] ≤ ε1. H is ε2-almost-∆-universal if for all x 	= y ∈ D, z ∈ R,
Pr[a R← K : ha(x) − ha(y) = z] ≤ ε2. H is ε3-monosymmetric if for all x, y ∈ D
(here we allow x = y) and z ∈ R, Pr[a R← K : ha(x) + ha(y) = z] ≤ ε2. H is
ε4-universal if for all x 	= y ∈ D, Pr[a R← K : ha(x) = ha(y)] ≤ ε4.

We remark that the notion of monosymmetric hash function families is a novel
contribution of this paper. An example of a family that has all four properties
for ε1 = · · · = ε4 = 1/|R| is a family keyed by a random pair a = (a1, a2)
with a1 ∈ Z∗

p , a2 ∈ Zp, and ha(x) = a1x + a2 mod p where p is a prime, Z∗
p is

the multiplicative group of nonzero integers modulo p, and Zp is the additive
group of integers modulo p. We also remark that we use the phrase “h is a
∆-universal (monosymmetric) hash function” to mean “h is drawn from a ∆-
universal (monosymmetric) family of hash functions.”
Constructions of Luby-Rackoff Ciphers. We now formally define Feistel
ladders which are the main tool for constructing pseudorandom permutations on
2n-bit strings from length-preserving functions on n-bits strings. Feistel ladders
have been used in a large number of popular block cipher such as DES.

Definition 5 (Feistel Ladders). Let f be a mapping from In to In. Let x =
(xL, xR) with xL, xR ∈ In. We denote by f the basic Feistel permutation on
I2n defined as f(x) = (xR, xL ⊕ f(xR)). Note that it is a permutation be-
cause f

−1
(y) = (yR ⊕ f(yL), yL), which can be computed if the function f is

known. If f1, . . . , fs are mappings with domain and range In, then we denote
by Ψ(f1, . . . , fs) the Feistel ladder, which is a permutation on I2n defined by
Ψ(f1, . . . , fs) = fs ◦ · · · ◦ f1.

Note that this definition (although stated using exclusive-or) easily extends to
any binary group operation. We also note that, we will often need to talk about
the intermediate stages of the computation in Feistel ladders as plaintext is
transformed to ciphertext (and vice-versa). We denote the right halves of the
values attained, as each successive basic Feistel permutations is applied, by the
letters S, T , V , and W respectively. In addition, we refer to the left half and right
halves of the plaintext input to the cipher as L and R respectively. Similarly, we
refer to the left and right halves of the ciphertext output as V and W respectively.
We can, for example, describe Ψ(f1, f2, f3, f4) by:

S = L⊕ f1(R);
T = R⊕ f2(S);
V = S ⊕ f3(T );
W = T ⊕ f4(V ).
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Observe that a Feistel ladder is invertible since it is simply a composition of basic
Feistel permutations. Sometimes we refer to Feistel ladders as Feistel networks.

Luby and Rackoff [10] show that three independently-keyed pseudorandom
functions in a Feistel ladder yields a pseudorandom permutation, whereas four
independently-keyed pseudorandom functions yields a super pseudorandom per-
mutation. Here by key to a pseudorandom permutation we mean the concatena-
tion of the individual keys of the underlying pseudorandom functions. The main
theorem in their paper is:

Theorem 1 (Luby-Rackoff). Let f1, . . . , f4 be independently-keyed functions
from Randn→n. Let B1 be the family of permutations on I2n consisting of permu-
tations of the form P = Ψ(f1, f2, f3). Then Advprp

B (q, t) ≤
(
q
2

) (
2−n+1 + 2−2n

)
.

Let B2 be the family of permutations on I2n with key consisting of permutations
of the form P = Ψ(f1, f2, f3, f4). Then Advsprp

B (q, t) ≤
(
q
2

) (
2−n+1 + 2−2n

)
.

We remark that in the original Luby-Rackoff paper, the main theorem statement
is written using complexity-theoretic security; we have recast the statement to
the concrete security setting. Also, our treatment is in the information-theoretic
case, where our functions are chosen from Randn→n. It is straightforwad to trans-
late these results to the computational case, where the functions might be chosen
from a finite function family F , using a hybrid argument [11]. These same re-
marks apply for the remaining theorems given in this paper.

Naor and Reingold [11] optimize the above construction by replacing the
first and last rounds in the Feistel ladder with strongly universal hash functions.
Here the underlying hash function family must consist of permutations to ensure
that the cipher is invertible. Their construction is more efficient since universal
hash functions only involve specific statistical properties, so can typically be
implemented much faster than pseudorandom functions. Also, universal hash
function constructions do not require making any cryptographic assumption or
conjecture. By reducing the number of pseudorandom function invocations from
four to two, Naor and Reingold achieve a significant savings.

Theorem 2 (Naor-Reingold). Let f1 and f2 be independently-keyed functions
from Randn→n. Let h1, h2 be strongly-universal hash functions, keyed indepen-
dently of each other and of f1, f2, from a keyed permutation family H with
domain and range I2n. Let B be the family of permutations on I2n consisting
of permutations of the form P = h−1

2 ◦ Ψ(f1, f2) ◦ h1. Then Advsprp
B (q, t) ≤(

q
2

) (
2−n+1 + 2−2n

)
.

Naor and Reingold gave two improvements to their construction. Patel, Ramzan,
and Sundaram [14] observed that trying to securely achieve both simultaneously
requires different conditions on the universal hash functions:

Theorem 3 (Patel-Ramzan-Sundaram). Let f be a function from Randn→n.
Let h1, h2 be ε1-bisymmetric ε2-almost ∆-universal hash functions, keyed in-
dependently of each other and of f , from a keyed function family H with do-
main and range In. Let B be the family of permutations on I2n consisting
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of permutations of the form P = Ψ(h1, f, f, h2). Then Advsprp
B (q, t) ≤ q2ε1 +(

q
2

) (
2ε2 + 2−2n

)
.

3 Three-Round Luby-Rackoff Ciphers

Various negative results (for example, [10], [15], and [17]) were known regard-
ing conventional XOR-based three-round Luby-Rackoff ciphers. We explore the
validity of these results in the more general context of Feistel networks over
Abelian groups. Overall, we reach the same conclusions between XOR-based
Feistel constructions and the non-XOR constructions. Notably, for the most
part, the techniques we need to obtain the various attacks are subtly different.

3.1 Attacking Ψ(f1, f2, f1)

Rueppel [15] shows that Ψ(f, f, f), the three-round Feistel cipher in which all the
round functions are identical, is not even pseudorandom when the operation in
the Feistel ladder is the bit-wise exclusive-or. The idea behind his attack is that
when we use the same function f in all three rounds and addition is performed
in a group of characteristic 2, Ψ(f, f, f) has certain involution-like properties.
Rueppel left open the problem of generalizing his attack to Feistel ladders that
operate over other algebraic structures.

When operations are performed over an arbitrary algebraic structure, the
involution-like properties that Rueppel exploits in his original attack no longer
seem to hold. It turns out that this cipher is still insecure, but requires a sub-
tly different type of attack. In fact, the new attack is applicable not only to
Ψ(f, f, f) over any Abelian group but also applies to Ψ(f1, f2, f1) where f1 and
f2 are picked independently (and hence applies to the case of f1 = f2 = f). We
present this attack here.

1. Query for the encryption of 0 · 0 and call the result T1 · V1.
2. Query for the encryption of 0 · T1 and call the result T2 · V2.
3. Query for the encryption of (V1 − V2) · T2 and call the result T3 · V3.
If T3 = = T1 + T2 then return that the cipher is not random
else return that the cipher is random.

This attack allows the adversary to distinguish Ψ(f1, f2, f1) from a random per-
mutation with very high probability. We omit the analysis since it is similar to
the analysis for the next attack.

3.2 Attacking Ψ(f i, fj , fk) When k Is a Multiple of i + j

Another interesting class of ciphers is Ψ(f i, f j , fk) where f is a pseudorandom
function, and f i represents the i-fold composition of f with itself. Zheng, Mat-
sumoto, and Imai [17] show how to break this class of ciphers for arbitrary i, j, k,
when working over GF(2n)+. The attack more heavily depends on the involutory
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properties of GF(2n)+. When considering arbitrary finite groups, we know how
to break the cipher only when i, j, and k satisfy certain relations; in particular,
when k is a multiple of i + j. Our attack is much different than the original one.
We are unable to produce an attack that works in all cases, nor are we able to
prove security for most other cases. We describe the attack.

1. Let α = k/(i + j).
2. Query the encryption of (0, 0); call the result (T1, V1).
3. Query the encryption of (0, T1); call the result (T2, V2).
4. Initialize X1 = 0, and X2 = T1.
5. For l = 3 to α + 1 do

5a. Set Xl = Tl−1 −Xl−1.
5b. Query the encryption of (0, Xl); call the result (Tl, Vl).

6. Query the encryption of (Tα+1 −Xα+1 − V1, 0); call the result (Tα+2, Vα+2).
7. Query the encryption of (−T1, Tα+2); call the result (Tα+3, Vα+3).
If Tα+3 = 2× Tα+2 then return that the cipher is not random
else return that the cipher is random.

The above attack gives the adversary a distinguishing advantage which is
exponentially close to one. The analysis follows. It is not hard to see that if the
cipher were truly random, then the attack algorithm would return the correct
answer with probability extremely close to 1. We now claim that if the cipher is
of the form Ψ(f i, f j , fk) with k = α(i + j) then the attack will always output
that the cipher is not random. The proof follows the same notation in the attack;
in particular we let X1 = 0, and Xl = Tl−1−Xl−1, for all l > 1. In other words,
Xl is the alternating telescoping sum of all the previous Ti. First, consider what
happens when we encrypt 0 ·0: S1 = f i(0); T1 = f i+j(0); V1 = f i(0)+f i+j+k(0).

Next, consider what happens when we encrypt 0 · T1: S2 = f i(T1); T2 =
f i+j(T1) + T1; V2 = f i(T1) + fk(f i+j(T1) + T1). Thus, T2 − T1 = f i+j(T1) =
f2(i+j)(0). In general, when we encrypt 0 · x: S = f i(x); T = f i+j(x) + x; V =
S +fk(f i+j(x)+x). Thus, T −x = f i+j(x). Using this observation, when we set
x = Xα+1, we see: Tα+1−Xα+1 = f (i+j)(α+1)(0) = f (i+j)α+(i+j)(0) = f i+j+k(0).
Thus Tα+1 − Xα+1 − V1 = −f i(0). During query α + 2 this value is on the
left hand side of the encryption, and 0 is on the right hand side. The result
of this encryption is: Sα+2 = 0; Tα+2 = f j(0); Vα+2 = fk+j(0). Finally, when
we encrypt (−T1, Tα+2), we get: Sα+3 = 0; Tα+3 = f j(0) + f j(Sα+3); Vα+3 =
fk(f j(0) + Tα+2). Which implies that Tα+3 = f j(0) + f j(0) = Tα+2 + Tα+2.

3.3 Attacking the Super Pseudorandom Property of Ψ(f1, f2, f3)

Luby and Rackoff show that the three-round variant of their cipher Ψ(f1, f2, f3)
is pseudorandom, but not super pseudorandom [10]. In particular, one can dis-
tinguish the cipher from random with high probability by making two plaintext
queries, and one ciphertext query. We generalize their attack to work when the
operation in the Feistel ladder is addition over an arbitrary Abelian group G. We
stress that the cipher is still pseudorandom over these other algebraic structures
– it is just not super pseudorandom. We describe the attack.



Luby-Rackoff Ciphers: Why XOR Is Not So Exclusive 281

1. Choose a random plaintext: (L1, R1)
R← G×G.

2. Query for the encryption of L1 ·R1 and call the result T1 · V1.
3. Choose a value L2 at random: L2

R← G.
4. If L2 = L1 repeat the above step.
5. Query for the encryption of L2 ·R1 and call the result T2 · V2.
6. Query for the decryption of T2 · (V2 + L1 − L2), and call the result L3 ·R3.
If R3 = T2 + R1 − T1 then return that the cipher is not super pseudorandom
else return that the cipher is super pseudorandom.

If the cipher is a three-round Luby-Rackoff cipher, then the above test is always
correct. On the other hand, if the cipher is a truly random permutation, the
above test is wrong with negligibly small probability. We omit the analysis since
it is similar to the analysis of the previous attack.

One can see that our attack makes use of the fact that the underlying group is
Abelian. We are unable to develop an attack that works for non-Abelian groups,
in general. At the same time, we note that in certain cases, there are non-Abelian
groups which are still very “commutative.” Consider, for example, the dihedral
group D2n, which represents the group of symmetries (rotations and flips) of a
regular n-gon [8]. In this case, any two rotations with no flips commute. Thus,
if two elements are picked uniformly at random from D2n, they commute with
probability at least 1/4. In fact, the probability is higher since other randomly
chosen pairs of elements commute; for example, every element commutes with
itself and the identity. The above attack thus works for Dihedral groups, though
the success probability diminishes by a constant factor.

4 Four-Round Luby Rackoff Ciphers

In this section we construct a four-round Luby-Rackoff cipher that is secure
when the underlying operation is addition in certain algebraic structures, but is
broken easily when addition is performed in GF(2n)+.

We describe our construction. Let G be a group (with binary operation ‘+’).
Let f be a function drawn from a family F , with domain and range G. Let
h be drawn from an ε1-monosymmetric ε2-almost ∆-universal family of hash
functions. Then, our construction is Ψ(h, f, f, h) where addition in the underlying
Feistel ladder is performed in the group G. Note that Ψ(h, f, f, h) can be viewed
as a permutation on G×G. The security of this construction can be related in
a precise manner to the parameters ε1 and ε2, and the pseudorandomness of the
function family F . It turns out that if this group G has characteristic 2, then
ε1 = 1, and the cipher can easily be broken. On the other hand, for various
other groups, the construction is provably secure. We now make some important
observations about this construction:

– The hash functions in the first and fourth rounds have the same randomly
chosen key. Alternatively, we can replace h by f2, where f2 is a pseudorandom
function keyed independently of f . Hence we also obtain the new result that
Ψ(f2, f, f, f2) is strongly pseudorandom as a corollary.
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– The pseudorandom functions in the second and third rounds have the same
randomly chosen key (though this key should be chosen independently from
the key for the hash functions).

– If addition is performed over a group of characteristic 2 (e.g. G = GF(2n)+),
then this cipher has involution-like properties, so it can easily be distin-
guished from random.

The cipher Ψ(h, f, f, h) is very efficient: only two calls to the same pseudorandom
function are made, the universal hash functions operate on half the input block,
and the same universal hash function is used in the first and fourth rounds,
which saves additional key material. We cite our main theorem:

Theorem 4. Let G be a group, and let f be a function chosen from RandG→G.
Let h ∈ H be an ε1-monosymmetric ε2-almost ∆-universal hash function over the
group G. Let P be the family of permutations on G×G consisting of permutations
of the form P = Ψ(h, f, f, h). Then: Advsprp

P (q, t) ≤ q2ε1 +
(
q
2

) (
2ε2 + |G|−2

)
.

We remark that although ∆-universal hash functions are traditionally defined
over Abelian groups one could easily extend the definition to hold over non-
Abelian groups, and our above result would continue to hold. Also, by modifying
the appropriate definitions we can model cases in which each individual round
involves a possibly different group operation. Using our techniques in this general
model we can easily prove, for example, that Ψ(h, f, f, h) is secure if the second
and third rounds involve exclusive-or, but the first and fourth perform addition
in certain other groups (for example the integers modulo 2n). This result is
surprising since if we simply change two operations by making the first and
fourth round use exclusive-or, then the cipher can be distinguished from random
using only two queries.

The proof of theorem 4 follows the framework of Naor and Reingold [11]. We
start by recasting the original setting into the more general context of arbitrary
finite groups. As usual, our adversary A is modeled as a program for a random
access machine that gets black-box access to either a permutation uniformly
sampled from PermG×G or one sampled from the set of ciphers P = Ψ(h, f, f, h).
As was done previously, the adversary will have access to two oracles – one for
computing each direction of the permutation. We denote a query for the forward
direction of the permutation by (+, x). Such a query asks to obtain the value
P(x). Similarly, we denote query in the reverse direction by (−, y). Such a query
asks to obtain the value for P−1(y). Like before, we write L · R to denote the
left and right halves of the plaintext respectively, and we write V ·W to denote
the left and right halves of the ciphertext respectively. In this case, however, L
and R are each elements of the group G, and we can think of L ·R as an element
of G × G. Also, in the following proof we make the standard assumption that
the adversary A is deterministic. Under this assumption, the ith query made by
A can be determined from the first i − 1 query-answer pairs in A’s transcript.
We consider the notion of a function C which can determine the adversary’s
next query given the previous queries and answers as well as the notion of which
transcripts can possibly be generated.
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Definition 6. Let CA[{〈x1, y1〉, . . . , 〈xi−1, yi−1〉}] denote the ith query A makes
as a function of the first i− 1 query-answer pairs in A’s transcript. The output
of A as a function of its transcript is denoted by CA[{〈x1, y1〉, . . . , 〈xq , yq〉}].

Definition 7. Let σ be a sequence {〈x1, y1〉, . . . , 〈xq, yq〉}, where for 1 ≤ i ≤ q
we have that 〈x1, y1〉 ∈ (G×G)× (G×G). Then, σ is a consistent A-transcript
if for every 1 ≤ i ≤ q : CA[{〈x1, y1〉, . . . , 〈xi−1, yi−1〉}] ∈ {(+, xi), (−, yi)}.

We now consider a special random process for A’s queries that will be useful
to us. This random process is analogous to the one given in the security proof
of the Naor-Reingold construction [11].

Definition 8. The random process R̃ answers the ith query of A as follows:

– If A’s query is (+, xi) and for some 1 ≤ j < i the jth query-answer pair is
〈xi, yi〉, then R̃ answers with yi. If more than one such query-answer pair
exists, we pick the one with the smallest index.

– If A’s query is (−, yi) and for some 1 ≤ j < i the jth query-answer pair is
〈xi, yi〉, then R̃ answers with xi. If more than one such query-answer pair
exists, we pick the one with the smallest index.

– If neither of the above happens, then R̃ answers with a uniformly chosen pair
(g1, g2) ∈ G×G.

As before, we note that R̃’s answers may not be consistent with any function,
let alone any permutation. We formalize this concept.

Definition 9. Let σ = 〈(x1, y1), . . . , (xq , yq)〉 be any possible A-transcript. We
say that σ is inconsistent if for some 1 ≤ j < i ≤ q the corresponding query-
answer pairs satisfy: xi = xj and yi 	= yj , or xi 	= xj and yi = yj .

Fortunately, the process R̃ often “behaves” exactly like a permutation over G×G.
If A is given oracle access to either R̃ or PermG×G, then it will have a negligible
advantage in distinguishing between the two. Naor and Reingold prove this when
the group is GF(2n)+. We generalize their proof to the case of any algebraic
structure. Before proceeding, recall that we denote by the random variables TP ,
TPermG×G , and TR̃ the transcript seen by A when its oracle queries are answered
by P , PermG×G, and R̃ respectively.

Proposition 1. Let A be a 2-oracle adversary restricted to making a total of at
most q queries to its oracles. Then: PrR̃[CA(TR̃) = 1]−PrPermG×G [CA(TPermG×G)
= 1] ≤

(
q
2

)
· |G|−2.

Proof. First, let Con denote the event that TR̃ is consistent, and let ¬Con denote
the complement. For any possible and consistent A-transcript σ we have that:

Pr
PermG×G

[TPermG×G = σ] =
(|G| − q)!
|G|! = Pr

R̃
[TR̃ = σ | Con].
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Thus TPermG×G and TR̃ have the same distribution conditioned on the event
Con. We now bound the probability of ¬Con. Recall that TR̃ is inconsistent
if there exists an i and j with 1 ≤ j < i ≤ q for which xi = xj and yi 	=
yj , or xi 	= xj and yi = yj. For a particular i and j this event happens with
probability |G|−2. So, PrR̃[¬Con] ≤

(
q
2

)
· |G|−2. We complete the proof via a

standard argument: PrR̃[CA(TR̃) = 1]− PrPermG×G [CA(TPermG×G) = 1] =

(
Pr
R̃

[TR̃ = σ | Con]− Pr
PermG×G

[CA(TPermG×G) = 1]
)
· Pr

R̃
[Con] +

(
Pr
R̃

[TR̃ = σ | Con]− Pr
PermG×G

[CA(TPermG×G) = 1]
)
· Pr

R̃
[¬Con]

≤ Pr
R̃

[¬Con] ≤
(

q

2

)
· |G|−2.

We now proceed to obtain a bound on the advantage A will have in dis-
tinguishing between TP and TR̃. It turns out that TP and TR̃ are identically
distributed unless some event depending on the choice of h in P occurs. We call
this event Bad and obtain a bound on the probability that it actually occurs.
Intuitively, Bad occurs whenever the internal function f in P would be evaluated
on the exact same point twice for two distinct oracle queries – that is, whenever
there is an internal collision. We formalize this concept as follows.

Definition 10. For every specific monosymmetric ε-almost-∆-universal hash
function h, define Bad(h) to be the set of all possible and consistent A-transcripts
σ = 〈(L1 ·R1, V1 ·W1), . . . , (Lq ·Rq, Vq ·Wq)〉 satisfying:

– Event B1: there exists 1 ≤ i < j ≤ q such that h(Ri) + Li = h(Rj) + Lj, or
– Event B2: there exists 1 ≤ i < j ≤ q such that Wi − h(Vi) = Wj − h(Vj), or
– Event B3: there exists 1 ≤ i, j ≤ q such that h(Ri) + Li = Wj − h(Vj).

Proposition 2. Let h ∈ H be an ε1-monosymmetric ε2-almost-∆-universal
hash function. Then, for any possible and consistent A-transcript σ = 〈(L1 ·
R1, V1 ·W1), . . . , (Lq ·Rq, Vq ·Wq)〉, we have that Prh[σ ∈ Bad(h)] ≤ 2

(
q
2

)
·ε2+q2·ε1.

Proof. Recall that a transcript σ ∈ Bad(h) if event B1, event B2, or event B3
occurs. We can determine an upper bound on the individual probabilities of
each of these events separately using the fact that they are ε1-monosymmetric,
ε2-almost-∆-universal, and obtain an upper bound on the overall probability by
taking the sum. �


The following key lemma for proving theorem 4 shows that the distribution of
possible and consistent transcripts generated by TP given that the bad conditions
do not occur is identical to the distribution of possible and consistent transcripts
generated by TR̃. This lemma will be useful when we try to determine a bound
on the advantage our adversary A will have when trying to distinguish between
these two cases in general.
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Lemma 1. Let σ be any possible and consistent A− transcript, then PrP [TP =
σ|σ /∈ Bad(h)] = PrR̃[TR̃ = σ].

Proof. First observe that PrR̃[TR̃ = σ] = |G|−2q. This equality follows since R̃
picks elements from G×G. Thus for a given fixed transcript entry, the probability
that R̃ could generate it is 1/|G×G| which equals |G|−2. Now, for q consistent
transcript entries, R̃ would generate them by picking q elements independently
from G×G, which gives us the desired probability of |G|−2q.

Since σ is a possible A-transcript, it follows that TP = σ if and only if
Vi ·Wi = P (Li · Ri) for all 1 ≤ i ≤ q. Next, suppose h is an ε1-monosymmetric
ε2-almost-∆-universal hash function for which σ /∈ Bad(h). Now, we know that
Li ·Ri and Vi ·Wi must satisfy the following series of equations:

Si = Li + h(Ri);
Ti = Ri + f(Si);
Vi = Si + f(Ti);

Wi = Ti + h(Vi).

So, in particular (Vi, Wi) = P (Li, Ri) ⇔ f(Si) = Ti − Ri and f(Ti) = Vi − Si.
Now observe that for all 1 ≤ i < j ≤ q, Si 	= Sj and Ti 	= Tj (otherwise
σ ∈ Bad(h)). Similarly, for all 1 < i, j < q, Si 	= Tj . So, if σ /∈ Bad(h) all the
inputs to f are distinct. Since f is a random function, for every specific choice of
h such that σ /∈ Bad(h) the probability that TP = σ is exactly |G|−2q. Therefore:
PrP [TP = σ|σ /∈ Bad(h)] = |G|−2q. �


To complete the proof we use the above lemma as well as propositions 1 and
2 in a probability argument. Letting Γ be the set of all possible and consistent
transcripts σ such that CA(σ) = 1:

Pr
P

[AP,P−1
= 1]− Pr

R
[AR,R−1

= 1]

= Pr
P

[CA(TP) = 1]− Pr
R

[CA(TR) = 1]

≤ Pr
P

[CA(TP) = 1]− Pr
R̃

[CA(TR̃) = 1] +
(

q

2

)
· |G|−2

The last inequality follows from the previous by proposition 1. Now, let T denote
the set of all possible transcripts (whether or not they are consistent), and let
∆ denote the set of all possible inconsistent transcripts σ such that CA(σ) = 1.
Notice that Γ ∪∆ contains all the possible transcripts such that CA(σ) = 1, and
T − (Γ ∪ ∆) contains all the possible transcripts such that CA(σ) = 0. Then
PrP [CA(TP) = 1]− PrR̃[CA(TR̃) = 1] =

∑

σ∈T
Pr
P

[CA(σ) = 1] · Pr
P

[TP = σ]−
∑

σ∈T
Pr
R̃

[CA(σ) = 1] · Pr
R̃

[TR̃ = σ]

=
∑

σ∈Γ

(Pr
P

[TP = σ]− Pr
R̃

[TR̃ = σ]) +
∑

σ∈∆

(Pr
P

[TP = σ]− Pr
R̃

[TR̃ = σ])

≤
∑

σ∈Γ

(Pr
P

[TP = σ]− Pr
R̃

[TR̃ = σ])
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The last expression follows from the previous since for any inconsistent transcript
σ, PrP [TP = σ] = 0. To bound the above expression observe that it equals:

∑

σ∈Γ

(Pr
P

[TP = σ|σ ∈ Bad(h)]− PrR̃[TR̃ = σ]) · Pr
P

[σ ∈ Bad(h))]

+
∑

σ∈Γ

(Pr
P

[TP = σ|σ /∈ Bad(h)]− Pr
R̃

[TR̃ = σ]) · Pr
P

[σ /∈ Bad(h)]

Now, we can apply Lemma 1 to get that the last term of the above expression
is equal to 0. All that remains is to find a bound for the first term:

∑

σ∈Γ

(Pr
P

[TP = σ|σ ∈ Bad(h))]− Pr
R̃

[TR̃ = σ]) · Pr
P

[σ ∈ Bad(h))]

≤ max
σ

Pr
P

[σ ∈ Bad(h)]×

max

{
∑

σ∈Γ

(Pr
P

[TP = σ|σ ∈ Bad(h)],
∑

σ∈Γ

Pr
R̃

[TR̃ = σ])

}

.

Note that the last two sums of probabilities are both between 0 and 1, so the
above expression is bounded by maxσ PrP [σ ∈ Bad(h)], which is, by Proposi-
tion 2, bounded by 2

(
q
2

)
· ε2 + q2 · ε1. We combine the above computations to

complete the proof:

Pr
P

[AP,P−1
= 1]− Pr

R
[AR,R−1

= 1] ≤ 2
(

q

2

)
· ε2 + q2 · ε1 +

(
q

2

)
· |G|−2.

5 Monosymmetric ∆-Universal Hash Functions

The security of the construction in the previous section rests upon the pseudo-
randomness of the round function f , and the parameters ε1, ε2 associated with
the hash function h. This section focuses on constructing monosymmetric uni-
versal hash functions and argues that they are necessary for our constructions.

Constructions. We initially demonstrate that over certain algebraic struc-
tures, small values of ε1, ε2 are easy to attain. Next, we show that in other
groups, the value of ε1 will always be quite large. Our first example concerns the
family RandG→G, for a group G.

Lemma 2. Suppose G has no element of order 2. Then, the set of all possible
functions RandG→G is 1/|G|-monosymmetric 1/|G|-almost-∆-universal.

Proof. First we show that RandG→G is 1/|G|-almost-∆-universal. Consider three
values x, y, δ ∈ G, with x 	= y. The values f(x) and f(y) are uniformly distributed
when f

R← RandG→G. Thus, their difference is uniformly distributed, and takes
on any value in the range G with equal probability. Consequently, ∀x 	= y ∈
G, ∀δ ∈ G : Pr[f R← RandG→G : f(x)− f(y) = δ] = 1/|G|.
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Now we examine the monosymmetric property. Again, pick values x, y, δ ∈ G.
There are two cases. If x 	= y, then using an argument very similar to the one
above, we get: ∀x 	= y ∈ G, ∀δ ∈ G : Pr[f R← RandG→G : f(x) + f(y) = δ] =
1/|G|. The only remaining case is when x = y. Then, f(x) + f(y) = 2f(x) and
we are then left with an equation of the form 2f(x) = δ. We claim that at most
one value of f(x) that satisfies this equation. If this claim were true, then we
are done since f(x) is uniformly distributed over the choice of f . We now prove
the claim by contradiction. Suppose that there are two values x1, x2 such that
2f(x1) = 2f(x2) = δ, but f(x1) 	= f(x2). It follows that 2(f(x1) − f(x2)) = 0.
However, f(x1)−f(x2) ∈ G, and f(x1)−f(x2) 	= 0 contradicting the assumption
that G does not contain any element of order 2. �


Unfortunately, it is difficult to efficiently sample from RandG→G because it con-
tains |G||G| elements, which is quite large for our purposes. If one looks at the
proof of the above lemma, it is not hard to see that we did not need truly ran-
dom functions. Instead, strongly universal families of functions suffice since they
appear random whenever one considers only two input / output pairs. Therefore:

Corollary 1. Suppose G has no element of order 2. Then any strongly universal
family of functions is 1/|G|-monosymmetric 1/|G|-almost-∆-universal.

Example. If G is the additive group attached to a finite field F , then one such
family of strongly universal hash functions is the linear congruential hash family:
ha,b(x) = ax + b where arithmetic is performed in F .

Since finite fields, of characteristic greater than 2 with size pk exist for any
odd prime p and any natural number k, we can construct good monosymmetric
∆-universal hash function families for sets of these size. We now show how to
construct reasonably good families of such hash functions for sets of any size.

Lemma 3. Let m be a natural number, and let G be the cyclic group Zm. Let
p be the smallest prime such that m ≤ p. Let H be any ε1-monosymmetric ε2-
almost-∆-universal hash function family over the additive group attached to the
finite field Fp. Consider the family of functions H ′, which is defined as follows:
H ′ = {h′

a : Zm → Zm | a ∈ Keys(H)}, where the functions h′
a are defined as:

h′
a(x) = ha(x) mod m. Here ha is chosen from H according to key a. We are also

using the natural representation of elements in Zm and Zp whereby we utilize
the smallest non-negative integer. Then H ′ is 4ε1-monosymmetric 4ε2-almost-
∆-universal over the group Zm.

Proof. We first start with Bertrand’s postulate, which states that for each integer
m ≥ 2, there is a prime number p with m ≤ p < 2m. First, we examine the ∆-
universal property. Let x, y, δ ∈ Zm be chosen arbitrarily, with x 	= y. Let a be
a key such that h′

a(x) − h′
a(y) = δ. Equivalently, (ha(x)− ha(y)) mod m = δ.

Now, since H operates over the additive group attached to the finite field
Fp, it follows that ha(x), ha(y) ∈ {0, . . . , p − 1}. Combining this fact with the
previous observation, we see ha(x)−ha(y) ∈ {δ, δ+m, δ−m, δ+2m, δ−2m, . . .}.
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Since the set of possible differences is finite there must be some minimum
element which we can denote by l0. It must be of the form l0 = δ + im, for some
integer i. Consider values of the form lr = δ + (i + r)m, where r ≥ 4. Observe
that lr − l0 = rm ≥ 4m > 2p. Since there are at most 2p values in the range,
lr cannot appear as the difference of h applied to two inputs for r ≥ 4. Thus,
Pr[a R← Keys(H) : h′

a(x) − h′
a(y) = δ] ≤ Pr[a R← Keys(H ′) : ha(x) − ha(y) ∈

{l0, l1, l2, l3}] ≤ 4ε2 which follows by applying the union bound and observing
that h is ε2-almost-∆-universal. With the same technique we can show that H ′

is 4ε1-monosymmetric. �


In specific cases we can get tighter bounds by exploiting either the algebraic
structure of the hash function itself or the relationship between p and m (for
example, if m < p ≤ 3m/2, then we can achieve values of 3ε1 and 3ε2). For the
case m = 2n, these functions are interesting since addition modulo 2n is easily
implemented on most processors. Therefore, our constructions have practical im-
plications. Another very efficient family of monosymmetric ε-almost-∆-universal
hash functions for which ε is small (=2/2n) is the square hash family [5].

We now consider groups for which no good families of monosymmetric-∆
universal hash functions exist. The most striking example occurs in the additive
group of the Galois Field of order 2n, GF(2n)+.

Example. If H is any family of functions whose range is GF(2n)+ (i.e. char-
acteristic 2), then Prh∈H [h(x) + h(y) = δ] = 1 whenever x = y and δ = 0.
Thus, it is not possible to get a value of ε1 smaller than 1 for the monosymmetry
property.

Another case in which a group may not possess good monosymmetry proper-
ties is the multiplicative group modulo m, Z∗

m. If we set x = y, then the expression
Prh∈H [h(x) · h(y) = δ] may be high if δ has many square roots. For example, if
the prime factorization of m consists of k distinct odd primes p1, . . . , pk then it
follows from the Chinese Remainder Theorem that certain elements of Z∗

m may
have up to 2k square roots.

Necessity. We give evidence that our minimal-key construction is fairly opti-
mal and that the monosymmetry property is needed. Specifically, we show that
Ψ(h1, f, f, h2) is not necessarily secure if h1 and h2 are independently keyed
∆-universal hash functions that do not satisfy the additional monosymmetry
property. Note that in this case, we consider a cipher for which h1 and h2 may
be different hash functions, so our attack is more general. The attack also works
if they are the same hash function. Patel, Ramzan, and Sundaram [14] show
that this particular cipher can be broken when operations were performed in
GF(2n)+; we now extend the result to the case when operations are performed
over arbitrary finite fields and resort to different techniques to do so. We note
that this result is shown only for finite fields. Extending it to hold for arbitrary
groups is left as an open problem.

We describe the attack. Suppose that h1 and h2 are taken from the linear
hash family. That is h1(x) = a1 · x and h2(x) = a2 · x, where multiplication is
performed with respect to the underlying finite field. This family is known to
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be ∆-universal. Pick values α, α′ at random (with α 	= α′), and obtain both the
encryption of x = α · 0 and the decryption of 0 · α. Next, obtain the encryption
of α′ · 0 and the decryption of 0 · α′. Working through the equations for the
encryption of x = α · 0: S1 = h1(R1) + L1 = h1(0) + α = 0 + α = α; T1 =
f(S1) + R1 = f(α); V1 = f(T1) + S1 = f2(α) + α; W1 = h2(V1) + T1 = a2 ·
V1 + f(α). Now we work through the equations for decrypting V2 ·W2 = 0 · α:
T2 = W2 − h2(V2) = α − 0 = α; S2 = V2 − f(T2) = 0 − f(α) = −f(α); R2 =
T2 − f(S2) = α − f(−f(α)); L2 = S2 − h1(R2) = −f(α) − a1 · R2. Next, let
A1 = L2 + W1. Observe that A1 = L2 + W1 = a2 · V1 − a1 · R2.

Now, we repeat the same process as above. In particular, we ask for the
encryption of L3 · R3 = α′ · 0 and call the result V3 ·W3. We also ask for the
decryption of V4 ·W4 = 0 ·α′ and call the result L4 ·R4. Let A2 denote L4 +W3.
By an argument similar to the one given above, A2 = a2 · V3 − a1 ·R4. We now
have a system of equations: −a1 ·R2 + a2 · V1 = A1;−a1 ·R4 + a2 · V3 = A2.

Since we know R2, R4, V1, V3, A1, A2 the only unknowns are a1, a2. With high
probability, this system of equations has full rank, and we can solve for a1 and
a2. If h1 = h2 = h, then a1 = a2 = a and the function is an involution that can
easily be distinguished from random. The above procedure allows us to compute
the keys to the hash functions in the first and fourth rounds. Knowing these
keys reduces the problem to distinguishing the two-round Luby-Rackoff cipher
Ψ(f, f) from random, which can easily be done in two queries [10].

6 Conclusion

This paper initiated a study of Luby-Rackoff ciphers over arbitrary finite al-
gebraic structures. To our surprise, we discovered that certain Luby-Rackoff
cipher constructions are secure when the Feistel operation is taken over partic-
ular groups but are insecure when operations are taken with respect to other
groups. For example, when we replace bit-wise exclusive-or by addition modulo
2n we turn an insecure cipher into a provably secure one. Precisely, we prove that
Ψ(h, f, f, h) is a super pseudorandom permutation where h is a mono-symmetric
hash function and that such hash functions do not apply to XOR-based groups.
We also gave attacks on various well-known three-round constructions over gen-
eral Abelian groups. We proved that:

– Ψ(f1, f2, f1) and consequently Ψ(f, f, f) are not pseudorandom.
– Ψ(f i, f j, fk) is not pseudorandom, when k is a multiple of i + j.
– Ψ(f1, f2, f3) is not super pseudorandom.

Our results spawn new areas for research and motivate a need to re-examine
the literature on Luby-Rackoff ciphers to determine the extent to which the old
results hold when we look at arbitrary finite algebraic structures. More gener-
ally, this work opens up the possibility of security advantages with non-XOR
operations for almost any cryptographic primitive and not just block ciphers.
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